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Abstract: - This paper presents a new parallel model for Rabbit stream cipher. The goal of this model is to 
enhance the performance of Rabbit cipher by accelerating its keystream generation and encryption processes. 
The underlying concept of the new model was built based on utilizing multi-core processors to generate 
multiple keystreams simultaneously. The results showed that the new parallel model could enhance the 
encryption speed of Rabbit of about 1.4, 1.6 and 2.3 times on single, dual and quad core processors. 
 
 
Key-Words: - Parallel processing, Multi-core processors, Rabbit cipher, Stream cipher, Multithreading. 
 
1 Introduction 
Encryption algorithms are concerned of 
transforming readable texts (plaintext) to unreadable 
and uncomprehending text (ciphertext). In stream 
ciphers, the encryption algorithm generates a stream 
of bits that are exclusively-ORed (XOR’ed) with a 
stream of plaintext bits to generate a stream of 
ciphertext bits. Traditionally, stream ciphers use 
textual secret key to initiate the key generation 
process. The textual secret key is used as Initial 
Vector (IV) in all stream ciphers. For security 
purposes, these keys should be long enough (128 bit 
as minimum) to satisfy the minimum security 
requirements.  

Rabbit stream cipher is one of the secure ciphers  
[1]  [2] [3] which is based on iterating a set of 
coupled non-linear functions (discretized chaotic 
maps) [4]. It uses a 128-bit Secret Key (SK) and 64-
bit Initial Vector (IV) as input parameters to 
generate a stream of 128-bit blocks.  

In this research we present a new parallel design 
for Rabbit stream cipher which also replaces the 
textual keys by images. The proposed model aims to 
utilize multi-core processors using multithreading 
techniques. On the other hand, the new model 
replaces the textual IVs by images, where the input 
image is treated as general key for extracting both of 
SK and IV of Rabbit stream cipher. The reason 
behind replacing the textual keys by images is to 
extend the security and practicality levels of Rabbit 
cipher, where we can generate secure keys easily 
(using one single key instead of two separate IV and 
SK). The new design ensure satisfying both the 
security and performance requirements. The security 

level is ensured as the keystream generator depends 
mainly on the secure Rabbit cipher, while the 
performance is ensured through parallelism over 
multi-core processors. 

The rest of the paper is organized as follows: 
Section 2 introduces related concepts on stream 
ciphers, Rabbit cipher and parallel computing over 
multi-core processors. The related works is 
discussed in Section 3. Section 4 describes the 
structure of the proposed parallel model. The 
security analysis is discussed in Section 5. The 
implementation and performance evaluation of the 
proposed algorithm is presented in Section 6. 
Finally, concluding remarks are presented at the end 
of the paper. 
 
 
2 Definitions and Preliminaries 
 
 
2.1 Stream Ciphers 
 
2.1.1 Overview  
The idea of stream ciphers was inspired from the 
famous cipher called the One-time Pad [5] [6]. This 
cipher is based on XOR’ing (⊕ ) the message bits 
and the key bits. The One-time pad is defined as in 
Equation 1: 
 

:{0,1} {0,1} {0,1}, ( , )E m k m k× → → ⊕  (1) 
 
where plaintext, keystream and ciphertext bits are in 
the space {0, 1}. The encryption transformation is 
given by: 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 104 Volume 11, 2014

mailto:khaled.suwais@arabou.edu.sa�


( )
ik i i i iE m m k c C= ⊕ = ∈     (2) 

 
and the decryption transformation is given by: 
 

( )
ik i i i iD c c k m M= ⊕ = ∈      (3) 

 
Definition 1: Let k1, k2, …, kn be a set of 

keystream in the key space K, m1, m2, …, mn be a 
set of plaintext in the plaintext space M, and 

1 2, ,..., nc c c C∈  be a set of ciphertext in the 
ciphertext space C. The encrypted ciphertext is 
generated by: 
 

( ) 1 2, ,...,
ik i nE m c c c C= ∈      :1i i n∀ ≤ ≤    (4) 

 
From the above definition, the encryption 

process of a stream cipher Ek is bijective for every 
ki. The plaintext space and key space are typically 
represented in bit or byte representations. Most 
importantly, keeping the key k  is essential for the 
security of stream ciphers. Fig. 1 illustrate the 
general structure of stream ciphers. 
 

 
Fig. 1. Structure of Stream Cipher 

 
The encryption process of a synchronous stream 

cipher is best described by the following equations: 
 

( )1 , ,i iNS K+∂ = ∂     (5) 

( ), ,
is ik KG K= ∂     (6) 

( ),
ii s ic EN k m=     (7) 

where 0∂ is the initial state determined by the input 
key K, NS is the next-state function, KG is the 
keystream generation function which generates ks, 
and EN is the output function which generates the 
ciphered text ci by combining both the plaintext mi 
and the keystream ksi.  
 

2.1.2 Rabbit Stream Cipher  
The Rabbit cipher is a stream cipher that utilize a 
128-bit secret key with a 64-bit Initialization Vector 
(IV). The Rabbit encrypts 128-bits in each iteration 
synchronously to provide an effective ciphered bit 
stream. The internal structure of Rabbit is divided 
into four stages: Key/IV insertion, Key setup, IV 
setup and Encryption. Note that the authors of 
Rabbit have not specified the insertion of Key/IV. 
Fig. 2 illustrates the main stages of Rabbit stream 
cipher. 
 

 
Fig. 2. Main stages of Rabbit cipher 

 
In the second stage of Rabbit cipher, the key is 

initialized using internal state (IS) registers (denoted 
by X) and counter registers (denoted by C). In this 
stage, the key bits are assigned to all X’s (xj,0) and 
C’s values (cj,0). After that, the next-state function is 
called to scramble values of X and increment the 
counters C. At the end of this stage, the counters are 
re-initialized by XOR’ing the state registers with the 
previously-initialized values of counters. 

In the third stage, the 64-bit IV is utilized such 
that the eight counter registers are modified by 
XOR’ing every bit of the IV with every bit in the 
counters. This technique is used to ensure that we 
have 264 possible unique keystreams for any given 
secret key. After combining the IV with the 
counters, the IV setup call the next-state function to 
ensure the right mixture of bits of IV. Calling the 
next-state function will mix the IV bits using the 
values of the counters and the state registers. 

Finally, the encryption stage is carried out by 
initiating two internal functions: the next-state 
function and the keystream generator. Here, the 
counter registers are updated by combining the 
current state of all counter registers with a constant 
Aj and the carry bit value. Updating the counter 
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states is accomplished sequentially since the value 
of counter Ci+1 depends on the state of Ci. 

After updating the counter registers, the state 
registers Xj,i+1 are calculated accordingly. Each state 
register and its associated counter register are used 
to generate a G value as a function gj(xj,i,cj,i+1). Upon 
calculating all gj values, each state register is 
updated as a function of G values. 

Once the counter and state registers are iterated, 
the keystream generator is initiated. In this 
generator, the XOR operation is applied on different 
state registers to create eight 16-bit keystream 
registers. The resulted random keystream bits are 
then used to XOR the bits of the plaintext stream. 
 
 
2.2 Parallel Computing and Multi-core 
Processors 
The need for secure and high performance 
communication has become an important ingredient 
in our daily life. Achieving security and high 
performance is possible by utilizing more computer 
resources, where several jobs are accomplished 
simultaneously and therefore completed in shorter 
time. Parallel processing is described as the 
concurrent use of multiple processing resources (e.g. 
multiple CPUs) to solve a computational problem, 
where a given problem is broken into smaller 
segments and solved concurrently using multiple 
processors.  

Multithreading technique was introduced in 
1960s [7] to enhance the performance of 
applications by running them in parallel over the 
available resources. This technique aims to create a 
virtual multiprocessors environment to run multiple 
tasks on single processor. The recent hardware 
revolution has played a significant role in improving 
systems performance through the multi-core 
technology. Multi-core is a technology where a 
single physical processor contains the logical core 
of more than one processor.  

Multithreading technique maps independent 
tasks to threads to give the operating system greater 
flexibility in process scheduling, which in turn hides 
program latency [8] as shown in Fig. 3. The 
Lightweight Processes form the underlying threads 
of control, which are supported by the kernel. Each 
of the processes can be executed by multiple 
threads, resulting in faster execution in a shorter 
period of time. Examples of multithreaded libraries 
found in the literature include: libthread [9], Posix 
[10], Pth [11] and bb_threads [12]. 

 

 
 

Fig.3 Multithreading Architecture 
 
 
3 Related Works 
Parallel cryptographic primitives have been studied 
from two perspectives: the design of new 
cryptographic hardware (hardware-based 
parallelism), and the parallelization of the 
mathematical and logical construct of the internal 
design (software-based parallelism). Several 
researches on hardware-based parallelism have been 
conducted. Examples of hardware-based parallelism 
includes: the implementation of Rijndael algorithm 
on VHDL (VHSIC Hardware Description 
Language) [13], the Field-Programmable Gate 
Array (FPGA) implementation of RSA [14], and the 
FPGA-based symmetric encryption algorithms [15]. 

Software parallelism is implemented 
hierarchically in two levels: job-level (highest level) 
and instruction-level (lowest levels). One of the 
software parallelism-based researches and 
implementations is interested in applying different 
techniques of parallelism including per-connection, 
per-packet and intra-packet parallelism to increase 
the throughput of different protocols stack [16]. 
Another research in the same category parallelized 
the three-layer model for elliptic curve scalar 
multiplication, which can be applied on different 
cryptographic applications due to its higher 
performance compared to the conventional 
implementation of elliptic curve cryptography [17]. 

The existence of parallel stream cipher designs is 
limited in the literature. One design was presented 
in [18] where a parallel-structured PS-LFSR (Linear 
Feedback Shift Register) is used to perform m-bit 
shifting/outputting for one clock and parallelizing 
many similar keystream generators for faster 
processing. Another parallelism technique applied in 
the parallel stream cipher proposed in [19] relies on 
parallelizing four types of nonlinear combiners: m-
parallel nonlinear combiner without memory, m-
parallel nonlinear combiner memories, m-parallel 
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nonlinear filter function and m-parallel clock-
controlled function using PS-LFSR.  
 
 
4 Parallel Model for Rabbit Cipher 
In order to facilitate parallelism, the proposed 
stream cipher is composed of three components: 
The Secret Key Initial Vector Initializer (SK/IVI), 
the Keystream Generator (KsG) and the Plaintext 
Encoder (PtE). The initial vector initializer is 
responsible for extracting the general secret key 
from the input image key. The extracted key will be 
used as input to the keystream generator that is 
responsible for generating pseudorandom 
keystreams. These keystreams should be secure 
enough to be used for encrypting a stream of 
plaintext bit in the plaintext encoder. 
 
 
4.1 Key/IV Initializer 
In this component, the secret key (SK) and the 
initial vector (IV) of Rabbit cipher are computed 
based on the input image. The image is divided into 
four quarters (as illustrated by Fig. 4). Each quarter 
is used to extract a portion of the SK/IV. The 
complete SK/IV is formed by combining the 
extracted portions from the four quarters. 
 

 
 

Fig. 4. Dividing input image for initializing the secret key 
 

Obviously, there will be four subsystems to 
handle the computation of SK/IV. These subsystems 
are described in Equations 8-11: 
 
Q0 = [P(0,0) … P(0,m/2-1)] ◊ [P(0,0) … P(n/2-1,0)]            (8) 
Q1 = [P(0,m-1) … P(0,m/2)] ◊ [P(0,m-1) … P(n/2-1,m-1)]      (9) 
Q2 = [P(n-1,0) … P(n/2,0)] ◊ [P(n-1,0) … P(n-1,m/2-1)]      (10) 
Q3 = [P(n-1,m-1) … P(n/2,m-1)] ◊ [P(n-1,m-1) … P(n-1,m/2)](11) 
 
where ◊ denotes the concatenation. Consequently 
the final output (τ) is calculated using the SHA-256 
(denoted by SHA) algorithm as follows: 

 
τ = SHA(Q0 ◊ Q1◊ Q2 ◊ Q3)               (12) 

 
Once the final output is obtained, the secret key 

and initial vectors are generated such that: 
 
SK = τ [b0,…, b127]                (13) 
IV = τ [b128,…, b191]                            (14) 
 
where bi denotes the bit number of τ that is 
considered in computing both of SK and IV. 

Computing the SK/IV of Rabbit cipher is carried 
out in parallel, where the values of Qi (for all i= 
0,…,3) is executed simultaneously. Note that the 
number of the generated threads in this stage is four. 
For instance, if the model is running over dual-core 
processors, each two threads will be associated with 
one core. On the other hand, on quad-core 
processors, the model will associate each thread 
with one single core (Ĉ) as shown in Fig. 5. 

The generated SK/IV from this component is the 
input to the second component (KsG), where stream 
of keys is generated to encrypt stream of plaintext 
securely and efficiently. 
 

 
Fig. 5. Multithreading scheme for computing SK/IV over multi-

core processors 
 
4.2 Keystream Generator (KsG) 
The Keystream Generator (KsG) is mainly 
responsible for performing the next-state function of 
Rabbit. Therefore, the main purpose of KsG is to 
parallelize the keystream generation function of 
Rabbit cipher such that Rabbit can generate multiple 
keystreams simultaneously. Generating multiple 
keystreams requires creating and controlling 
multiple threads. The number of created threads, in 
this particular component, is mainly based on the 
number of available cores in the running processor. 

Each processor is responsible for running a set of 
counter values which are incremented sequentially 
in each iteration of the next-state function. 
Generally, For a given processor of n cores, the 
created threads are controlled as stated in Equation 
15: 
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Ĉi § Ti  § Ri  for all 0<i<ρ             (15) 

 
where § denotes the association between processors 
cores (Ĉi), threads (Ti) and counters (Ri), while ρ 
denotes the total number of generated threads. The 
counter set of Ri includes the following sub-
systems: Carry-bit Resolution (CbR), Counter 
Iteration (CI) and State Iteration (SI). In CbR, the 
carry-bit Φ is modified for each counter register 
update as shown in Equations 16 and 17: 

 
Φj,i+1 = 1 if [(((cj,i+αj+Φj,i+1) mod 32) ≥ 232) and 
(j=0)]  
or   
     [(((cj,i+αj+Φ(j-1),(i+1)) mod 32) ≥ 232) & (j≥1)]   (16) 
Φj,i+1 = 0 for all other cases              (17) 
 
where cj,i refers to the register index j in iteration 
number i, and αj refers to a hard-coded constant 
value.   

In the second sub-system, the counter iteration is 
carried out. In CI, the counter registers are updated 
sequentially. Each counter is updated using its 
current value accompanied by hard-coded register 
value, and the previous value of Φ. Equations 18-25 
describes the updating process of the counter 
registers: 

 
C0,i+1 = C0,i + α0 + Φ7,i mod 232              (18) 
C1,i+1 = C1,i + α1 + Φ0,i+1 mod 232              (19) 
C2,i+1 = C2,i + α2 + Φ1,i+1 mod 232              (20) 
C3,i+1 = C3,i + α3 + Φ2,i+1 mod 232              (21) 
C4,i+1 = C4,i + α4 + Φ3,i+1 mod 232              (22) 
C5,i+1 = C5,i + α5 + Φ4,i+1 mod 232              (23) 
C6,i+1 = C6,i + α6 + Φ5,i+1 mod 232              (24) 
C7,i+1 = C7,i + α7 + Φ6,i+1 mod 232              (25) 
 

In the last sub-system (SI), the 32-bit X internal-
states values are calculated by applying some 
rotation and addition operations over the previously 
calculated G values as follows: 

 
gj,i = ((xj,i + cj,i+1)2 ⊕ (xj,i + cj,i+1)2  » 32))mod232  (26) 

 
Once we obtain the G values, the internal states 

are updated as shown in Equations 27 and 28, where 
each equation is executed based on the value of j:  

 
xj,i+1 = gj,i+(g7,i <<<16)+(g6,i <<<16) for even j    (27) 
xj,i+1 = gj,i + (g0,i  <<< 8) + g7,i   for odd j              (28) 

 

In KsG, we treat the above discussed sub-
systems as one single unit. In this component, 
parallelism is carried out by creating multiple copies 
of the keystream generation of Rabbit. Each copy of 
the keystream generator of Rabbit is associated with 
a specific thread, which runs over a specific 
processor core. Practically, each copy of Rabbit 
keystream generator is associated with its own set of 
IV/SK generated from the IV/SK Initializer as 
illustrated by Fig. 6. 
 

 
Fig. 6. Parallel scheme for generating multiple keystreams 

simultaneously 
 
To parallelize the Rabbit keystream generator 

efficiently and consistently, each thread should be 
associated with its own set of IV/SK. Unlike the 
original implementation of Rabbit, our 
implementation associate each thread with its own 
set of IV/SK values, such that the values of IV/SK 
used by Ti differ from the IV/SK set used by the rest 
Tn-1 threads. In order to achieve such free-
dependency (as crucial factor in parallelism), the 
extracted IV/SK from the input secret image is 
shifted sequentially, such that the first thread (T1) 
uses the originally extracted IV/SK (denoted by IV0, 
SK0), the second thread (T2) perform 2-bit left 
rotation over IV0, SK0 to generate IV1, SK1. 
Sequentially, thread Tn performs 2-bit left rotation 
over the previously calculated IVn-1, SKn-1 to 
generate IVn, SKn. Note that with 2-bit rotation 
scheme, our model can support up to 32 processors 
cores, since having a processor with higher number 
of cores results in duplicating the IV/SK values.  

As keystream-synchronization is essential for the 
correctness of encryption and decryption operations. 
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The number of generated threads (represented by 
the attribute ρ) should be shared between sender and 
receiver. The value of ρ determines the number of 
threads that should be created on the receiver’s side 
regardless the number of cores available on the 
receiver’s processor. When the value of ρ at the 
sender’s side (denoted by ρsender) differ from the 
value of ρ at receiver’s side (denoted by ρreceiver) the 
following two equations (29-30) are used to specify 
the total number of threads that should be associated 
with each processor core (Ĉi): 
 
Ĉi § (ρsender/ρreceiver)threads   if ρsender>ρreceiver                    (29) 
Ĉ(i/ρsender) § (ρsender/ρreceiver)threads if ρsender<ρreceiver     (30) 

 
By controlling the number of generated threads 

on both sides, one can assure that the keystream 
generated during the encryption and decryption are 
aligned. 
 
4.3 Plaintext Encoder (PtE) 
This component is responsible for XOR’ing the 
keystream bit generated by each thread with their 
corresponding plaintext bits. To achieve parallelism 
in PtE, the plaintext bit should be synchronized 
with the keystream bits. Based on the number of 
generated threads (ρ), each 128-bit of plaintext is 
associated with a specific thread sequentially, such 
that thread T1 is associated with bits [b0, …, b127], T2 
is associated with bits [b128, …, b255] and so on. As 
the encryption process is parallelized in PtE, each 
thread needs to work on specific set of plaintext bits 
(plaintext segments). To achieve that, each thread 
use a special counter (Ctr) that is incremented 
sequentially and independently from the other 
threads.The Ctr0 values of all threads are initialized 
such that: 
 
Ctr0 = thread_id                 (31) 
 

Consequently, the subsequent rounds will 
increment the value of Ctri as shown in Equation 32: 
 
Ctri+1 = Ctri + ρ                (32) 
 

Table 1 shows an illustration on the associated 
counter values Ctri and plaintext segments with its 
corresponding threads in three rounds of generating 
new keystream on 8-cores processor (ρ= 8). 
 

 
 

Table 1: Association between the counters, plaintext segments 
and thread IDs 

 
 
Generating the ciphertext CT[m,…, n] for a segment of 
size 128 bits (for all bits from m to n) is carried out 
by XOR’ing the plaintext bits PT[m,…, n] with their 
corresponding keystream bits KS[m,…, n] as illustrated 
in Equation 33: 
 
CT[m,…, n] = (PT[m,…, n]§Ctri) ⊕ (KS[m,…, n]§Ti)          (33) 
 
 
5 Security Analysis 
In this research we rely on the keystream generator 
of Rabbit stream cipher to generate keystreams. 
Therefore, we are not performing further analysis on 
the security of the keystream generator itself. On the 
other hand, our modification on the original Rabbit 
cipher includes replacing the two textual keys (IV 
and SK) by a secret image, where the values of both 
IV/SK are extracted mathematically from the input 
image. The pre-calculation of IV/SK includes using 
the secure hash algorithm SHA-256 to increase the 
security of generating these two values. Such 
technique restrict cryptanalysis attacks (especially 
brute force attacks) from attacking the secret key 
due to the huge key space. Practically, the attacker 
must find the right combination of IV/SK keys in 
the space of 2128×264 possible keys, which is 
considered infeasible on current computing powers. 

From the other perspective, our modified 
algorithm requires the knowledge of the total 
number of cores used at the sender’s side (ρsender). 
This value should be securely shared along with the 
secret image in order to synchronize the decryption 
process at the receiver’s side. This technique add 
one more layer of security to Rabbit stream cipher. 
 
 
6 Performance Analysis 
In order to analyze the performance gained from 
parallelizing Rabbit stream cipher, three different 
platform are chosen to run the experiments. The 
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processors specifications of the selected platform 
are as follows: 
Platform 1: Intel Pentium IV® of CPU speed 
1.93GHz (single core). 
Platform 2: Intel Dual-Core® of CPU speed 
2.93GHz (two cores). 
Platform 3: Intel Core 2 Quad® of CPU speed 2.40 
GHz (four cores). 

Experiments results showed that the parallelized 
version (using Posix multithreading library) of 
Rabbit cipher (denoted by p-Rabbit) outperforms the 
original design (sequential design) of Rabbit cipher 
(denoted by Rabbit). The results shows that the new 
design is able to utilize the power of the available 
cores of the processors. Table 2 shows the 
encryption rate achieved on the three platforms. 

 
Table 2: Association between the counters, plaintext segments 

and thread IDs 

 Platform 1 Platform 2 Platform 3 

Rabbit 495MB/S 610MB/S 618MB/S 

p-Rabbit 702MB/S 985MB/S 1448MB/S 

 
It is obvious that our parallelized Rabbit utilizes 

the processor cores. The encryption rate of p-Rabbit 
achieved on quad-core processor is double the 
encryption rate of Rabbit on the same processor. 
Practically, achieving such high encryption rate is 
possible on multi-core processors due to the 
efficiency of the memory architecture (L1, L2 cache 
memories) on these processors if compared to multi-
processors memory architecture. Fig. 7 illustrates 
the projected performance of Rabbit and p-Rabbit 
ciphers on multi-core processors of 8-cores and up 
to 32-cores (assuming CPU speed of 2.4GH). 
 
 
4 Conclusion 
In this research, a parallel design of Rabbit stream 
cipher is presented. The new design focused on 
parallelizing the keystream generator of Rabbit to 
generate multiple keystreams simultaneously. 
Parallelizing the keystream generator is based on 
multithreading technique, where n threads are 
generated to run their own copies of keystream 
generators. Moreover, our new design replaced the 
textual initial vector and secret key by an image. 
The image is used to extract the values of the IV/SK 
securely. However, the performance analysis 
revealed that the encryption rate of the parallelized 

version of Rabbit outperform the original design of 
Rabbit on different number of processors’ cores. 
The average encryption rates enhancements were 
1.4, 1.6 and 2.3 times over single, dual and quad 
core processors, respectively. 
 

 

 
Fig. 7. Projected performance of Rabbit and p-Rabbit over 

multi-core processors 
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