
Parallel Model for Rabbit Stream Cipher over Multi-core Processors

KHALED SUWAIS
ITC Department

Arab Open University (AOU)
Riyadh 11681

SAUDI ARABIA
khaled.suwais@arabou.edu.sa

Abstract: - This paper presents a new parallel model for Rabbit stream cipher. The goal of this model is to
enhance the performance of Rabbit cipher by accelerating its keystream generation and encryption processes.
The underlying concept of the new model was built based on utilizing multi-core processors to generate
multiple keystreams simultaneously. The results showed that the new parallel model could enhance the
encryption speed of Rabbit of about 1.4, 1.6 and 2.3 times on single, dual and quad core processors.

Key-Words: - Parallel processing, Multi-core processors, Rabbit cipher, Stream cipher, Multithreading.

1 Introduction
Encryption algorithms are concerned of
transforming readable texts (plaintext) to unreadable
and uncomprehending text (ciphertext). In stream
ciphers, the encryption algorithm generates a stream
of bits that are exclusively-ORed (XOR’ed) with a
stream of plaintext bits to generate a stream of
ciphertext bits. Traditionally, stream ciphers use
textual secret key to initiate the key generation
process. The textual secret key is used as Initial
Vector (IV) in all stream ciphers. For security
purposes, these keys should be long enough (128 bit
as minimum) to satisfy the minimum security
requirements.

Rabbit stream cipher is one of the secure ciphers
[1] [2] [3] which is based on iterating a set of
coupled non-linear functions (discretized chaotic
maps) [4]. It uses a 128-bit Secret Key (SK) and 64-
bit Initial Vector (IV) as input parameters to
generate a stream of 128-bit blocks.

In this research we present a new parallel design
for Rabbit stream cipher which also replaces the
textual keys by images. The proposed model aims to
utilize multi-core processors using multithreading
techniques. On the other hand, the new model
replaces the textual IVs by images, where the input
image is treated as general key for extracting both of
SK and IV of Rabbit stream cipher. The reason
behind replacing the textual keys by images is to
extend the security and practicality levels of Rabbit
cipher, where we can generate secure keys easily
(using one single key instead of two separate IV and
SK). The new design ensure satisfying both the
security and performance requirements. The security

level is ensured as the keystream generator depends
mainly on the secure Rabbit cipher, while the
performance is ensured through parallelism over
multi-core processors.

The rest of the paper is organized as follows:
Section 2 introduces related concepts on stream
ciphers, Rabbit cipher and parallel computing over
multi-core processors. The related works is
discussed in Section 3. Section 4 describes the
structure of the proposed parallel model. The
security analysis is discussed in Section 5. The
implementation and performance evaluation of the
proposed algorithm is presented in Section 6.
Finally, concluding remarks are presented at the end
of the paper.

2 Definitions and Preliminaries

2.1 Stream Ciphers

2.1.1 Overview
The idea of stream ciphers was inspired from the
famous cipher called the One-time Pad [5] [6]. This
cipher is based on XOR’ing (⊕) the message bits
and the key bits. The One-time pad is defined as in
Equation 1:

:{0,1} {0,1} {0,1}, (,)E m k m k× → → ⊕ (1)

where plaintext, keystream and ciphertext bits are in
the space {0, 1}. The encryption transformation is
given by:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 104 Volume 11, 2014

mailto:khaled.suwais@arabou.edu.sa�

()
ik i i i iE m m k c C= ⊕ = ∈ (2)

and the decryption transformation is given by:

()
ik i i i iD c c k m M= ⊕ = ∈ (3)

Definition 1: Let k1, k2, …, kn be a set of

keystream in the key space K, m1, m2, …, mn be a
set of plaintext in the plaintext space M, and

1 2, ,..., nc c c C∈ be a set of ciphertext in the
ciphertext space C. The encrypted ciphertext is
generated by:

() 1 2, ,...,
ik i nE m c c c C= ∈ :1i i n∀ ≤ ≤ (4)

From the above definition, the encryption

process of a stream cipher Ek is bijective for every
ki. The plaintext space and key space are typically
represented in bit or byte representations. Most
importantly, keeping the key k is essential for the
security of stream ciphers. Fig. 1 illustrate the
general structure of stream ciphers.

Fig. 1. Structure of Stream Cipher

The encryption process of a synchronous stream

cipher is best described by the following equations:

()1 , ,i iNS K+∂ = ∂ (5)

(), ,
is ik KG K= ∂ (6)

(),
ii s ic EN k m= (7)

where 0∂ is the initial state determined by the input
key K, NS is the next-state function, KG is the
keystream generation function which generates ks,
and EN is the output function which generates the
ciphered text ci by combining both the plaintext mi
and the keystream ksi.

2.1.2 Rabbit Stream Cipher
The Rabbit cipher is a stream cipher that utilize a
128-bit secret key with a 64-bit Initialization Vector
(IV). The Rabbit encrypts 128-bits in each iteration
synchronously to provide an effective ciphered bit
stream. The internal structure of Rabbit is divided
into four stages: Key/IV insertion, Key setup, IV
setup and Encryption. Note that the authors of
Rabbit have not specified the insertion of Key/IV.
Fig. 2 illustrates the main stages of Rabbit stream
cipher.

Fig. 2. Main stages of Rabbit cipher

In the second stage of Rabbit cipher, the key is

initialized using internal state (IS) registers (denoted
by X) and counter registers (denoted by C). In this
stage, the key bits are assigned to all X’s (xj,0) and
C’s values (cj,0). After that, the next-state function is
called to scramble values of X and increment the
counters C. At the end of this stage, the counters are
re-initialized by XOR’ing the state registers with the
previously-initialized values of counters.

In the third stage, the 64-bit IV is utilized such
that the eight counter registers are modified by
XOR’ing every bit of the IV with every bit in the
counters. This technique is used to ensure that we
have 264 possible unique keystreams for any given
secret key. After combining the IV with the
counters, the IV setup call the next-state function to
ensure the right mixture of bits of IV. Calling the
next-state function will mix the IV bits using the
values of the counters and the state registers.

Finally, the encryption stage is carried out by
initiating two internal functions: the next-state
function and the keystream generator. Here, the
counter registers are updated by combining the
current state of all counter registers with a constant
Aj and the carry bit value. Updating the counter

Keystream
Generator

Keystream
Generator

K

ikE
ikD

ik ik

im imic

Encryption Decryption

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 105 Volume 11, 2014

states is accomplished sequentially since the value
of counter Ci+1 depends on the state of Ci.

After updating the counter registers, the state
registers Xj,i+1 are calculated accordingly. Each state
register and its associated counter register are used
to generate a G value as a function gj(xj,i,cj,i+1). Upon
calculating all gj values, each state register is
updated as a function of G values.

Once the counter and state registers are iterated,
the keystream generator is initiated. In this
generator, the XOR operation is applied on different
state registers to create eight 16-bit keystream
registers. The resulted random keystream bits are
then used to XOR the bits of the plaintext stream.

2.2 Parallel Computing and Multi-core
Processors
The need for secure and high performance
communication has become an important ingredient
in our daily life. Achieving security and high
performance is possible by utilizing more computer
resources, where several jobs are accomplished
simultaneously and therefore completed in shorter
time. Parallel processing is described as the
concurrent use of multiple processing resources (e.g.
multiple CPUs) to solve a computational problem,
where a given problem is broken into smaller
segments and solved concurrently using multiple
processors.

Multithreading technique was introduced in
1960s [7] to enhance the performance of
applications by running them in parallel over the
available resources. This technique aims to create a
virtual multiprocessors environment to run multiple
tasks on single processor. The recent hardware
revolution has played a significant role in improving
systems performance through the multi-core
technology. Multi-core is a technology where a
single physical processor contains the logical core
of more than one processor.

Multithreading technique maps independent
tasks to threads to give the operating system greater
flexibility in process scheduling, which in turn hides
program latency [8] as shown in Fig. 3. The
Lightweight Processes form the underlying threads
of control, which are supported by the kernel. Each
of the processes can be executed by multiple
threads, resulting in faster execution in a shorter
period of time. Examples of multithreaded libraries
found in the literature include: libthread [9], Posix
[10], Pth [11] and bb_threads [12].

Fig.3 Multithreading Architecture

3 Related Works
Parallel cryptographic primitives have been studied
from two perspectives: the design of new
cryptographic hardware (hardware-based
parallelism), and the parallelization of the
mathematical and logical construct of the internal
design (software-based parallelism). Several
researches on hardware-based parallelism have been
conducted. Examples of hardware-based parallelism
includes: the implementation of Rijndael algorithm
on VHDL (VHSIC Hardware Description
Language) [13], the Field-Programmable Gate
Array (FPGA) implementation of RSA [14], and the
FPGA-based symmetric encryption algorithms [15].

Software parallelism is implemented
hierarchically in two levels: job-level (highest level)
and instruction-level (lowest levels). One of the
software parallelism-based researches and
implementations is interested in applying different
techniques of parallelism including per-connection,
per-packet and intra-packet parallelism to increase
the throughput of different protocols stack [16].
Another research in the same category parallelized
the three-layer model for elliptic curve scalar
multiplication, which can be applied on different
cryptographic applications due to its higher
performance compared to the conventional
implementation of elliptic curve cryptography [17].

The existence of parallel stream cipher designs is
limited in the literature. One design was presented
in [18] where a parallel-structured PS-LFSR (Linear
Feedback Shift Register) is used to perform m-bit
shifting/outputting for one clock and parallelizing
many similar keystream generators for faster
processing. Another parallelism technique applied in
the parallel stream cipher proposed in [19] relies on
parallelizing four types of nonlinear combiners: m-
parallel nonlinear combiner without memory, m-
parallel nonlinear combiner memories, m-parallel

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 106 Volume 11, 2014

nonlinear filter function and m-parallel clock-
controlled function using PS-LFSR.

4 Parallel Model for Rabbit Cipher
In order to facilitate parallelism, the proposed
stream cipher is composed of three components:
The Secret Key Initial Vector Initializer (SK/IVI),
the Keystream Generator (KsG) and the Plaintext
Encoder (PtE). The initial vector initializer is
responsible for extracting the general secret key
from the input image key. The extracted key will be
used as input to the keystream generator that is
responsible for generating pseudorandom
keystreams. These keystreams should be secure
enough to be used for encrypting a stream of
plaintext bit in the plaintext encoder.

4.1 Key/IV Initializer
In this component, the secret key (SK) and the
initial vector (IV) of Rabbit cipher are computed
based on the input image. The image is divided into
four quarters (as illustrated by Fig. 4). Each quarter
is used to extract a portion of the SK/IV. The
complete SK/IV is formed by combining the
extracted portions from the four quarters.

Fig. 4. Dividing input image for initializing the secret key

Obviously, there will be four subsystems to
handle the computation of SK/IV. These subsystems
are described in Equations 8-11:

Q0 = [P(0,0) … P(0,m/2-1)] ◊ [P(0,0) … P(n/2-1,0)] (8)
Q1 = [P(0,m-1) … P(0,m/2)] ◊ [P(0,m-1) … P(n/2-1,m-1)] (9)
Q2 = [P(n-1,0) … P(n/2,0)] ◊ [P(n-1,0) … P(n-1,m/2-1)] (10)
Q3 = [P(n-1,m-1) … P(n/2,m-1)] ◊ [P(n-1,m-1) … P(n-1,m/2)](11)

where ◊ denotes the concatenation. Consequently
the final output (τ) is calculated using the SHA-256
(denoted by SHA) algorithm as follows:

τ = SHA(Q0 ◊ Q1◊ Q2 ◊ Q3) (12)

Once the final output is obtained, the secret key

and initial vectors are generated such that:

SK = τ [b0,…, b127] (13)
IV = τ [b128,…, b191] (14)

where bi denotes the bit number of τ that is
considered in computing both of SK and IV.

Computing the SK/IV of Rabbit cipher is carried
out in parallel, where the values of Qi (for all i=
0,…,3) is executed simultaneously. Note that the
number of the generated threads in this stage is four.
For instance, if the model is running over dual-core
processors, each two threads will be associated with
one core. On the other hand, on quad-core
processors, the model will associate each thread
with one single core (Ĉ) as shown in Fig. 5.

The generated SK/IV from this component is the
input to the second component (KsG), where stream
of keys is generated to encrypt stream of plaintext
securely and efficiently.

Fig. 5. Multithreading scheme for computing SK/IV over multi-

core processors

4.2 Keystream Generator (KsG)
The Keystream Generator (KsG) is mainly
responsible for performing the next-state function of
Rabbit. Therefore, the main purpose of KsG is to
parallelize the keystream generation function of
Rabbit cipher such that Rabbit can generate multiple
keystreams simultaneously. Generating multiple
keystreams requires creating and controlling
multiple threads. The number of created threads, in
this particular component, is mainly based on the
number of available cores in the running processor.

Each processor is responsible for running a set of
counter values which are incremented sequentially
in each iteration of the next-state function.
Generally, For a given processor of n cores, the
created threads are controlled as stated in Equation
15:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 107 Volume 11, 2014

Ĉi § Ti § Ri for all 0<i<ρ (15)

where § denotes the association between processors
cores (Ĉi), threads (Ti) and counters (Ri), while ρ
denotes the total number of generated threads. The
counter set of Ri includes the following sub-
systems: Carry-bit Resolution (CbR), Counter
Iteration (CI) and State Iteration (SI). In CbR, the
carry-bit Φ is modified for each counter register
update as shown in Equations 16 and 17:

Φj,i+1 = 1 if [(((cj,i+αj+Φj,i+1) mod 32) ≥ 232) and
(j=0)]
or
 [(((cj,i+αj+Φ(j-1),(i+1)) mod 32) ≥ 232) & (j≥1)] (16)
Φj,i+1 = 0 for all other cases (17)

where cj,i refers to the register index j in iteration
number i, and αj refers to a hard-coded constant
value.

In the second sub-system, the counter iteration is
carried out. In CI, the counter registers are updated
sequentially. Each counter is updated using its
current value accompanied by hard-coded register
value, and the previous value of Φ. Equations 18-25
describes the updating process of the counter
registers:

C0,i+1 = C0,i + α0 + Φ7,i mod 232 (18)
C1,i+1 = C1,i + α1 + Φ0,i+1 mod 232 (19)
C2,i+1 = C2,i + α2 + Φ1,i+1 mod 232 (20)
C3,i+1 = C3,i + α3 + Φ2,i+1 mod 232 (21)
C4,i+1 = C4,i + α4 + Φ3,i+1 mod 232 (22)
C5,i+1 = C5,i + α5 + Φ4,i+1 mod 232 (23)
C6,i+1 = C6,i + α6 + Φ5,i+1 mod 232 (24)
C7,i+1 = C7,i + α7 + Φ6,i+1 mod 232 (25)

In the last sub-system (SI), the 32-bit X internal-
states values are calculated by applying some
rotation and addition operations over the previously
calculated G values as follows:

gj,i = ((xj,i + cj,i+1)2 ⊕ (xj,i + cj,i+1)2 » 32))mod232 (26)

Once we obtain the G values, the internal states

are updated as shown in Equations 27 and 28, where
each equation is executed based on the value of j:

xj,i+1 = gj,i+(g7,i <<<16)+(g6,i <<<16) for even j (27)
xj,i+1 = gj,i + (g0,i <<< 8) + g7,i for odd j (28)

In KsG, we treat the above discussed sub-
systems as one single unit. In this component,
parallelism is carried out by creating multiple copies
of the keystream generation of Rabbit. Each copy of
the keystream generator of Rabbit is associated with
a specific thread, which runs over a specific
processor core. Practically, each copy of Rabbit
keystream generator is associated with its own set of
IV/SK generated from the IV/SK Initializer as
illustrated by Fig. 6.

Fig. 6. Parallel scheme for generating multiple keystreams

simultaneously

To parallelize the Rabbit keystream generator

efficiently and consistently, each thread should be
associated with its own set of IV/SK. Unlike the
original implementation of Rabbit, our
implementation associate each thread with its own
set of IV/SK values, such that the values of IV/SK
used by Ti differ from the IV/SK set used by the rest
Tn-1 threads. In order to achieve such free-
dependency (as crucial factor in parallelism), the
extracted IV/SK from the input secret image is
shifted sequentially, such that the first thread (T1)
uses the originally extracted IV/SK (denoted by IV0,
SK0), the second thread (T2) perform 2-bit left
rotation over IV0, SK0 to generate IV1, SK1.
Sequentially, thread Tn performs 2-bit left rotation
over the previously calculated IVn-1, SKn-1 to
generate IVn, SKn. Note that with 2-bit rotation
scheme, our model can support up to 32 processors
cores, since having a processor with higher number
of cores results in duplicating the IV/SK values.

As keystream-synchronization is essential for the
correctness of encryption and decryption operations.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 108 Volume 11, 2014

The number of generated threads (represented by
the attribute ρ) should be shared between sender and
receiver. The value of ρ determines the number of
threads that should be created on the receiver’s side
regardless the number of cores available on the
receiver’s processor. When the value of ρ at the
sender’s side (denoted by ρsender) differ from the
value of ρ at receiver’s side (denoted by ρreceiver) the
following two equations (29-30) are used to specify
the total number of threads that should be associated
with each processor core (Ĉi):

Ĉi § (ρsender/ρreceiver)threads if ρsender>ρreceiver (29)
Ĉ(i/ρsender) § (ρsender/ρreceiver)threads if ρsender<ρreceiver (30)

By controlling the number of generated threads

on both sides, one can assure that the keystream
generated during the encryption and decryption are
aligned.

4.3 Plaintext Encoder (PtE)
This component is responsible for XOR’ing the
keystream bit generated by each thread with their
corresponding plaintext bits. To achieve parallelism
in PtE, the plaintext bit should be synchronized
with the keystream bits. Based on the number of
generated threads (ρ), each 128-bit of plaintext is
associated with a specific thread sequentially, such
that thread T1 is associated with bits [b0, …, b127], T2
is associated with bits [b128, …, b255] and so on. As
the encryption process is parallelized in PtE, each
thread needs to work on specific set of plaintext bits
(plaintext segments). To achieve that, each thread
use a special counter (Ctr) that is incremented
sequentially and independently from the other
threads.The Ctr0 values of all threads are initialized
such that:

Ctr0 = thread_id (31)

Consequently, the subsequent rounds will
increment the value of Ctri as shown in Equation 32:

Ctri+1 = Ctri + ρ (32)

Table 1 shows an illustration on the associated
counter values Ctri and plaintext segments with its
corresponding threads in three rounds of generating
new keystream on 8-cores processor (ρ= 8).

Table 1: Association between the counters, plaintext segments
and thread IDs

Generating the ciphertext CT[m,…, n] for a segment of
size 128 bits (for all bits from m to n) is carried out
by XOR’ing the plaintext bits PT[m,…, n] with their
corresponding keystream bits KS[m,…, n] as illustrated
in Equation 33:

CT[m,…, n] = (PT[m,…, n]§Ctri) ⊕ (KS[m,…, n]§Ti) (33)

5 Security Analysis
In this research we rely on the keystream generator
of Rabbit stream cipher to generate keystreams.
Therefore, we are not performing further analysis on
the security of the keystream generator itself. On the
other hand, our modification on the original Rabbit
cipher includes replacing the two textual keys (IV
and SK) by a secret image, where the values of both
IV/SK are extracted mathematically from the input
image. The pre-calculation of IV/SK includes using
the secure hash algorithm SHA-256 to increase the
security of generating these two values. Such
technique restrict cryptanalysis attacks (especially
brute force attacks) from attacking the secret key
due to the huge key space. Practically, the attacker
must find the right combination of IV/SK keys in
the space of 2128×264 possible keys, which is
considered infeasible on current computing powers.

From the other perspective, our modified
algorithm requires the knowledge of the total
number of cores used at the sender’s side (ρsender).
This value should be securely shared along with the
secret image in order to synchronize the decryption
process at the receiver’s side. This technique add
one more layer of security to Rabbit stream cipher.

6 Performance Analysis
In order to analyze the performance gained from
parallelizing Rabbit stream cipher, three different
platform are chosen to run the experiments. The

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 109 Volume 11, 2014

processors specifications of the selected platform
are as follows:
Platform 1: Intel Pentium IV® of CPU speed
1.93GHz (single core).
Platform 2: Intel Dual-Core® of CPU speed
2.93GHz (two cores).
Platform 3: Intel Core 2 Quad® of CPU speed 2.40
GHz (four cores).

Experiments results showed that the parallelized
version (using Posix multithreading library) of
Rabbit cipher (denoted by p-Rabbit) outperforms the
original design (sequential design) of Rabbit cipher
(denoted by Rabbit). The results shows that the new
design is able to utilize the power of the available
cores of the processors. Table 2 shows the
encryption rate achieved on the three platforms.

Table 2: Association between the counters, plaintext segments

and thread IDs

 Platform 1 Platform 2 Platform 3

Rabbit 495MB/S 610MB/S 618MB/S

p-Rabbit 702MB/S 985MB/S 1448MB/S

It is obvious that our parallelized Rabbit utilizes

the processor cores. The encryption rate of p-Rabbit
achieved on quad-core processor is double the
encryption rate of Rabbit on the same processor.
Practically, achieving such high encryption rate is
possible on multi-core processors due to the
efficiency of the memory architecture (L1, L2 cache
memories) on these processors if compared to multi-
processors memory architecture. Fig. 7 illustrates
the projected performance of Rabbit and p-Rabbit
ciphers on multi-core processors of 8-cores and up
to 32-cores (assuming CPU speed of 2.4GH).

4 Conclusion
In this research, a parallel design of Rabbit stream
cipher is presented. The new design focused on
parallelizing the keystream generator of Rabbit to
generate multiple keystreams simultaneously.
Parallelizing the keystream generator is based on
multithreading technique, where n threads are
generated to run their own copies of keystream
generators. Moreover, our new design replaced the
textual initial vector and secret key by an image.
The image is used to extract the values of the IV/SK
securely. However, the performance analysis
revealed that the encryption rate of the parallelized

version of Rabbit outperform the original design of
Rabbit on different number of processors’ cores.
The average encryption rates enhancements were
1.4, 1.6 and 2.3 times over single, dual and quad
core processors, respectively.

Fig. 7. Projected performance of Rabbit and p-Rabbit over

multi-core processors

Acknowledgment
The author thanks the Arab Open University
(AOU), Saudi Arabia Branch for supporting this
study.

References:
[1] Lingling, S., Zhigang, J., & Zhihui, W. The

Application of Symmetric Key Cryptographic
Algorithms in Wireless Sensor Networks.
Physics Procedia. 2012. 25 552–559.

[2] Sabater, A. Computing Classes of Cryptographic
Sequence Generators. Procedia Computer
Science, 2013, 18 2440–2443.

[3] Al-Janabi, S., Rijab, K., & Sagheer, A. Video
Encryption Based on Special Huffman Coding
and Rabbit Stream Cipher. 2011 Developments
in E-systems Engineering, 2011, 413-418.

[4] Boesgaard, M. V., & Scavenius, O. Rabbit: A
New High-Performance Stream Cipher. In Fast
Software Encryption, 2003, 2887 307-329.

[5] Mollin, R. A. An Introduction to Cryptography
(2nd Edition ed.). (K. H. Rosen, Ed.) Boca Raton:
Chapman & Hall/CRC, 2007.

[6] Delfs, H. Introduction to Cryptography:
Principles and Applications. Springer, 2002.

[7] SunSoft. Multithreaded Programming Guide.
CA: Sun Microsystems, 2002.

[8] Gabb, H. Common Concurrent Programming
Errors, 2002. Retrieved March 2, 2008, from
Linux Magazine: www.linux-
mag.com/content/view/983/2038/1/0/

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 110 Volume 11, 2014

http://www.linux-mag.com/content/view/983/2038/1/0/�
http://www.linux-mag.com/content/view/983/2038/1/0/�

[9] Sun Microsystems. The Multithread Library.
Retrieved April 25, 2008,
from:http://w3.mit.edu/sunsoft_v5.1/www/pascal
/user_guide/mlthrd11.doc.html, 2009.

[10] Leroy, X. The LinuxThreads library. Retrieved
April 26, 2008, from
http://pauillac.inria.fr/~xleroy/linuxthreads/,
2006.

[11] Engelschall, R. S. GNU Portable Threads.
Retrieved April 26, 2008, from
http://www.gnu.org/software/pth/, 2006.

[12] Neufeld, C. Threads, Bare-Bones. Retrieved
March 29, 2008, from
ftp://caliban.physics.utoronto.ca/pub/linux/,
1996.

[13] Umamaheswari, G., & Shanmugam, A.
Efficient VLSI implementation of the block
cipher Rijndael algorithm. Academic Open
Internet Journal, 12. 2004.

[14] Ciet, M., Neve, M., Jean, J., P., E., &
Quisquater. Parallel FPGA Implementation of
RSA with Residue Number Systems. 46th
IEEE Midwest Symp. on Circuits and
Systems.2003.

[15] Swankoski, E. B., & Irwin, M. A Parallel
Architecture for Secure FPGA Symmetric
Encryption. 18th International Parallel and
Distributed Processing Symposium (IPDPS'04)
- Workshop 3, 2004, p. 132-136.

[16] Nahum, E. O., & Schroeppel, R. Towards High
Performance Cryptographic Software. The Third
IEEE Workshop on the Architecture and
Implementation of High Performance
Communications Subsystems (HPCS '95),.
Mystic, Conn. 1995.

[17] Henriquez, F. S., & A.Perez. A fast parallel
implementation of elliptic curve point
multiplication over GF(2^m). Microprocessors
and Microsystems, 2004 , 329-339.

[18] Hoonjae, L., & Sangjae, M. Parallel stream
cipher for secure high-speed communications.
Signal Processing, 2002, 259-265.

[19] Jae, L. S., YoungHo, P., & Yong, K. On the
m-Parallel Nonlinear Combine Functions for
the Parallel Stream Cipher. International
Conference on Hybrid Information Technology,
ICHIT'06. Seoul, Korea, 2006.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Khaled Suwais

E-ISSN: 2224-3402 111 Volume 11, 2014

http://pauillac.inria.fr/~xleroy/linuxthreads/�
http://www.gnu.org/software/pth/�
ftp://caliban.physics.utoronto.ca/pub/linux/�

