
Migration of the perfect cipher to the current computing environment

PETR VOBORNÍK

Department of Informatics

University of Hradec Králové

Rokitanského 62, Hradec Králové, 500 03

Czech Republic

petr.vobornik@uhk.cz www.petrvobornik.cz

Abstract: - Algorithm of the perfect cipher has been known since the beginning of the last century. However, this

procedure requires respecting of strict conditions that complicated the practical use of the cipher. Original

conditions of Vernam perfect cipher will be discussed at first in detail in this article. The original approach of

characters will then be transferred to the bit level. The modification of work with the encryption keys with the

use of modern hash algorithms will be proposed so that the major factors that prevent the practical use of the

cipher will be removed and most of their benefits will be preserved. The proposed new encryption algorithm will

be subjected to the measurement of speed in conclusion, and these results will be compared with other known

encryption algorithms.

Key-Words: - Perfect cipher, encryption, communication, Vernam, one-time pad, hash function.

1 Introduction
The principle of the perfect cipher has been known

for almost a century. Unfortunately conditions that

must be complied with its use still complicate its

practical use. The cipher is suitable in the case that

extremely high confidentiality is required and when

extremely high costs associated with the production

and distribution of keys do not mind. [1]

In this article the principle of perfect cipher will

be summarized and on this base, with use of modern

hash algorithms, will be proposed one of possible

modifications of work with keys so that the major

factors that prevent the practical use of the cipher will

be removed.

1.1 Basic terms
The following terms are commonly known but they

may have different meanings in different contexts.

Therefore will be defined what is under their

designation meant here. Other terms will be

explained in the article.

 Data – the source data that are to be protected

by encryption against reading and misuse by

third parties.t

 Message – is the set of information sent

between two communicating parties. It

consists of encrypted data and other

information such as sender ID, destination

recipient, date and time sent, etc.

 Key – the secret set of data which can encrypt

and then decrypt the source data by the

computing operation.

 Password – a word, phrase or combination of

characters that can decrypt the encrypted data

and vice versa. I.e. password is either directly

used as the key or the key is generated on its

basis. It will be the case of this article.

2 Perfect cipher
American Gilbert Sandford Vernam (1890-1960)

constructed an interesting cryptographic system in

1917. It was based on Vigenèr’s cipher from 1586

[2], but it included several major changes,

supposedly inspired by the German cryptologist

Hermann from 1892 [3]. The system was based on a

randomly generated one-time password that is the

same length as the message.

Claude Elwood Shannon (1916-2001)

mathematically proved that the Vernam cipher (also

called “one-time pad”, also see [4] or [5]) is

absolutely safe (unbreakable) encryption system in

1949 [6]. The perfect secrecy of the cipher can be

achieved only when the three strict conditions of

reliability are observed:

1. The key must be perfectly random.

2. The key must be as long as the encrypted

message.

3. The key must not be used repeatedly. [7]

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 196 Volume 11, 2014

When the conditions of confidence are complied,

the cipher is completely safe against any attempt to

break, including a brute force attack. If the correct

key is not known, there is no way to decipher the

message not even in an arbitrarily long period of

time. It is possible to find a key that could convert

encrypted data into readable text of the same length,

but as more keys like that can be found, this data can

in fact make arbitrary sense, and it is not possible to

predict which of these interpretations was correct. [8]

Vernam proposed in his subsequent patent [9] a

simple device that worked with 31 characters (26

letters, space, carriage return (CR) and line feed (LF)

and signals “following numbers” and “following

letters”). Needed is 5 bits, which the device encrypts

by a random key using XOR operation.

2.1 XOR operation
The logical operation of exclusive disjunction

(usually called “exclusive or”, abbreviated XOR) is

marked as follows: “”. Its result is 0 if the two input

values are identical, and 1 if they are different (see

Table 1).

A  B = C

A B C

0 0 0

0 1 1

1 0 1

1 1 0

Table 1 – Status table of values of the XOR operation

XOR is a commutative operation, therefore does

not depend on the order of individual values between

which the XOR operation is performed.

(A  B = C) = (B  A = C)

Instead of the XOR operation can be also used

function modulo 2 from sum of the two values.

(A  B = C)  (A + B) mod 2 = C

From the result of the XOR operation (C) can be

calculated one of input values (A or B) by using the

additional XOR operation with the second input

value (B or A).

(A  B = C)(C  A = B)(C  B = A)

Thus, if the i-th bit of data Di is to encrypt by XOR

operation with i-th bit of key Ki to the encrypted

string of Ci, then from Ci can be the input bit of data

Di deciphered again by performing XOR operation

with the i-th bit of key Ki.

Encrypt: Di  Ki = Ci

Decrypt: Ci  Ki = Di

If the key is random, then the probability that

Ki = 0, is the same as the probability that Ki = 1 and

it is equal to ½, i.e. 2-1 or 50%. The same is true even

for encrypted values Ci. Unless the known key Ki,

the probability of “guessing” the correct values is

exactly half. Under these circumstances the

probability of determining the correct character for

whole symbol with 8 bits (1 byte) is only 2-8, i.e.

1/256 or less than 0.4%.

2.2 Principle of the Vernam cipher
The original version of the cipher worked with only

the base English alphabet of 26 letters. Numbers 0

through 25 are assigned to these letters (A through Z)

and for the i-th character of classified data Di by the

key Ki (key is also composed only of the characters

of the alphabet) the character of encrypted data Ci is

determined as follows [2]:

Ci = (Di + Ki) mod 26

Decryption is performed by the inverse operation:

Di = (26 + Ci - Ki) mod 26

For example, the word “AGE” would be

encrypted with the key “UHK” as shown in Table 2.

 Characters Numbers

Data A G E 0 6 4

Key U H K 20 7 10

Encrypted data U N O 20 13 14

Decrypted data A G E 0 6 4

Table 2 – Example of encryption of characters by the original

Vernam cipher

An improved version of this cipher works with

binary data representation. The individual bits of data

in the binary form are encrypted by the XOR

operations with individual bits of the key. The

advantage was the ability to machine processing of

the cipher. In his time Vernam used an own

conversion table for the basic characters of the

alphabet in binary form, instead of the values 0 and 1

marked the characters + and –. [9] At present, when

the data are stored and transmitted in electronic form

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 197 Volume 11, 2014

of bits by default, the situation for this style of

encrypt is much easier.

The same data as in the previous case but

encrypted in binary encoding (for conversion to bits

is used the standard ASCII character table) looks as

is shown Table 3.

 Characters Bits

Data A G E 01000001 01000111 01000101

Key U H K 01010101 01001000 01001011

Encrypted 20 15 14 00010100 00001111 00001110

Decrypted A G E 01000001 01000111 01000101

Table 3 – Example of encryption of data by the Vernam cipher

on the bit level

In the example the encrypted data are listed only

as an index character in the ASCII table, because they

are in text format undisplayable. In this case, that the

random key not contains only letters but bytes of

characters chosen from the entire ASCII table of 256

characters. Respectively, the key generator should

operate at the bit level (randomly chosen sequence of

0 and 1), and don’t take into account the resulting

characters.

2.3 Consequences of breach of conditions of

reliability
Breach of conditions of reliability leads to a lack of

cipher’s safety and allows to break it. Specifically,

failure to comply of each individual conditions has

the following consequences.

If the key is used repeatedly, this key can be

easily determined from the knowledge of only two

intercepted messages encrypted by the same key. The

following relationship applies.

D1i  Ki = C1i

D2i  Ki = C2i

C1i  C2i = D1i  D2i

Where D1i is i-th character of of 1st data, D2i is i-th character

of the 2nd data, Ki is i-th character of the key, C1i is i-th

character of the 1st encrypted message and C2i is i-th character

of the 2st encrypted message.

The result of the XOR operation of two encrypted

data is XOR of two original data. This will remove

all the randomness of the key, and both the original

data thus the key can be calculated by a simple

statistical cryptanalysis of the result. [10]

Ki = C1i  D1i = C2i  D2i

This allows each following messages (encrypted

with the same key) decrypt in real time without need

of any cryptanalysis.

Each key is therefore necessary safely completely

to “destroy” on both of sides (sender and recipient)

immediately after the first use.

If the key has a shorter length than the

transmitted message, it must be used repeatedly for

encryption of the part of data that it is not covered.

This should result in the same effect as the repeated

use of the key. If an attacker knows some part of the

data, he can obtain a part or even the whole key by

performing XOR operation, and he can use it on the

rest of the data, which he doesn’t know.

Fact that an attacker knows the part of the data is

fairly common. Texts as “Hello”, “How are you?”,

etc. are usually mentioned at the beginning of letters,

the signature of the sender is then at the end. The

situation is even easier when binary data are send,

because most of files has a header that is always the

same (JPEG, ZIP, WAV, DOC...) or least from a

finite set of possibilities. The structure of word

processing documents (RTF, XML, HTML...) then

repeatedly contains a known sequences of characters

that can be easily detected by frequency analysis.

Perfect randomness of the key as well as its

sufficient length guarantees that every single

character (bit) of encrypted data is completely

independent of the other characters (bits).

Knowledge of any part of the data thus to the attacker

divulge nothing about any other unknown part of data

or key.

Pseudo-random values cannot be used for perfect

security of encryption. It is generated by a certain

algorithm and this process is reproducible when same

conditions are complied. Data are then deciphered in

finite time, respectively it is possible find such a key,

which converts the encrypted message to the

understandable data and at the same time it is possible

to demonstrate the relationship between the

individual parts or to a default value (seed) and thus

identify which of the possible decrypted versions of

the message is the right one. To generate of the key

is best to use physical methods, such as radioactivity,

of which it is shown that its character is truly random.

[1]

2.4 The long and random key
Conditions of reliability to guarantee the

unbreakability of the cipher, but they also complicate

its use. Specifically, the requirement of perfect

randomness of the key, which makes difficult its

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 198 Volume 11, 2014

automatic generation. Need for length of the key that

must be equals to the length of the encrypted data

brings (if we ignore quantum cryptography) the same

problem as the transfer of data themselves, to which

also contributes one-time usability of each key. It

may therefore be desirable, even at the expense of

absolute unbreakability of the cipher, to allow the key

(respectively password) can be shorter, not

completely random (memorable) and reusable.

As already mentioned, the key composed of

pseudo-random values does not prevent deciphering

the encrypted data in a finite time. However, if the

key will be “well random” and also comply with the

other conditions of reliability, possibility of using

computational and statistical cryptanalysis is

excluded, excepted brute force attack. For example

the attacker can use it to determine the key that makes

sense to the encrypted data (or part of it) and then

search for correlations between different parts of the

key. A more effective means of brute force attack

would have been (if an attacker knows used pseudo-

random algorithm for generate of values for the key),

to determine the default value of generator - the seed,

respectively the password. If it is well selected, the

data can be deciphered only by “guess the password”

by using “brute force” and this final time of

deciphering of data may be unrealistically long.

If the above mentioned advantages of password

(short, non-random and repeatable) will beneficial

for the encryption while the referred limitation of

perfection of the encryption (data will be deciphered

when the password will “guessing”) are not

insurmountable obstacles, then an algorithm is

possible to created. This algorithm should repeatedly

create from a short passwords the arbitrarily long

key, which will be statistically verifiable random and

from the uniform distribution. This means that all

values in the range of byte1 were generated with the

same probability, respectively the created bit

sequence was completely random.

The described properties directly fit into the

definition of hash function. If the hash is used

appropriately then it is possible to use it for achieve

of all desired properties of the keys.

1 The range of the byte is 0–255, i.e. 256 (28) possible values.
2 SHA-1 – Secure Hash Algorithm, returning hash code of 160 bits, which was designed by NIST for U.S. government

applications. [8]

3 Modified interpretation the perfect

cipher
Individual terms of reliability will be solved

gradually through the modern practices and

technologies. [11]

3.1 The key must be perfectly random
To the work more effectively with Vernam cipher

a function was used that was not available when the

cipher was created and that is the hash. The hash is

one-way (irreversible) computationally efficient

function mapping binary strings of arbitrary length to

strings of fixed length, it is called the hash-value.

The basic idea is that the hash-value serves as

a compact representative of the input string. For

cryptographic applications the hash function H is

chosen that it is computationally impossible to find

two different inputs, which have the hash-value

identical (i.e. to find the X and Y such that it applies

H(X) = H(Y)  X ≠ Y), and is also

computationally impossible to determine the input X

for the hash-value of Y (i.e. H(X) = Y). The

probability that the n-bit hash-value (e.g. n = 128

or 160) of a random chain will have a specific n-bit

hash-value is thus equal 2-n. [10]

The statistical tests of randomness of hash code

generated by the algorithm SHA-12 according to [12]

and [13] demonstrated that the generated bit

sequence meets from a statistical point of view the

conditions of random uniform distribution. Other

hashing algorithms (such as MD5, SHA-256, SHA-

512, etc.) should by definition have the same

characteristics, which can be checked according to

the procedures specified in [10] using the software

which is described in [12].

3.2 The key must be as long as the encrypted

message
The key which satisfies the condition of randomness

and it does not allow the re-calculation of the

password it can be created by using the hash

algorithm on any password. Its length however is

predetermined to constant number of bits according

to a specific algorithm applied. Nevertheless a key

much longer than the hash code is needed.

The key of needed length can be created by using

a multilevel hash. Its calculation is performed so that

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 199 Volume 11, 2014

the hash of the original password is used to encrypt

the first block of data while also serve as an input to

generate a new hash code (hash level 2). It again

encrypts the next block of data and a hash of the third

level is generated from it as the key for the next block

of data and so it continues until it covers the entire

data message (see Fig. 1).

Fig. 1 – Diagram of data encryption by the XOR operations,

where the key consists of a simple multi-level hash of the

password

However this approach brings one major flaw. If

an attacker knew some part of data, he would be able

to decipher their other unknown parts. For example,

when would he know the part of the data encrypted

by second level of hash, he can then perform the XOR

operation between these data and the encrypted data

for acquiring a part of the key (hash level 2). He

cannot calculate the first level of hash or password

from it, but he can generate a third level of hash, then

fourth level, etc. (see Fig. 2). Thanks to it, he is able

to decrypt the data from the block whose content he

knows (e.g., greeting or a document header) or he

reveals by a dictionary attack.

Fig. 2 – Diagram of deciphering the data encrypted by the key

from a simple multi-level password hasht

The first level of hash was removed from the

encoding process to eliminate this weakness. This

block of the key cannot be determined nor with the

knowledge of content whole message (data). The first

level of hash is combined with each level of hashes

by XOR operations (see Fig. 3).

Fig. 3 – Diagram of data encryption using a key from the

combined multi-level password hash

If the attacker knows a certain part of data, he can

decipher the part of the key by which was encrypted

this section, but he cannot determine the key for the

next (and of course previous) block of data. He would

need to know either the first level of password hash

or the source of hash for the key of the next block of

data. Both requirements would mean determination

of the reverse hash, which is computationally

impossible according to the basic definition of this

function.

The only way to determine the unknown part of

the data is “guess” the password or first level of hash.

This mainly depends on the “strength” of chosen

password, i.e. how it can withstand dictionary attack

and brute force attacks. There are a number of

techniques how to select easy-to-remember

passwords (e.g. see [14]) which are resistant to these

types of attacks (e.g. see [15]).

3.3 The key must not be used repeatedly
In order the key for data encryption was different

every time, even if the password was still the same,

we proceeded from the fact that for the complete

change of the whole key (consisting of a multi-level

hash) it is needed to change only a single bit of the

password or first level of hash. In this type of change

the description of this change can be a part of the

message containing the encrypted data. For example

this can be an additional text string that could be

added to the password before calculating the first

level of hash. This supplement of passwords is called

“salt” and it is a good tool against dictionary attacks

based on prepared dictionaries of hashes [16]. Its

publication does not reduce the difficulty of

deciphering the data because for the calculation of the

key is still necessary to know the original part of the

password.

Password

1st level of hash

Data .

2nd level of hash 3rd level of hash

Encrypted data

Hash XORData flow

Password

1st level of hash 2nd level of hash 3rd level of hash

Encrypted data

Data

Unknown data Known data Deciphered data

Password

1st level of hash

2nd level of hash

Data .

3rd level of hash 4th level of hash

Encrypted data

Hash XORData flow

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 200 Volume 11, 2014

With the addition of the salt the key for the data is

completely different every time and if its part (or the

whole key) in some previous data transmission is

determined, the data transferred in the future has no

reduced security, without requirement to change the

password. It is only necessary to ensure that the salt

is always different. This can be achieved for example

using a generator of the GUID3 values.

The salt can be transmitted as one parameter of the

message in communication between two sides. But

when the cipher is used for the long-term self-saved

files the salt needs to be saved directly into the

encrypted file, preferably right at the its beginning

(see Fig. 4).

Fig. 4 – Diagram of data encryption using the salt

When the salt is saved at the beginning, the

encryption and the decryption of the data can be

proceed by the usual way as a block or a stream.

Beginning of the data where the salt is stored must be

read always and thus it is not possible to decrypt only

certain sections of the data independently of the

order. It also complicates the need to recalculate the

appropriate level of the hash.

4 Speed of the encryption
The proposed cipher algorithm is built directly on a

specific key, which consists of multi-level hash,

which is also in each level again combined with the

first level of the hash. Calculating of the hash is of

course not trivial computational operations, but a

complicated algorithm that takes some computing

time. It is obvious that this hash algorithm has the

greatest share of the speed of encryption. Since the

cipher can work with any hash algorithm, we tried to

choose the fastest of them.

For this purpose, the following comparisons were

performed (see Table 4). In this test there were used

3 GUID – Globally Unique IDentifier. Randomly generated value with negligibly small probability that anyone would ever

have been generated by two identical values.
4 HashLib project, see http://hashlib.codeplex.com

different hash algorithms (table rows) which

calculated keys of given lengths (table column) as

multi-level hash. The experiment was repeated 3

times and each measured time required for the

calculation of each key was recorded. Of these three

repeated measurements there was always recorded

the shortest time (table cell), expressed in

milliseconds. Basic features of each hash algorithm

(irreversibility and randomness) has been taken as

matter of course and further no tested.

The measurement were performed under identical

conditions, i.e. on the same computer with the same

running processes. Parameters of the tested machine

were following: CPU 2,2GHz Core i7-3632QM,

RAM 8GB, OS Windows 8 Pro 64bit. To calculate of

keys was used hash algorithms implemented in the

library HashLib4 version 2.0.1 in programming

environment Microsoft .NET Framework 4.5,

language C#. Researched cipher algorithm was

implemented and subsequently tested in the same

environment. The program ran only on a single

thread.

Data size

[MB]
1 5 10 20 30 50 100

SHA-3-256 218 1 084 2 169 4 341 6 517 10 865 21 693

SHA-3-512 110 550 1 088 2 182 3 271 5 440 10 911

SHA-1 86 431 857 1 715 2 576 4 314 8 603

MD5 140 406 809 1 619 2 427 4 067 8 122

SHA-2-256 70 352 704 1 407 2 113 3 519 7 050

SHA-2-512 63 319 638 1 285 1 925 3 199 6 401

Table 4 – Comparison of computation speed [ms] of multi-level

hash of the various algorithms

The comparison in Table 4 shows that the fastest

of the test hash algorithms is SHA-2 with a length of

512 bits (also called as SHA-512). This algorithm

was then subsequently used for comparison test of the

speed of existing encryption algorithms (see Table 5).

This comparison was made in a similar test under the

same conditions as compared to the speed of hash

algorithms. Again it was only the calculation of

values within the computer’s memory without the

need loading or saving from/to the hard disk. The

data were processed in stream in blocks of size 5 kB.

Pass-

word

1st level of hash

Encrypted data

Salt

Salt

...

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 201 Volume 11, 2014

http://hashlib.codeplex.com/

Data size [MB] 1 5 10 20 30 50 100

AES 26 130 259 527 774 1 289 2 611

DES 32 159 314 629 949 1 582 3 158

RC2 38 188 374 748 1 121 1 864 3 742

AES-Managed 43 219 431 865 1 292 2 161 4 309

TripleDES 61 301 601 1 202 1 802 3 008 6 028

Tested cipher 95 472 945 1 891 2 848 4 740 9 458

Table 5 – Comparison of speed encryption [ms] of datasets of

the various sizes and by the different algorithms

Comparison shows in Table 5 and in the graph in

Fig. 5 that the proposed cipher algorithm is slower

than other algorithms, but about 67% of the time

spans calculation of the key, even by the fastest hash

algorithm SHA-512. Using a faster hash algorithm

would lead to a significant acceleration of the cipher.

Fig. 5 – Comparison of speed encryption [ms] of datasets of the

various sizes and by the different algorithms. Included is also the

speed of generating the key using a hash algorithm SHA-512.

Other cipher algorithms had an advantage in that

they have not been implemented in .NET controlled

(managed) code, but they were built directly into the

operating system. Here they are processed under the

application layer through the Windows CryptoAPI

without unnecessary overhead [17]. This difference

is evident when comparing the speed of encryption

by AES and AES-Managed, which in both cases is

the same algorithm, but AES-Managed is

implemented in .NET, as well as tested cipher. Other

algorithms under the same conditions would be then

also significantly slower, roughly in the same

proportion (approximately 1.67x).

The speed of cipher is so limited for use in the

classical application in real time such as on-line

communication between two sides (or video

transmission as in [18]), where the speed of the

connection is the one of the main parameters. Its use

5 The SHA-3 Cryptographic Hash Algorithm Competition, see http://csrc.nist.gov/groups/ST/hash/sha-3/

could be thus more in cases where the level of

security has a higher priority than the time required

to encrypt (e.g. archiving of confidential files).

5 Conclusion
The original principle of Vernam perfect cipher was

outlined in the article. On the basis of it was proposed

modifications to work with the keys, which

previously very complicated its practical use. When

combined with modern hash algorithms is possible to

encrypt data by using mathematically proven of

reverse incalculable procedures and also can be

repeatedly used a “simple” password. So the strength

of ciphers is always directly proportional to the

strength of the chosen password.

Implementation of this procedure is

a programmatically very simple. Speed of encryption

and decryption of data mostly dependent on the speed

of calculation of a hash code, i.e. on the selected hash

algorithm. Slightly faster than the selected SHA-512

has been doing so Shabal-512 a candidate for the

SHA-35 [19], or in a multi-threaded processing the

winner of this competition Keccak [20].

The proposed cipher can be used due to its current

lower speed to protect the transmission of data over a

public network internet only in cases where does not

matter a deceleration needed for data encryption (also

see [21]). For encryption of archives and files for

long-term storage, where is usually more important

their safety than the time required to encrypt, this

cipher can be used just now.

Acknowledgements:

This article is supported by the project Research of

cipher algorithms, maintained on the Faculty of

Science on the University of Hradec Králové.

References:

[1] Singh, S., The Code Book: The Science of

Secrecy from Ancient Egypt to Quantum

Cryptography, New York: Anchor Books,

reprint edition, 2000. ISBN 978-0385495325.

[2] Piper, F., Murphy, S., Cryptography: A Very

Short Introduction, Oxford: Oxford University

Press, 2002, ISBN 978-0192803153.

[3] Janeček, J., Gentlemani nečtou cizí dopisy,

Brno: Books, 1998, ISBN 80-85914-90-5.

0

100

200

300

400

500

600

700

800

900

1 000

2 4 6 8 10

Data size

[MB]

Tested

cipher

Hash SHA-

512

TripleDES

AES-

Managed

RC2

DES

AES

T
h

e
ti

m
e

re
q

u
ir

ed
 t

o
 e

n
cr

y
p

t
d

a
ta

 [
m

s]

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 202 Volume 11, 2014

http://csrc.nist.gov/groups/ST/hash/sha-3/

[4] Panagiotis, M., Lambrinoudakis, K., Gritzalis,

S., Antonidakis, E., Digital design of a

Cryptographic card (LAM) embedded Smart

Card Reader, Proceedings of the 11th WSEAS

International Conference on Computers, Crete

Island: WSEAS Press, Agios N., 2007, pp. 571-

576, ISBN 978-960-8457-92-8.

[5] Poriazis, S., The Modulo-10 Partition Counter,

Proceedings of the 10th WSEAS international

conference on Circuits, Athens: WSEAS Press,

2006, pp. 41-44, ISSN 1790-5117, ISBN 960-

8457-47-5.

[6] Shannon, C. E., Communication Theory of

Secrecy Systems, Bell System Technical

Journal, 1949, 28, pp. 656–715.

[7] Hála, V., Kvantová kryptografie, Aldebaran

Bulletin, 14/2005, vol. 4, ISSN 1214-1674,

[Online], Available: http://aldebaran.cz/

bulletin/2005_14_kry.php [12 Feb 2014].

[8] Voborník, P., Téměř dokonalá šifra,

Matematika, fyzika, informatika, 2014, vol. 23,

no. 1, pp. 54–69. ISSN 1210-1761.

[9] Vernam, G. S., Secret signaling system. U.S.

Patent 1310719, 07/22/1919.

[10] Menezes, A., J., Oorschot van, P., C., Vanstone,

S., A., Handbook of Applied Cryptography,

Boca Raton: CRC Press, 1996, ISBN 978-0-

8493-8523-0.

[11] Voborník, P., Modification of the perfect cipher

for practical use, Advances in Mathematical

Models and Production Systems in Engineering,

Proceedings of the 7th International Conference

on Manufacturing Engineering, Quality and

Production Systems 2014, Brasov, Romania,

Athens: WSEAS Press, 2014, pp. 64-68, ISSN

2227-4588, ISBN 978-960-474-387-2.

[12] Rukhin, A., Soto, J., Nechvatal J, Smid, M.

Barker, E., Leigh, S., Levenson, M., Vangel, M.,

Banks, D., Heckert, A., Dray, J., Vo, S.,

Bassham, L., E., A Statistical Test Suite for

Random and Pseudorandom Number

Generators for Cryptographic Applications,

NIST Special Publications (800 Series), 2010,

SP 800-22 Rev 1a, [Online], Available:

http://csrc.nist.gov/publications/nistpubs/800-

22-rev1a/SP800-22rev1a.pdf [25 Feb 2014].

[13] Pierre, L., Richard, S., TestU01: A C Library for

Empirical Testing of Random Number

Generators. Université de Montréal: ACM

Trans, 2007, Math. softw. 33, 4, article 22,

[Online], Available: http://dx.doi.org/10.1145/

1268776 [10 Feb 2014].

[14] Strnadová, V., Interpersonální komunikace,

Hradec Králové: Gaudeamus, 2011, 543 p.,

ISBN 978-80-7435-157-0.

[15] Hubálovský, Š., Musílek, M., Počítačová

bezpečnost ve výuce informatiky (Tvorba hesel a

steganografie), Matematika-fyzika-informatika,

Praha: Prometheus, 2010, vol. 20, November

2010, ISSN 1210-1761.

[16] Voborník, P., Secure authentication of the

client-server application on the internet by using

forced unique salt, Internet, bezpečnost

a konkurenceschopnost organizací 2011, Zlín,

UTB, pp. 347–354, ISBN 978-80-7454-012-7.

[17] Boon, C., Philippaerts, P., Piessens, F.,

Practical experience with the .NET

cryptographic API, Katholieke Universiteit

Leuven, CW Reports vol. CW531, 2008,

[Online], Available: https://lirias.kuleuven.be/

bitstream/123456789/208274/1/CW531.pdf [24

Feb 2014].

[18] Chiunhsiun, L., Ching-Hung, S., Hsuan, S., H.,

Kuo-Chin, F., MLB Sports Frames Retrieval

Using Color Cipher Similarities, NAUN

International Journal of Circuits, Systems and

Signal Processing, Issue 6, Volume 5, 2011, pp.

565-580, ISSN 1998-4464.

[19] Canteaut, A., Chevallier-Mames, B., Gouget,

A., Paillier, P., Shabal, a Submission to NIST’s

Cryptographic Hash Algorithm Competition,

Shabal, 2008, [Online], Available:

https://www.shabal.com/wp-content/uploads/

Shabal.pdf [19 Feb 2014].

[20] Bertoni, G., Daemen, J., Peeters, M., Assche G.,

V., The Keccak reference, The Keccak sponge

function family, 2011, [Online], Available:

http://keccak.noekeon.org/Keccak-reference-

3.0.pdf [20 Feb 2014].

[21] Soulioti, V., Bakopoulos, Y., Kouremenos, S.,

Vrettaros, Y., Nikolopoulos, S., Drigas, A.,

Stream Ciphers created by a Discrete Dynamic

System for application in the Internet, WSEAS

Transactions on Communications, Issue 2,

Volume 3, April 2004, ISSN 1109-2742.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Petr Voborník

E-ISSN: 2224-3402 203 Volume 11, 2014

http://aldebaran.cz/bulletin/2005_14_kry.php
http://aldebaran.cz/bulletin/2005_14_kry.php
http://csrc.nist.gov/‌publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/‌publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://dx.doi.org/10.1145/1268776
http://dx.doi.org/10.1145/1268776
https://lirias.kuleuven.be/bitstream/123456789/208274/1/CW531.pdf
https://lirias.kuleuven.be/bitstream/123456789/208274/1/CW531.pdf
https://www.shabal.com/wp-content/uploads/Shabal.pdf
https://www.shabal.com/wp-content/uploads/Shabal.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

