
Generating C++ Log File Analyzers

ILSE LEAL–AULENBACHER
Instituto de Investigaciones Eléctricas

Gestión Integral de Procesos
Reforma 113, 62490 Cuernavaca

MEXICO
ilse.leal@iie.org.mx

JAMES H. ANDREWS
Western University

Department of Computer Science
Middlesex College N6A 5B7, Ontario

CANADA
andrews@csd.uwo.ca

Abstract: Software testing is a crucial part of the software development process, because it helps developers
ensure that software works correctly and according to stakeholders’ requirements and specifications. Faulty or
problematic software can cause huge financial losses. Therefore, automation of testing tasks can have a positive
impact on software development, by reducing costs and minimizing human error. To evaluate test results, testers
need to examine the output of the software under test (SUT) to determine if it performed as expected. Test oracles
can be used to automatize the evaluation of test results. However, it is not always easy to directly capture the
inputs and outputs of a program. It is already a common practice for developers to instrument their code so that
important events get recorded in a log file. Therefore, a good alternative is to use test oracles capable of analyzing
log files. Test oracles that analyze log files are known as log file analyzers. The work presented in this paper
builds upon previous research by Dr. James H. Andrews, who proposed a framework in which log file analyzers
are generated automatically based on the SUT’s expected behavior. These log file analyzers are used as test oracles
to determine if the log file reveals faults in the software. In this paper, we describe how we extended Andrews’ log
file analysis framework in order to incorporate new capabilities that make our log file analyzers more flexible and
powerful. One of our main motivations was to improve the performance of our log file analyzers. The original log
file analyzers were based on the Prolog language. Our new log file analyzers are based on the C++ language, which
allowed us to take advantage of the object–oriented paradigm to add new features to our analyzers. We discuss
those features and the experiments we performed in order to evaluate the performance of our analyzers. Our results
show that our C++ analyzers are faster than their Prolog counterparts. We believe that log file analyzers have a lot
of potential in the area of software testing by making it easier for testers to automatize the evaluation of test results.

Key–Words: Software Testing, Test Oracles, Log File Analysis

1 Introduction

Software testing can be divided into three tasks:
choosing test cases, running test cases on the software
under test (SUT) and evaluating the test results. A test
oracle refers to a mechanism capable of determining
if the software under test (SUT) output is correct or
incorrect. Test oracles are not easy to implement in
part because it is not always easy to directly capture
a program’s inputs and outputs. Therefore, a good al-
ternative is to analyze log files produced by the SUT.

Most programs already produce log files because
it is a common practice for developers to instrument
their code so that important events, warnings or error
messages get saved into a text file.

The work presented in this paper builds upon the
Log File Analysis (LFA) framework proposed by An-
drews [1], in which log file analyzers are automati-
cally generated from the specification of a program’s
expected behavior. The original LFA framework con-

sists of the following elements: a) a language known
as LFAL (Log File Analysis Language) which cap-
tures the expected program behavior as a set of state
machines, b) a log file analyzer generator, which takes
a LFAL specification and generates Prolog code and c)
an executable log file analyzer, which is obtained af-
ter compiling the generated Prolog code. The log file
analyzer is a test oracle that determines whether a log
file reveals a fault in the SUT.

This paper describes how we extended the origi-
nal LFA framework in order to incorporate new fea-
tures to log file analyzers to make them more flexi-
ble. In Section 2, we provide a brief overview of re-
lated work regarding test oracles. We then describe
the original LFA framework in Section 3.

Another important motivation was to improve the
general performance of our log file analyzers. For that
reason, we designed and developed a new log file an-
alyzer generator that produces C++ code instead of
Prolog code. That allowed us to extend the original

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 313 Issue 10, Volume 10, October 2013

LFAL language in order to introduce new features.
We describe the design of our new C++ log file ana-
lyzer generator in Section 4. In addition, we describe
the process by which a LFAL 2.0 specification is pro-
cessed to produce C++ code.

Upon compiling the C++ code produced by our
log file analyzer generator, we obtain an executable
log file analyzer. In Section 5, we present an example
that illustrates how an analyzer is used to determine if
the SUT is working in compliance with its expected
behavior.

Section 6 qualitatively compares our implemen-
tation with the original version by giving an overview
of the new features that make our new analyzers more
flexible and powerful.

In Section 7 we present the experiments we car-
ried out in order to compare the performance of the
original LFAL analyzers and our new implementation.
The analyzer we generated for our experiments also
serves to illustrate some of the new features described
in Section 6.

Finally, we present our conclusion and describe
our plans for future work.

2 Related work
Weyuker defined an oracle as a mechanism that
checks for the correctness of a program execution.
Weyuker also coined the term oracle assumption,
which refers to the belief that the tester is routinely
able to determine the program correctness on the test
data [2]. Because of the oracle assumption, the task
of evaluating test results is often considered “straight-
forward”. Therefore, it is common practice to have
the tester examine the results of a program execution
by hand. The problem with this approach, is that is
assumed that the tester will know the correct answer.

Many papers on oracles refer to the importance of
test oracles. Testing without an oracle can cause loss
of time, due to tester misconception. That could cause
the tester to “fix” a program that was already correct.
Conversely, the tester might believe that the program
is correct, thereby releasing a program with errors [2].

The whole point of testing is to reveal system fail-
ure or provide assurance of system correctness. If we
do not have a reliable way to evaluate whether a test
case was successful or not, we cannot confidently as-
certain the correctness of a program. However, much
of the research on software testing has focused on the
development and analysis of input data [2]. In fact,
research literature on test oracles is a relatively small
part of the research literature on software testing [3].
Therefore, researchers that work with test oracles have
tried to raise awareness on the importance oracles in

the software testing process.

2.1 Deriving oracles
Being the evaluation of test results an important part
of the software testing process, the question of why
test oracles are not always used comes to mind. The
explanation is that oracles are not particularly easy to
derive.

For instance, Peters and Parnas [4] recognize that
the documentation used to generate an oracle can be
almost as complicated as the software under test.

Richardson et al. [5] derive oracles from a pro-
gram’s specifications. This requires a mapping from
the name space of the test data, to the name space of
the oracle information. The oracle information repre-
sents the expected behavior of a program. The authors
express this expected behavior as a set of assertions.
An assertion is a logical expression specifying a pro-
gram state that must exist, or a set of conditions that
program variables must satisfy at a particular point in
program execution. A monitor program is used to ver-
ify the assertions. Any unsatisfied assertion identifies
an inconsistency between the expected program be-
havior and the specification-based oracle.

Memon et al. [6] developed a technique to de-
velop an automated Graphic User Interface (GUI) test
oracle. The GUI is modeled through operators that
represent GUI actions in terms of their preconditions
and effects. The test oracle automatically derives the
expected states (the expected program behavior). An
execution monitor obtains the current state of the GUI.
The oracle compares the two states and determines if
the GUI is performing as expected.

2.2 Deriving oracles automatically
Peters and Parnas [4], describe an interesting ap-
proach, capable of automatically generating test or-
acles from tabular documentation. This work is closer
to our research objective, because its focus is not
limited to describing a method for deriving oracles.
Rather, the main objective is to achieve the automatic
generation of test oracles from program documenta-
tion.

The authors argue that if program documentation
is mathematical, it is possible to derive an oracle from
it. Therefore, the expected program behavior is cap-
tured through relational documentation, which is writ-
ten using tabular expressions. In contrast with asser-
tions, the documentation is separate from the code,
rather than embedded in it. This facilitates analysis
and review separate from the implementation. A Test
Oracle Generator (TOG) generates wrappers that call
the functions to be tested. The test case is executed

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 314 Issue 10, Volume 10, October 2013

by calling the wrappers instead of the real functions.
Finally, the wrapper evaluates the output to determine
if it is correct.

3 The Log File Analysis framework
Dr. James H. Andrews, proposed a framework in
which the expected program behavior is expressed as
a set of state machines. In this section, we discuss
the framework proposed by Andrews [1] [7] [8] [9]
in which log file analysis is applied to software test-
ing. In fact, Andrews’ log file analyzers are test ora-
cles that determine if a log file reveals a fault in the
software under test (SUT). Throughout this paper, we
refer to Andrews’ log file analysis framework as LFA.

In LFA, a log file is defined as a sequence of log
lines. A log file line is defined as a sequence of key-
words, strings and numbers beginning with a lower-
case alphanumeric character. Log lines begin with
a keyword, separated by blanks and terminated by a
new-line.

A keyword is a sequence of alphanumeric charac-
ters and underscores beginning with a lowercase letter.

3.1 The Log File Analyzer Language
Throughout section 2.1, we gave an overview of dif-
ferent ways to derive oracles. Oracles need to capture
the expected program behavior in some way. In or-
der to determine whether a program is behaving cor-
rectly or incorrectly, we first need to define the ex-
pected program behavior. Andrews introduced the
Log File Analysis Language (LFAL), which is used
to specify the expected program behavior in the form
of state machines.

3.2 Log File Analyzers
Taking into consideration the fact that log files of-
ten contain interleaved threads of information, a log
file analyzer can be viewed as a set of simpler pro-
grams. Andrews [7] explains that each program “no-
tices” a set of log lines that represent a thread of in-
formation, to check one or more closely related re-
quirements. More formally, these programs are state
machines running in parallel. Each state machine rec-
ognizes or “notices” only a subset of the lines in the
file and makes transitions triggered by the log file line
it notices. State machines in a log file analyzer report
an error when one of these conditions occur:

• A line is not noticed

• A line is noticed, but the state machine cannot
make a transition on it.

The implementation of LFA includes a translator,
an auxiliary library and a compiler script. The transla-
tor translates an LFAL specification into Prolog code.
The compiler script compiles the Prolog code and pro-
duces an executable that can be used to analyze log
files.

This framework has been applied to several lab–
built pieces of software such as an elevator controller
and a heater monitor [7] and to two pieces of commer-
cial software [9].

4 Our implementation
While LFA proved to be useful, the use of the Pro-
log as the target programming language posed some
difficulties that could be addressed by using a more
familiar programming language such as C++ or Java.

To address this issue, we developed a new im-
plementation of LFA, which instead of producing
Prolog–based log file analyzers, produces C++ log file
analyzers. Henceforth, we will refer to our new imple-
mentation of the LFA framework as LFA2.

Our implementation involved two main aspects:
the first was to extend the original LFAL language
in order to take advantage of the object–oriented
paradigm and to be able to incorporate new features,
such as support for regular expressions. We refer to
our new, extended version of the LFAL language as
LFAL 2.0.

The second aspect involved designing and devel-
oping a new translator, which translates a LFAL 2.0
program into C++ code.

Our objective was to extend the original LFA
framework in order to make log file analyzers more
flexible and powerful. By producing C++ log file an-
alyzers, we also expected to improve the performance
of our analyzers.

4.1 The log file analyzer generation process
Figure 1 shows a high-level view of the architecture
of our Log File Analyzer Generation Process, by il-
lustrating its different stages. The process starts with
a LFAL 2.0 program. This code is scanned and parsed
resulting in an abstract syntax tree (AST). The AST
is analyzed by the code generator and the following
files are generated: C++ code for machine classes , a
Makefile and C++ code for the log file analyzer pro-
gram. Using the Makefile and a C++ compiler, these
files are compiled and linked with the base libraries.
At the end of the process, we obtain an executable log
file analyzer. In Section 5, we provide an example
that illustrates how log file analyzers are used as test
oracles.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 315 Issue 10, Volume 10, October 2013

Figure 1: Log File Analyzer Generation Process

4.1.1 Base libraries
We have developed a set of libraries that encapsulate
the basic functionality needed by all machine classes.
In this way, we minimize the amount of generated
code, thus avoiding the generation of repetitive code.
Therefore, the C++ code for these classes is not
generated for every log file analyzer. Rather, log file
analyzers use these libraries through mechanisms
such as inheritance or aggregation.

Our base libraries contain the following function-
ality:

• State Machine. Contains the basic functionality
needed for the analyzer machines to work. It in-
cludes routines that manage the machine’s tran-
sition table and states.

• Log File Parser. Contains the data structures
and methods that analyzer machines need to rec-
ognize certain lines (regular expressions) in a log

file.

• Shared Memory Management. Contains data
structures and methods to create, open, and
delete shared memory areas. In addition, this li-
brary contains methods to create and manage log
files in a shared memory area. This library was
developed to make LFAL 2.0 analyzers capable
of reading log files from shared memory areas.
This is particularly useful for real–time systems.

4.1.2 Machine Classes
LFAL 2.0 programs can have one or more analyzer
machines. Each analyzer machine can check for one
or more requirements. That is, a LFAL 2.0 program
can have one or more types of analyzer machines,
each noticing a different set of lines and requirements.
We refer to them as machine classes. Figure 2 shows
an example of an LFAL program with two machine
classes: doors (shown in lines 10–29) and mem
(lines 31–46). We will use figure 2 as a running ex-
ample to illustrate the concepts presented here.

The log file analyzer generator produces C++
code for each machine class. That is, for this exam-
ple, it would generate a class for the analyzer machine
doors and for the analyzer machine mem.

In our implementation, each machine class has a
transition table in the form of an array of structures.
Each transition record contains the source and target
states and a pointer to a transition method. Transition
methods contain C++ code that defines the action to
execute. The most common action is to change the
state of the machine. However, depending on the con-
tents of the LFAL 2.0 program, the transition method
might contain other C++ code such as conditions or
actions specified by the user.

4.1.3 The Log File Analyzer Program
Once C++ code is generated for the machine classes,
the code generator has the necessary elements to gen-
erate C++ code for the main log file analyzer pro-
gram. This program instantiates the machine classes
and processes the log file.

Once the log file analyzer generation is complete,
the executable log file analyzer can be used to deter-
mine if a log file reveals errors in a program.

5 A simple example
The LFAL 2.0 program shown in Figure 3 specifies
a log file analyzer consisting of one machine class:
elevatorState. An elevator is usually known to
be “on service” when it is being controlled exclusively

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 316 Issue 10, Volume 10, October 2013

Figure 2: A LFAL 2.0 program with two machine classes

by an operator who inserts a key inside the keyhole in
its control panel. This state is meant to indicate that
the elevator is undergoing some kind of maintenance.
Once the elevator is ready for normal operation, it is
known to be “off service”.

The elevator system is expected to start up on
service and eventually be taken off service in order
to operate normally. After some time, the elevator
might be put on service again to perform repair or
maintenance tasks and then taken off service again.
This is expected to happen several times. Evidently,
a log file produced by the elevator controller software
should reflect that the elevator was on service before
the controller program exited.

The elevatorState analyzer machine checks
that the following requirements are met:

1. The elevator state alternates from being “on ser-
vice” to being in normal operation mode (“off
service”) and vice versa

2. The elevator system starts up and shuts down
while “on service”

Lines 2 and 3 define two patterns:
go on service and go off service. These
patterns define two regular expressions. For instance,

the line “elevator put on service” would
be matched by the pattern go on service on line
2. Lines 9 and 10 show the two possible states for
this machine: on service and normal. Line
12 sets on service as the initial state of the
machine. The analyzer machine’s transitions are
defined in lines 15 and 16. When the machine
recognizes (or “notices”) a line such as “elevator
taken off service”, the machine changes
to the state normal. Similarly, if the analyzer
machine notices a line of the type “elevator
put on service”, the analyzer machine will
transition to the on service state. Line 19 defines
the final state. Therefore, when the end of the log
file is reached, the machine should be in the state
on service. If we translated our example LFAL
2.0 program shown in figure 3 with our log file ana-
lyzer generator, we would obtain (after compilation)
an executable log file analyzer. Let us suppose we
gave the resulting log file analyzer the following log
file as an input:

1 elevator taken off service
2 elevator put on service

In this case, the log file analyzer would accept
this log file. The line “elevator taken off
service” would cause the analyzer machine
elevatorState to transition to the state normal.
Then, the line “elevator put on service”
would cause the machine to transition to the state
on service. Since we have reached the end of the
log file, the analyzer reports that the log file is correct.

Let us look at an example of a log file that would
cause this example log file analyzer to report an error:

1 elevator taken off service
2 elevator put on service
3 elevator taken off service

The process for the first two lines would be
identical as in the previous example. However, the
third line “elevator taken off service”
causes the elevatorState analyzer machine to
transition to the normal state. Therefore, when
the log file analyzer reaches the end of the file, the
analyzer machine would not be on the required state
on service. Therefore, the log file above would
be rejected, because the analyzer detected that the
elevator was in normal operation mode when the
elevator controller program ended.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 317 Issue 10, Volume 10, October 2013

Figure 3: A simple example of a LFAL 2.0 program

6 New features in LFAL 2.0
In this section, we present a brief overview of the new
features introduced in LFAL 2.0. For a more detailed
explanation of each new feature together with exam-
ples, see [10].

6.1 Support for regular expressions
One of the main challenges in log file analysis is that
log file formats differ significantly from system to sys-
tem. In addition, log lines often are a complex com-
bination of words, numbers and other types of data.
For that reason, it is important for log file analyzers
to be flexible regarding the format of the log file lines
they can process. In that way, log file analyzers can
be adapted to existing systems and their correspond-
ing logging policies.

In LFAL 2.0, a pattern is defined by specifying
three elements: a pattern name, a list of variables
enclosed in parentheses and a string with a regular
expression. Patterns are defined at the top. The reason
for this is that several machine classes can notice a
pattern.

Figure 4 shows an excerpt of an LFAL 2.0 pro-
gram, which shows an example of a pattern definition
on line 1. The name of the pattern temp is in bold. In
this example, the pattern specifies that a float value is
to be captured by declaring the variable T (underlined
in line 1). The regular expression in this example is
“The temperature is (?<T>)”. In this case
the T indicates the position of the variable float
T in the pattern. This pattern would match lines
such as “The temperature is 9.4” or “The
temperature is 46.3”.

It is important to mention that the syntax (?<T>)
is part of the standard PCRE syntax for named sub-
strings. We emphasize this fact because we designed

LFAL 2.0 patterns so that developers with experience
in PCRE or Perl–style regular expressions, can use
them without having to learn new syntax. In the orig-
inal version of LFAL, analyzers did not have a way
to specify a pattern for a log line. Therefore, if the

Figure 4: A pattern definition

example shown in figure 4 were written in the origi-
nal version of LFAL, the analyzer could only look for
lines such as “temp 9.4” or “temp 46.3”. That
makes it difficult for analyzers to adapt to existing log
files.

6.2 Dynamic and static analyzer machines

In log files, it is common to find groups of lines, which
are related to a specific identifier such as a transaction
ID number. LFAL 2.0 supports dynamic machines,
which are used to analyze these kind of log files. Dy-
namic analyzer machines are created “on the fly” by
a special type of transition that creates a new ana-
lyzer machine when a certain log line is noticed. Our
new implementation takes advantage of C++ object–
oriented–paradigm to dynamically create or delete an-
alyzer machines when certain log lines are noticed.

Dynamic analyzer machines are necessary to cor-
rectly analyze log files with more than one instance of
a group of log lines.

For example, let us suppose we need to generate a
log file analyzer that works as a memory leak checker.
Let us suppose that the SUT outputs a log file that,
among other information, contains lines that indicate
memory allocations or deallocations. To correctly an-
alyze such a log file, we would need the log file ana-
lyzer to be able to process“allocate” and “deallocate”
lines in any possible sequence. Dynamic analyzer
machines make this possible by creating or deleting
analyzer machines upon noticing log lines reflecting
memory allocation or deallocation, respectively. This
analyzer machine could check that once reaching the
end of the file, no instances of analyzer machines re-
main, thus indicating that for every allocation, there
was a deallocation.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 318 Issue 10, Volume 10, October 2013

6.3 New types of actions in transitions

The original version of LFAL allows the user to define
a series of transitions for the analyzer. This remains
true for LFAL 2.0. However, by introducing new
kinds of actions, transitions in LFAL 2.0 are much
more flexible. For example, a transition can be de-
fined to execute C++ code, create or delete an analyzer
machine object, show a specific error message, etc.

These new transition actions provide the user with
a fine-grained control over analyzer machine transi-
tions in LFAL 2.0. For example, in Section 7, we
describe the log file analyzer we used for our perfor-
mance experiments. Such analyzer features a special
type of transition that executes C++ code.

6.4 Data declarations
Data declarations allow users to declare external C++
objects and use them in a log file analyzers. Normally,
log file analyzers work with variables extracted from
log files or state variables. However, in some cases,
users might need a mechanism that allows them to use
their own C++ objects inside a log file analyzer. This
motivated us to incorporate data declarations to LFAL
2.0.

Users can use this feature to execute complex op-
erations during a transition. The operations they can
perform are only limited by the content of the class
they decide to specify as a data declaration in an LFA2
program. In Section 7, we describe the log file ana-
lyzer we generated for our experiments, which incor-
porates a data declaration.

7 Performance tests
The objective of our experiment was to compare the
performance of the original, Prolog-based log file an-
alyzers with our LFAL 2.0 analyzers.

To perform our experiments, we decided to use a
system log from Blue Gene/L (BG/L), which is one of
the five world’s most powerful supercomputers [11].
We designed our experiment in this way because a sig-
nificant amount of the work on log files focuses on the
analysis of logs generated by servers[12]. In addition,
we were interested in finding out how fast our log file
analyzers can process large log files.

To achieve our objective, we decided to generate
a log file analyzer that finds specific types of messages
in a log file and counts their occurrences. We refer to
this log file analyzer as the BG/L analyzer.

This log file was obtained from the Sandia Na-
tional Laboratories webpage [13] and it contains
4,747,963 messages in 709 megabytes.

7.1 Experiment design
Our experiment consisted in generating the BG/L an-
alyzer in both the original version of LFAL and LFAL
2.0. Our experiments are designed to evaluate two fac-
tors:

1. The number of patterns in a log file analyzer

2. The size of the log file

To evaluate how the number of patterns defined
in a log file analyzer affects its performance, we
generated four versions of the BG/L analyzer. We
will refer to them as bgl01, bgl02, bgl03 and
bgl04. The analyzer bgl01 matches and counts
lines with one pattern. bgl02 looks for lines with
two different patterns. Similarly, bgl03 matches and
counts lines with three different patterns. bgl04
matches and counts four different patterns.

To observe how the size of a log file affects the
performance of our log file analyzers, we divided the
BG/L log file into ten parts. In that way, we can ob-
serve the performance of bgl01-bgl04 with 10%,
20%, etc. up to 100% of the log file.

We measured the performance of both LFAL 1.0
and LFAL 2.0 analyzers in CPU time, using the
/usr/bin/time Linux command. CPU time is
the time a process spends executing processor instruc-
tions. CPU time can be divided into User CPU time
and System CPU time. User CPU time represents the
time spent in executing a program’s instructions. Sys-
tem CPU time is the time spent in system calls [14].

We ran each version of the BG/L analyzer
(bgl01-04) ten times on each of the ten parts of the
log file and measured user and system CPU time. Af-
ter ten runs, we computed the average user and system
CPU times. For example, bgl01 was run ten times
on 10% of the BG/L log. bgl01 was then run ten
times on 20% of the BG/L log file. This operation
was repeated until 100% of the log file was reached.
This process is repeated for bgl02-04.

7.2 Performance of LFAL 1.0 analyzers
As the reader might remember from Section 6.1,
LFAL 1.0 does not support patterns. Therefore, we
have no way to generate an LFAL 1.0 analyzer that
could process the original BG/L log file. In fact,
LFAL 1.0 BG/L analyzers will expect to process a
log file with simple entries such as:

cores
cache parity
sym

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 319 Issue 10, Volume 10, October 2013

fatal

Thus, in order to be able to analyze the BG/L log
file with LFAL 1.0, we had to “simplify” its log en-
tries. To emulate the work accomplished by LFAL
2.0 patterns, we used a sed script to match the pat-
terns shown in figure 5. Sed is a stream editor used to
perform basic text transformations on an input stream
[15]. Our sed script matches the patterns and replaces
them by its corresponding name.

Our sed script matches the patterns and replaces
them by its corresponding name. For instance, a line
such as:

RAS KERNEL INFO generating core.238

which corresponds to the regex "RAS KERNEL
INFO generating core.[0-9]+", would be
changed into:

cores

In addition, we eliminated any “unnoticed” log
lines—that is, any lines that would not be matched
by any of the patterns in figure 5. This is necessary
because LFAL 1.0 analyzers print an error message
when a log file line is not noticed by any analyzer ma-
chine. This is generally useful. However, for the pur-
poses of our experiment, this feature would affect our
results. The reason is that thousands of error messages
would be printed to the standard output because the
BG/L log file has many different types of messages.
Since we are not interested in measuring the time it
takes log analyzers to print error messages, we sup-
pressed the offending log entries. As we will see
in section 7.3, LFAL 2.0 analyzers allow users to
suppress error messages concerning unnoticed lines,
without having to modify the log file. Figure 6 shows

Figure 5: The four log patterns used in our experiments.
The name of the patterns (bold underlined) are followed
by a corresponding regular expression (bold). Below each
pattern, a sample log entry from the BG/L log file.

a graph with our measurements for the average user
CPU time for bgl01-04 analyzers. Each of the
points on the graph represent one of the 40 observa-
tions in our experiment—that is, the average of ten
runs for each of the analyzers and each of the percent-
ages. The x axis represents the percentage of the log
file that was analyzed and the y axis represents the
number of milliseconds of user CPU time it took on
average to run the analyzer. It is important to note that

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer+sed
bgl02 analyzer+sed
bgl03 analyzer+sed
bgl04 analyzer+sed

Figure 6: The CPU user time for bgl01, bgl02, bgl03 and
bgl04.

the times shown in this graph include the time it took
to process the BG/L log file with a sed script. We can
observe that, in general, time increases with the per-
centage (size) of the log file processed. Similarly, the
analyzer that matches the greatest number of patterns
(bgl04) takes the longest time to process the log file.

Figure 7 shows the system time for the four BG/L
analyzers. The x axis represents the percentage of the
log file that was analyzed and the y axis represents the
number of milliseconds of system CPU time it took
on average to run the analyzer. Similarly to the user
time graph in figure 6, time increases with the size of
the log file. However, system CPU time seems to be
very similar for all four BG/L analyzers (bgl01-04)
in 10% of the log file up to 40%, while in the rest of
the percentages (50%–100%) system time is not nec-
essarily higher for analyzers with more patterns.

7.3 Performance of LFAL 2.0 analyzers
The procedure for our experiments is the same as the
one explained in the previous section. The only differ-
ence is that the BG/L log file was processed directly
by our LFAL 2.0 analyzer. Another important differ-
ence is that LFAL 2.0 analyzers can omit error mes-
sages caused by “unnoticed” lines by specifying the
option -u in the command line. Therefore, LFAL 2.0
analyzers were able to analyze the BG/L log file with-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 320 Issue 10, Volume 10, October 2013

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer+sed
bgl02 analyzer+sed
bgl03 analyzer+sed
bgl04 analyzer+sed

Figure 7: The CPU system time for bgl01, bgl02, bgl03 and
bgl04.

out requiring the log file to be adapted or modified in
any way.

Figure 8 shows the LFAL 2.0 version of the
bgl04 analyzer. This BG/L analyzer declares four

Figure 8: The bgl04 analyzer in LFAL 2.0. This analyzer
matches and counts four patterns.

patterns in lines 1–4. This analyzer uses the data
declaration feature in LFAL 2.0 (see Section 6.4) to
count the number of times each type of log entry is
matched. In the transitions (lines 13–16), we can ob-
serve that the members of the Counters object are
incremented when a corresponding entry is noticed.

Line 20 shows an example of a special type of
transition (see Section 6.3). LFAL 2.0 allows users to
specify transitions that are to be executed only at the
beginning or the end of a log file. This special type
of transitions are declared by using the predefined
begin and end patterns. In this example, the
transition on line 20 is executed only when the end of
the log file is reached, just before the log file analyzer

program exits. This is useful because it allows the
total count of each of the log entry types to be printed.

Figure 11 shows a graph with our measurements
for the average user CPU time for bgl01-04 ana-
lyzers. The x axis represents the percentage of the log
file that was analyzed and the y axis represents the
number of milliseconds of user CPU time it took on
average to run the analyzer. Our results show that the
time increases with both log file size and number of
patterns.

Figure 9 shows the average system CPU time for
the four LFAL 2.0 BG/L analyzers. The x axis repre-
sents the percentage of the log file that was analyzed
and the y axis represents the number of milliseconds
of system CPU time it took on average to run the an-
alyzer. In general, system time for the four analyzers
is similar and increases with the size of the log file.
This does not happen in 70% and 100% of the log file,
where the system CPU time decreases.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer
bgl02 analyzer
bgl03 analyzer
bgl04 analyzer

Figure 9: The CPU system time for bgl01, bgl02, bgl03 and
bgl04.

7.4 Results
By comparing the user CPU time results for LFAL
1.0 in figure 6 and LFAL 2.0 in figure 11, we can
conclude that LFAL 2.0 analyzers are indeed faster
than their LFAL 1.0 counterparts. To visualize how
much faster LFAL 2.0 analyzers are with respect to
LFAL 1.0 analyzers, we generated a graph with the
ratio between the average user CPU time for LFAL
1.0 and the average user CPU time for LFAL 2.0. In
Figure 10, the x axis represents the percentage of the
log file that was analyzed and the y axis represents the
LFAL1:LFAL2 ratio. The graph shows that LFAL
2.0 analyzers are between 8 and 15 times faster de-
pending on the number of patterns. In fact, the ratio
seems to decrease as the number of patterns increases.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 321 Issue 10, Volume 10, October 2013

For example, LFAL 2.0 is 15 times faster than LFAL
1.0 for the bgl01 analyzer and between 8 and 9 times
for the bgl04 analyzer. Figure 12 shows the ra-

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

R
at

io
 L

FA
L1

:L
FA

L2

Percentage of log file (%)

ratio LFAL1:LFAL2 bgl01
ratio LFAL1:LFAL2 bgl02
ratio LFAL1:LFAL2 bgl03
ratio LFAL1:LFAL2 bgl04

Figure 10: The CPU user time ratio between LFAL 1.0 and
LFAL 2.0 for bgl01, bgl02, bgl03 and bgl04.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer
bgl02 analyzer
bgl03 analyzer
bgl04 analyzer

Figure 11: The CPU user time for bgl01, bgl02, bgl03 and
bgl04.

tio between the system time in LFAL 1.0 and LFAL
2.0. The x axis represents the percentage of the log
file that was analyzed and the y axis represents the
LFAL1:LFAL2 ratio. In this case, LFAL 2.0 takes
slightly more system time than LFAL 1.0. The ratio
starts at 1.5 but decreases to values between 0.7 and
0.9. This might be an effect of system calls in C++.
However, it is important to note that system CPU time
is only a small portion of the total time spent by a pro-
cess. Because user CPU time is less for LFAL 2.0 an-
alyzers, LFAL 2.0 analyzers are still faster than LFAL
1.0 analyzers.

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

R
at

io
 L

FA
L1

:L
FA

L2

Percentage of log file (%)

ratio LFAL1:LFAL2 bgl01
ratio LFAL1:LFAL2 bgl02
ratio LFAL1:LFAL2 bgl03
ratio LFAL1:LFAL2 bgl04

Figure 12: The CPU system time ratio between LFAL 1.0
and LFAL 2.0 for bgl01, bgl02, bgl03 and bgl04.

8 Conclusion
The main objective of the work presented in this
paper was to design and develop a log file analyzer
generator that generates analyzers based on the C++
language instead of Prolog. This was motivated by
several reasons. One of them was that C++ is a
modern, fast and well-known programming language.
Another important motivation was that we expected to
improve the general performance of log file analyzers
by using the C++ programming language instead of
Prolog. In addition, we wanted to take advantage of
a C++ implementation in order to incorporate new
features that could make our log file analyzers more
flexible and powerful.

We extended the original LFAL language and
incorporated new elements such as support for PCRE
regular expressions, different kinds of transition ac-
tions and the possibility to extend the functionality of
log file analyzers by incorporating user–defined data
members or embedding C++ code in transitions. In
addition, we successfully designed and implemented
a log file analyzer generator that translates an LFAL
2.0 program into C++ code.

To evaluate whether the use of C++ improved the
performance of our log file analyzers, we performed
a series of experiments that compare the performance
between Prolog–based analyzers and C++ analyzers.
Our results show that, depending on the number of
patterns defined in an analyzer, C++ analyzers can
be between 8 and 15 times faster compared to their
Prolog counterparts.

Our experiments also revealed the benefits and
flexibility of the C++ implementation. For instance,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 322 Issue 10, Volume 10, October 2013

the task of analyzing a system file with the Prolog
implementation proved to be laborious. This was
because the original log file needed to be modified so
that it could be analyzed. In contrast, we were able
to show that LFAL 2.0’s support for PCRE regular
expressions allow our log file analyzers to match
complex log file entries. This represents a major
advantage, since LFAL 2.0 analyzers do not require
developers to change the way they log events in their
programs. In fact, LFAL 2.0 analyzers adapt to the
logs. Logs do not have to be adapted to LFAL 2.0.
This is relevant because one of the main challenges in
log file analysis is precisely the fact that log formats
differ greatly from system to system.

We consider that log file analyzers have a lot of
potential in the area of software testing. As we men-
tioned earlier, the task of evaluating test results is
often performed manually and thus it can be time–
consuming and unreliable. Log file analyzers are test
oracles that determine if a log file produced by a pro-
gram reveals faults in it. Developers often log events
in their programs for debugging purposes and analyze
them precisely to determine if a program behaved as
expected. However, log files are often long or intri-
cate and thus, difficult to analyze manually. Log file
analyzers provide a way to analyze log files automat-
ically and reliably, helping testers to automatize the
evaluation of test results.

9 Future work
We believe that it is important to continue maintaining
our LFAL 2.0 framework by treating it as an open–
source project, so that it can be evaluated further. We
consider that it would be very interesting to develop
several case studies where we apply log file analysis
to a large, multi–process system. This would allow
us to evaluate how easy it is to specify the expected
behavior of a whole system using LFAL 2.0. In ad-
dition, it would allow us to observe the performance
and effectiveness of a more complex log file analyzer.

Acknowledgements: In the case of the first author,
this research was supported by the National Council
of Science and Technology in Mexico (Consejo Na-
cional de Ciencia y Tecnologı́a) and the Institute of
Electrical Research in Mexico (Instituto de Investiga-
ciones Eléctricas).

References:

[1] J.H. Andrews. Testing using log file analy-
sis: tools, methods, and issues. In Automated

Software Engineering, 1998. Proceedings. 13th
IEEE International Conference on, pages 157-
166, 1998.

[2] E.J. Weyuker. On testing non–testable programs.
The Computer Journal, 25(4):465–470, 1982.

[3] Luciano Baresi and Michal Young. Test ora-
cles. Technical Report CIS–TR–01–02, Univer-
sity of Oregon, Dept. of Computer and In-
formation Science, Eugene, Oregon, U.S.A.,
August 2001. http://www.cs.uoregon.
edu/˜michal/pubs/oracles.html.

[4] D.K. Peters and D.L. Parnas. Using test or-
acles generated from program documentation.
Software Engineering, IEEE Transactions on,
24(3):161–173, March 1998.

[5] Debra J. Richardson, Stephanie Leif Aha, and
T. Owen O’Malley. Specification–based test or-
acles for reactive systems. In Proceedings of the
14th international conference on Software engi-
neering, ICSE ’92, pages 105–118, New York,
NY, USA, 1992. ACM.

[6] Atif M. Memon, Martha E. Pollack, and Mary
Lou Soffa. Automated test oracles for GUIs. In
Proceedings of the 8th ACM SIGSOFT interna-
tional symposium on Foundations of software
engineering: twenty-first century applications,
SIGSOFT ’00/FSE–8, pages 30–39, New York,
NY, USA, 2000. ACM.

[7] J.H. Andrews and Y. Zhang. General test result
checking with log file analysis. Software Engi-
neering, IEEE Transactions on, 29(7):634-648,
2003.

[8] J.H. Andrews. Deriving state-based test ora-
cles for conformance testing. In Proceedings of
the Second International Workshop on Dynamic
Analysis (WODA 2004), pages 9-16, 2004.

[9] D.J. Yantzi and J.H. Andrews. Industrial evalu-
ation of a log file analysis methodology. In Dy-
namic Analysis, 2007. WODA 07. Fifth Inter-
national Workshop on, page 4 (paper index); 7
pages total, New York, NY, USA, May 2007.
ACM.

[10] Leal Aulenbacher, Ilse, “Generating Log File
Analyzers” (2012). University of Western On-
tario – Electronic Thesis and Dissertation
Repository. Paper 780.
http://ir.lib.uwo.ca/etd/780

[11] A. Oliner and J. Stearley. What supercomputers
say: A study of five system logs. In Dependable
Systems and Networks, 2007. DSN ’07. 37th
Annual IEEE/IFIP International Conference on,
pages 575–584, June 2007.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 323 Issue 10, Volume 10, October 2013

http://www.cs.uoregon.edu/~michal/pubs/ oracles.html
http://www.cs.uoregon.edu/~michal/pubs/ oracles.html
http://ir.lib.uwo.ca/etd/780

[12] Valdman. Log file analysis. Technical report,
Department of Computer Science and Engi-
neering, University of West Bohemia in Pilsen,
Czech Republic, 2001. Tech. Rep. DCSE/TR–
2001–04.

[13] Supercomputer event logs. http://www.cs.
sandia.gov/˜jrstear/logs/. [On–line.
Accessed June 2012].

[14] Linux programmer’s manual - time. Linux Man
Pages. [Accessed July 2012].

[15] sed linux man page. Linux Man Pages. [Ac-
cessed July 2012].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Ilse Leal-Aulenbacher, James H. Andrews

E-ISSN: 2224-3402 324 Issue 10, Volume 10, October 2013

http://www.cs.sandia.gov/~jrstear/logs/
http://www.cs.sandia.gov/~jrstear/logs/

