
Efficient framework architecture for improved tuning time and
normalized tuning time

J.ANDREWS, T.SASIKALA

Research Scholar, Department of CSE
Sathyabama University

Rajiv Gandhi salai, Chennai-600119
INDIA

andrews_593@yahoo.com,sasi_madhu2k2@yahoo.co.in

Abstract: - To improve the performance of the program by finding and applying the best set of techniques
from the set of available techniques for the GCC Compiler is a non-trivial task. GCC Compiler provides three
different levels of optimization techniques. Some techniques are turned ON or OFF each time. Turning on all
the techniques for an application may degrade the program performance and increase the compilation time. The
selection is dependent on the program domain, the compiler setting and the system architecture. The objective
is to find the best set of techniques from the various options provided by the GCC compiler. The framework
should handle all the new set of techniques that get added with the new release. The framework should be
capable of finding the best set of optimization techniques for any program that is provided as input. Since there
are more number of techniques, finding the best set is not feasible manually. The process of selection is
automated in order to minimize the execution time, compilation time, tuning time and normalized tuning time.
The existing algorithms such as the Combined Elimination, Batch Elimination, Branch and Bound and
Optimality Random Search are modified and the results are compared with the newly developed Push and Pop
Optimal Search Algorithm. We have implemented the algorithms on both a Pentium IV machine and a Core 2
Duo machine, by measuring the performance of MiBench benchmark programs under a set of 65 GCC
compiler options. It is found that the Push and Pop algorithm shows better performance when compared with
other algorithms.

Key-Words: - Optimization; Execution Time; Orchestration Algorithms; GCC Compiler Options; Benchmark
Applications.

1 Introduction and Related work

The behavior of the compiler is dependent on the
program domain, the compiler setting and the
system architecture. Therefore it can not be
determined how a compiler responds to a program
each time. GCC compiler provides three different
levels of optimizations. The optimizations are to be
applied upon the program without losing any of its
features. Turning all the techniques on for an
application potentially degrade the program
performance and increases the compilation time.
Every time when a recent version of the GCC
compiler is released, it comes with more flags for
optimization.

The Iterative Elimination [1] failed to predict the
correct order of optimizations, but only the set of
optimizations that are to be turned on are predicted.
The concept of parallel programming can be used to
test upon distributed memory architectures. The
Milepost [6] is a compiler technology that can
automatically learn how best it is to optimize
programs for heterogeneous embedded processors

using machine learning. The paper claims that it
improves the execution time of MiBench benchmark
by 11%. But Milepost GCC [3] uses only static
program features for extracting the features of the
given application. It uses GCC [18] , [19] as the
compiler infrastructure for Milepost and it is not
implemented on any of other architectures. Fine-
grain run time adaptation for multiple program
inputs on different multi-core architectures as
proposed in are yet to be included in this
architecture. The Branch and Bound algorithm
served better than many of the existing algorithms
but its impact is measured on overall performance
and not on individual code segments. The process
has to be repeated for each set of program since the
program features are not extracted using any
performance like PAPI which can provide more
sophisticated functionality of user callbacks on
counter overflow and event multiplexing. A
Random Search Strategy can be implemented using
the dynamic program features to extract the
characteristics of an application as proposed in [6].
But the random set of techniques selected may not

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 230 Issue 7, Volume 10, July 2013

be always the best and hence the results cannot be
stated as the best. The Combined Elimination [4]
strategy can be used to find the best set of
techniques but it appears to be less effective when
the process of finding the relative improvement
percentage consumes many iterations. One another
strategy proposed in called as the Batch Elimination
[4] which eliminates the techniques one by one. But
it does not test the combined effects of the
optimization techniques and hence it cannot produce
best results. J.Andrews et al [2],[7],[9] uses machine
learning algorithm for selecting best set of
techniques, but not used dynamic program features.
Grigori Fursin et al. [10] have presented a novel
probabilistic approach based on competition among
pairs of optimizations (program reaction to
optimizations) for enabling optimization knowledge
reuse and for achieving the best possible iterative
optimization performance. Malik Khan et al. [11]
have presented a novel compiler framework for
CUDA code generation. Qingping Wang et al. [12]
have introduced methods for constructing policies to
dynamically select the most appropriate TM
algorithm based on static and dynamic information.
John R. Wernsing et al.[13] have developed a
framework for hybrid computers. Christophe
Dubach et al. [14]. L. Almagor et al. [15] have
evaluated how optimization sequences which affects
optimization. Basilio B. Fraguela et al. [16] have
developed an efficient algorithm for HTA programs.
M. Burtscher et al. [17] have designed a tool for
high performance application.

There arises a need to design a framework that
could handle the new set of techniques that get
added each time. Research has been going on for a
long time on designing the framework for
automation. The Batch Elimination algorithm
immediately eliminates the techniques that give a
negative effect. The problem with this algorithm is
that the effects that these techniques have with other
techniques upon combination with them could not
be analyzed. The Optimality Random Search
Strategy picks a set of predefined sequence for a
program that has to be tested. But the challenge with
this algorithm is that the algorithm requires
predefined sequences for its operation. To equip the
algorithm with the capabilities to handle any
program that is provided as input became a non-
trivial task. The evolution of the combined
elimination strategy is helpful in finding a set of
techniques that suits for any program. The
Combined elimination eliminates one single
technique at a time and so the need to speed up the
process of elimination arises. So the advanced

combined elimination eliminates two techniques at a
single time. It is found that there could be better sets
than the sets that resulted after the implementation
of the advanced combined elimination algorithm.
The set of outputs generated in each of the iterations
of the advanced combined elimination gets stored
into a stack along with the execution time required
for the selected set. The set of techniques that has
got the least execution time is popped out of the
stack and it is selected as the resultant set. This
proved to be efficient than any other technique and
proved 20% more efficient than the closest
alternative. The Push and Pop Optimality Search
Algorithm is the most efficient technique and it has
showed better speed up than any of the other
algorithms tested for the MiBench Benchmark
applications.

2 Detailed Framework
GCC provides a list of optimization techniques.
Some techniques can improve the performance of
the program while some of the techniques will
degrade the performance of the program. The
objective is to find the best set of techniques. The
six algorithms serve the same purpose of selecting
the optimization techniques. But the fast and
efficient algorithm is to be preferred for finding the
best set with minimal execution time, compilation
time, tuning time and normalized tuning time. The
best set of techniques selected by an algorithm can
be used to compile a program with improved
performance.

The GCC compiler can be used to compile the
program with the best set of techniques that are
selected. This ultimately improves the program’s
performance. The performance analyzer tool like
PAPI can be used to analyze the features of the
program. This helps us to predict the best sets for
the programs with the similar features without
consuming much of time. The feedback from the
performance analyzer tool helps us to see whether
any more iteration is to be made. The process
repeats until a set of techniques which offers the
minimum compilation time, execution time, tuning
time and normalized time is found out. The process
of finding the best set of techniques requires many
iterations and it is a time consuming task. An
algorithm which offers better performance for most
of the programs tested is the reliable algorithm that
we can be preferred.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 231 Issue 7, Volume 10, July 2013

 Fig.1 Automated Framework with PAPI
Interface

The Figure 1 shows automated framework
integrated with PAPI. PAPI [8], [12] is useful for
collecting dynamic program features during run
time. The recent research shows that program using
dynamic program features works well than program
using static program features. With the help of PAPI
interface set of performance counter events
collected with respect to system architecture. The
performance counter event varies with respect to
system architecture. Using PAPI query interface we
can collect various events such as hardware
interrupts, floating point instructions, level 1 cache
related operations and level 2 cache related
operations. PAPI implements the features in
software where possible. Also, processors do not
support the same metrics, thus we can monitor
different events depending on the processor in use.
Therefore, the interface remains constant, but how it
is implemented can vary. In addition to raw counter
access, PAPI provides sophisticated functionality of
user callbacks on counter overflow and event
multiplexing.

3 Proposed Algorithms
For finding best set of optimization techniques from
65 available optimization techniques the following
strategies are applied. They are
1. Optimality Random search
2. Push and Pop algorithm
3. Advanced combined elimination
4. Advanced batch elimination
5. Genetic algorithm
6. Branch and bound algorithm.

3.1 Optimality random search
Input: n number of optimization techniques
Output: Best set of combination.
Steps:
1. Calculate Tb with F0=1, Fi=1.. Fn=1.
2. Pick Sequence from S[n] where S[n]={Fx=0,

Fy=1, Fz=0} and n=random(x).
3. Compile each every benchmark application with

S[n] and run with large datasets to measure the
execution time.

4. Calculate Speed Up = Tb/execution time.
5. Repeat step 2 to 4 until the best set is found.

This is similar to the algorithm proposed in [6]. The
algorithm searches for the best set of techniques
from the predefined sets of techniques which are
randomly generated during the initial phase of
execution of the algorithm. The set of techniques are
sorted upon the basis of speed up and the list of
techniques with the best speed up is selected as the
best set.

3.2 Advanced combined elimination
Input: Set of “n” optimization techniques
Output: Best set of techniques (ON - OFF
Combination)
1. Calculate Base Time, Tb = T(Fi=1, Fi+1=1,
Fi+2=1,…,Fn-1=1, Fn=1).
2. For every benchmark application, select a
sequence of techniques
 2.1. Initialize Seq = {F1, F2, ..., Fn}
 2.2. Compile and execute the application.
 2.3. Measure the RIP value of each set of two
optimization options Fi in Seq relative to the base
time Tb.
 2.4. If Fi=1 gives negative RIP, then set Fi=0.
3. Repeat steps 2 until all options in Seq have
nonnegative RIPs.
4. When RIP (Fn >=0), that sequence Seq, represents
the final solution.
This algorithm is the modified version of the
combined elimination algorithm [4]. The RIP of
each techniques are calculated and are sorted in the
descending order. Each time, two most negative
values are eliminated and the process of elimination
continues until there exists any non-negative RIP
values for any of the techniques. It was found that
the best set of techniques found using this algorithm
does not give the best performance all of the time.

3.3 Push and Pop elimination
Input: Set of “n” optimization techniques
Output: Best set of techniques
1. Set Seq = {F1, F2, ..., Fn} and Baseline = {F1 = 1,
F2 = 1, ..., Fn = 1}.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 232 Issue 7, Volume 10, July 2013

2. Compile and execute the application under the
baseline setting to get the base time TB. Measure the
RIP(Fi = 0) of each set of two optimization options
Fi in S relative to the Baseline.
3. Push the sequence to an array with the set of
techniques and their execution time.
4. Let Y = {y1,y2, ...,yn} be the set of optimization
options with negative RIPs. Y contatains list of
values stored in an ascending order. Remove y1
from S and set y1 to 0 in B. For i from 2 to n,
4.1 Measure the RIP of yi relative to the basetime

B.
4.2 If the RIP of yi is negative, remove yi from S.
4.3 Set yi to 0 in B.
5. Repeat Steps 2 and 3 until all options in S have
nonnegative RIPs.
6. Sort the stored sequences in the ascending order
of their execution time.
7. Pop out the best sequence which is the optimal
solution.

The Push and Pop Algorithm is proposed in order to
rectify the defects of the advanced combined
elimination algorithm. In this proposed algorithm,
the set of techniques which are generated in each
iteration of the advanced combined elimination
algorithm are stored into a stack along with their
execution time. Finally, when the algorithm has
finished its execution, the stack element, with the
least execution time is popped out. This algorithm
proved to be the best for all of the six programs
tested except for the dijkstra program.

3.4 Advanced batch elimination
Input: Set of “n” optimization techniques
Output: Best set of techniques
1. Compile the application under the baseline B=

{F1 = 1, F2 = 1, ..., Fn = 1}. Compile and
execute the application to get the basetime TB.

2. For each optimization Fi, switch it off from B
and compile the application. Execute the
generated version to get T(Fi = 0).

3. Set Fi=0, when execTime(Fi=1) >
execTime(Fi=0).

4. Compile the program using the techniques with
Fi=1 after the execution of steps 1 to 3 to
generate the optimal result.

This algorithm is a modified version of the Batch
Elimination Algorithm. The techniques that has a
greater execution time when they are ON as
compared to the execution time with those
techniques turned OFF are eliminated.

3.4 Genetic algorithm

Input: Set of “n” optimization techniques
Output: Best set of techniques
1. Select a Chromosome sequence C1 ={fi=1,
fi+1=1, fi+2=1, fi+3=1, fi+4=1}
2. Perform mutation: Generate x, where 0≥x≤4.
Make fi+x=1, if fi+x=0 and fi+x=0, if fi+x=1.
3. Perform the 2nd level of mutation by repeating
step 2.
4. Increment i=i+5. Repeat step 1 to generate
Chromosome sequence C2.
5. Exchange chromosomes in both of the sequences
tested where C3={C1. f0 , C1. f1 , C2. f0 , C2. f1,
C2. f2}.
6. Perform this for all the 65 chromosomes available
and store each chromosome sequence in an array.
7. Compile each and every benchmark application
with C[n] and run with large datasets to measure the
execution time (execTime).
8. Calculate Speed Up = Tb/execTime.
9. Repeat step 7 to 8 until the best set is found.

The Genetic Algorithm initially generates a
chromosome sequence with five sets of
chromosomes which are optimization techniques.
Then a mutation is performed upon this
chromosome sequence in order to turn one
technique in the selected sequence OFF. A second
mutation is also performed upon the selected
sequence. The process is repeated with another set
of chromosome. Then the crossover is done in order
to combine the properties of both of the
chromosome sequences. The chromosome
sequences are tested upon the programs and they are
sorted upon the basis of their speed ups. The set of
chromosomes with the best speed up is the best set
of techniques for the given program.

3.5 Branch and Bound Algorithm
Input: Set of “n” optimization techniques
Output: Best set of techniques
1. Initialize all falgs are on in set B.
2. Initialize relative improvement percentage upper
bound.
3. Repeat the following until the stack is not empty.
 3.1. For each Fx in S, x=1 to n
 {Compute RIP (Fx=0)} Find the option(T) in S
with most negative RIP.

 3.2 .Find the set of options(S’) such that it gives,
i.e. RIP<(60%of RIP_UB)

 3.3 .If S’ set is empty then return;
 3.4. Else, {For all the elements in S’
 Set all the flags are OFF;}
 3.5. If RIP(FT=0)<RIP_UB
 Then, RIP_UB=RIP(FT=0)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 233 Issue 7, Volume 10, July 2013

4. Result contains RIP values contains positive
value

 Return

4 Experimental set up
We have conducted experiments using Intel core 2
duo T6600 processor with speed 2.2Ghz.With 3GB
DDR2 RAM,L1 cache 128KB,L2 cache 2 MB,using
ubuntu11.10 operating system,GCC compiler
4.5.2.Performance counter events collected using
PAPI library. The following Table1 shows some of
the important optimization techniques from GCC
compiler [10]. All 65 optimization techniques which
includes ON or OFF applied to each application.
Table 1 Levels of optimization techniques

Level-o1
techniques

Level-o2
techniques

Level-o3
techniques

fcprop-
registers

fdefer-pop

fdelayed-
branh

fguess-
branch-
probability

fip-
conversion

fip-
conversion2

floop-
optimize

fmerge-
constants

fomit-
frame-
pointer

ftree-ccp

ftree-ch

ftree-copy-
rename

ftree-dce

falign-functions

falign-jumps

falign-loops

falign-labels

fcaller-saves

fcross-jumping

fdelete-null-
pointer-checks

fexpesive-
optimizations

fforce-mem

fgcse

fgcse-lm

fgcse-sm

foptimize-sibling-
calls

fpeephole2

fregmove

freorder-blocks

freorder-functions

fgcse-after-reload

finline-functions

funswitch-loops

ftree-
dominator-
opts

ftree-dse

ftree-fre

ftree-lrs

ftree-sra

ftree-ter

frerun-cse-after-
loop

frerun-loop-opt

fsched-interblock

fsched-spec

fschedule-insns

fschedule-insns2

fstrength-reduce

fstrict-aliasing

fthread-jumps

ftree-pre

fweb

4.1 Program used for experiments

The algorithms consists of atomic components such
as arrays, structures etc. which are helpful in its
implementation. The execution of a script file is also
required at times in order to perform the execution
of benchmark applications used in the algorithm and
to find their execution time. The algorithms are
tested upon six benchmark applications [5] which
are as follows:
basicmath
The basic math test performs simple mathematical
calculations that often do not have dedicated
hardware support in embedded processors. This
benchmark application is used for solving many
mathematical computations such as square root
calculations, function solving and angle conversions
from degrees to radians.. The input data is a fixed
set of constants.
bitcount
The bit count algorithm tests the bit manipulation
abilities of a processor by counting the number of
bits in an array of integers. It does this using five
methods including an optimized 1-bit per loop
counter, recursive bit count by nibbles, non-
recursive bit count by nibbles using a table look-up,
non recursive bit count by bytes using a table look-
up and shift and count bits. The input data is an
array of integers with equal numbers of 1’s and 0’s.
susan

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 234 Issue 7, Volume 10, July 2013

Susan is an image recognition package. It was
developed for recognizing corners and edges in
Magnetic Resonance Images of the brain. It is
typical of a real world program that would be
employed for a vision based quality assurance
application. It can smooth an image and has
adjustments for threshold, brightness, and spatial
control. The small input data is a black and white
image of a rectangle while the large input data is a
complex picture.
dijkstra
The Dijkstra benchmark constructs a large graph in
an adjacency matrix representation and then
calculates the shortest path between every pair of
nodes using repeated applications of Dijkstra’s
algorithm. Dijkstra’s algorithm is a well known
solution to the shortest path problem and completes
in O(n2) time.
Patricia
A Patricia tree is a data structure used in place of
full trees with very sparse leaf nodes. Often, Patricia
tries are used to represent routing tables in network
applications. The input data for this benchmark is a
list of IP traffic from a highly active web server for
a 2 hour period.
String search
This benchmark searches for given words in phrases
using a case insensitive comparison algorithm.

4.2 Script File Format
gcc -static -o3 program_name.c -o output;
This is used to compile the C program with all the
optimization flags ON and to generate an output file
called ‘output’.
time -f \"%e\" -o output.log ./output
This is used to store the time required to execute the
output file to an external file called output.log.

Compilation and Execution Procedure

The algorithms were implemented in C++ and so
they can be compiled using the G++ compiler.
g++ program_name.cc
Compiles the C++ program and generates an output
file called as ‘a.out’.
./a.out
Runs the program and prints the output of the
program onto the screen.
gcc -static -o3 basicmath_small.c rad2deg.c cubic.c
isqrt.c -o output –lm

A Benchmark Application can be compiled using
the GCC compiler using the above command.

. /output
The program can be run by specifying the name of
the output file.

4.3 Performance Metrics

There are a number of factors that we consider in
order to access the performance of the programs
which are listed as follows:

Relative Improvement Percentage (RIP)

It’s calculated using the following formula

RIP (Fi=0) = X 100% (1)

Where,
 Tb is the Base Time with all the program

compiled with the highest level of
optimization.

 T(Fi=0) is the execution time with the
particular technique turned OFF.

It is upon the basis of the Relative Improvement
Percentage that many of the algorithms such as the
Advanced Combined Elimination and Push and Pop
Combined Elimination work.

Tuning Time

It is the time required to run an application
with the best set of techniques selected by an
algorithm.

Normalized Tuning Time

It is calculated using the following formula:

 (2)
Speed up is the ratio between base time and time
required to fine tune the code. Base time is
measured by compiling and running the applications
by initializing all flags are ON.

5 Results and Discussions

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 235 Issue 7, Volume 10, July 2013

Table.2 Number of Iterations required to obtain best sets of values

Number of Iterations

Benchmark ORSA ACE P&P ABE GA B&B

basic_math 55 22 23 65 24 25

bit_cnt 55 15 16 65 18 22

dijkstra 55 14 15 65 25 27

patricia 55 21 22 65 21 31

stringsearch 55 12 13 65 18 19

susan 55 18 19 65 24 26

Table.3 Tuning time for different algorithms with respect to speed up

Benchmark ORSA ACE P&P ABE GA B&B

basic_math 1.42 1.39 1.32 1.42 1.39 1.39

bit_cnt 0.293 0.288 0.221 0.313 0.301 0.299

dijkstra 0.14 0.17 0.15 0.16 0.15 0.16

patricia 0.522 0.412 0.401 0.422 0.422 0.482

stringsearch 0.027 0.032 0.025 0.032 0.028 0.031

susan 0.219 0.119 0.109 0.129 0.116 0.118

Table.4 Maximum Speed up between different algorithms

Benchmark ORSA ACE P&P ABE GA B&B

basic_math 1.0347 1.0058 1.0469 1.0275 1.006 1.006

bit_cnt 1 1.0174 1.3258 1.0683 1.0273 1.0204

dijkstra 1.357 1.1176 1.2667 1.875 1.2667 1.175

patricia 1.0524 1.024 1.23597 1 1 1.1422

stringsearch 1 1.08 1.185 1.185 1.037 1.1481

susan 0.5433 1 1.0917 1.084 1.0259 1.0085

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 236 Issue 7, Volume 10, July 2013

Fig. 2 Number of iterations required to find an optimal set

Fig.3 Comparison of different Tuning time

Table.5 Comparison of Normalized tuning time

 ORSA ACE P&P ABE GA B&B

basic_math 0.2094 0.2048 0.2016 0.2089 0.2054 0.2051

bit_cnt 0.0898 0.0891 0.0724 0.0942 0.0909 0.0917

dijkstra 0.1286 0.1467 0.1329 0.1417 0.1305 0.1417

patricia 0.1791 0.1582 0.1557 0.1608 0.1712 0.1608

stringsearch 0.0194 0.0228 0.0181 0.0227 0.0201 0.0221

susan 0.0496 0.0286 0.0264 0.0308 0.028 0.0285

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 237 Issue 7, Volume 10, July 2013

The automated framework from Fig.1 is
implemented. The framework which accommodates
different optimization selection algorithms. All the
selection algorithms are explained in section 3. The
selection algorithm selects the best combination of
optimization sequences. The best combination is
compiled with gcc compiler for a benchmark
application. The various parameters such as
compilation time and execution time are measured.
During run time various performance counter values
are collected using PAPI [1], [20] library. The above
steps are repeated until best combination is found
which reduces compilation time and execution time.
Table 1 shows set of important optimization
techniques used in this research. Table 2 lists
numbers of iterations are required to find an optimal
set. While testing the benchmark applications with
large data sets, it is observed that ORSA required 55
iterations since it has to check all the random
sequences generated for the programs that are
tested. BE also requires 65 iterations since it checks
all the available sets of techniques in order to
analyze which techniques should be turned ON and
which are to be turned OFF. ACE, B&B and GA has
got varying values for the number of iterations
depending on the sequences that are generated. P&P
algorithm iterates one step more than CE since it has
to check all of the sequences that are generated by
the CE algorithm.Figure 2 shows number of compa
-risons required to find an optimal set for every
optimization algorithm. Table 2 lists tuning
time of different optimization algorithms with
respect to speed up. Tuning time is measured
once an optimal set is found. Push and pop
elimination gives better tuning for most of the
bench mark applications that are tested except for
the dijkstra program. For the program dijkstra,
optimality random search algorithm gives the better
results. This could not be always the best solution,
because the sequences generated by this algorithm
are randomly generated and they are not reliable.
Push and pop eliminations improves tuning time by
20%. Figure 3 shows comparison of tuning time for
every benchmark applications.

The Normalized Tuning Time is a very efficient
metric since the execution time at three
different times is taken into consideration for its
computation. Normalized tuning time is
measured using equation 2. We Normalize the
tuning time because execution time for different
bench mark applications are not same. Table 5

lists normalized tuning time for different
benchmark applications.

Fig.4 Comparison of normalized tuning time

This graph and results also proves that the Push and
Pop Combined Elimination Algorithm is the reliable
algorithm. Figure 4 shows comparison of
normalized tuning time.
6 Conclusion

The algorithms tested with six different benchmark
applications providing large data sets show better
performance for Push and Pop Algorithm. It is a
modified version of the Combined Elimination [7].
Each program is run three times in order to reach the
conclusion. The Push and Pop algorithm shows
consistent performance for all of the benchmark
programs. The Push and Pop algorithm can be used
to improve the programming performance of any
program and to pick the right set of optimization
techniques. The best set that is picked by the Push
and Pop algorithm can be used to enhance the
execution time, compilation time, tuning time,
normalized tuning time and speed up. Another
important fact is that the results could be found in a
few numbers of iterations. Performance analyzer
tools can be used to study static and dynamic
program features and incorporating it with the
algorithm can be helpful in finding the results even
faster. This research covers an analysis and study of
all the optimization techniques available in the GCC
Compiler v2.6 [18]. Applying various algorithms
upon six different benchmark applications run with
large data sets give the conclusion that the Push and
Pop algorithm is better than all other algorithms.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 238 Issue 7, Volume 10, July 2013

Future research can be done upon this by enhancing
the existing framework by combining static and
dynamic program features. In future the framework
can also be extended by including more benchmark
applications with various optimization algorithms.
Other open source compilers such as LLVM, ROSE,
Open Path, etc. can also be considered.

References

[1] Eunjung Park, Sameer Kulkarni and John
Cavazos, An Evaluation of Different Modeling
Techniques for Iterative Compilation,
Volume:2012 Publisher: Proceeding CASES'11
Proceedings of the 14th International
Conference on Compilers, Architectures and
Synthesis for Embedded Systems, Pages 65-74.

[2] J.Andrews,Performance enhancement of tuning
time in gcc compiler optimizations using
benchmark applications,CiiT International
journal of Artificial Intelligent Systems and
Machine Learning,Vol.4,No.5,2012,pp.276-281.

[3] Grigori et al .Milepost GCC :machine learning
enabled self tuning compiler, International
Journal on parallel
programming,vol.39,2011,pp.296-327.

[4] Z.Pan and R.Eigenmann,Fast and effective
orchestration of compiler optimization for
automatic performance tuning, In proceedings
of the international symposium on code
generation and optimization,2006,pp.381-387.

[5] Mathew R.Guthaus et al.,Mibench:A free
commercially representative embedded
benchmark suite,2001,pp.3-14

[6] Ayal Zaks, Bilha Mendelson, Chris Williams,
Cupertino Miranda, Edwin Bonilla, Elad Yom-
Tov, Elton Ashton, Eric Courtois, François
Bodin, Grigori Fursin, Hugh Leather, John
Thomson, Michael O'Boyle, Mircea Namolaru,
Olivier Temam, Phil Barnard, MILEPOST
GCC: Machine Learning Based Research
Compiler,2008.

[7] J.Andrews, Dr.T.Sasikala, Enhancement of
orchestration algorithms for compiler
optimization, Communications in computer and
Information
science,Springer,Vol.No.269,2011,pp.617-627.

[8] Agakov, Boyle, Cavazos, Edwin V, Felix,
Grigori, John Fursin, Michael F P O', Olivier,
Temam, Rapidly Selecting Good Compiler
Optimizations using Performance Counters,
International symposium on code generation
and optimization, 2007,pp.185-197.

[9] J.Andrews, Dr.T.Sasikala, Evaluation of various
compiler optimization techniques related to
mibench benchmark
applications,Vol.9,Issue.6,2013,pp.749-756.

[10] Grigori Fursin, Olivier Temam and Inria
Saclay, “Collective Optimization: A Practical
Collaborative Approach”, ACM Transactions on
Architecture and Code Optimization, Vol. 7,
No. 4, 2010, pp. 1-29.

[11] Malik Khan, Protonu Basu, Gabe Rudy,
Mary Hall, Chun Chen and Jacqueline Chame,
“A Script-Based Autotuning Compiler System
to Generate High-Performance CUDA Code”,
ACM Transactions on Architecture and Code
Optimization, Vol. 9, No. 4, 2013, pp. 1-25.

[12] Qingping Wang, Sameer Kulkarni, Michael
Spear and John Cavazos, “A Transactional
Memory with Automatic Performance Tuning”,
ACM Transactions on Architecture and Code
Optimization

[13] John R. Wernsing and Greg Stitt, Vol. 8,
No. 4, 2012, pp. 1-23., “Elastic computing: A
portable optimization framework for hybrid
computers”, Elsevier journal on Parallel
Computing, 2012, pp. 438–464.

[14] Christophe Dubach, Timothy M. Jones and
Michael F. P. O’boyle,” Exploring and
Predicting the Effects of Micro architectural
Parameters and Compiler Optimizations on
Performance and Energy”, ACM Transactions
on Embedded Computing Systems, Vol. 11S,
No. 1, 2012, pp. 1-24.

[15] L. Almagor, K. D. Cooper, A. Grosul, T. J.
Harvey, S. W. Reeves, D. Subramanian, L.
Torczon, and T. Waterman. Finding effective
compilation sequences. In Proceedings of the
Conference on Languages, Compilers, and
Tools for Embedded Systems, 2004.

[16] Basilio B. Fraguela, Ganesh Bikshandi, Jia
Guo, María J. Garzarán, David Padua and
Christoph von Praun, “Optimization techniques
for efficient HTA programs”, Elsevier journal
on Parallel Computing , 2012, pp. 465–484.

[17] M. Burtscher, B.-D. Kim, J. Diamond, J.
McCalpin, L. Koesterke, and J. Browne,
“Perfexpert: An Easy-to-Use Performance
Diagnosis Tool for Hpc Applications,” Proc.
ACM/IEEE Int’l Conf. High Performance
Computing, Networking, Storage and Analysis
(SC ’10), 2010, pp. 1-11.

[18] GCC Manual available at
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 239 Issue 7, Volume 10, July 2013

http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/�

[19] Optimization in GCC, Online Linux Journal
which can be read from
http://www.linuxjournal.com/article/7269

[20] A portable interface to hardware
Performance counters
http://icl.cs.utk.edu/papi

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS J. Andrews, T. Sasikala

E-ISSN: 2224-3402 240 Issue 7, Volume 10, July 2013

http://www.linuxjournal.com/article/7269�

