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Abstract: - To improve the performance of the program by finding and applying the best set of techniques 
from the set of available techniques for the GCC Compiler is a non-trivial task. GCC Compiler provides three 
different levels of optimization techniques. Some techniques are turned ON or OFF each time. Turning on all 
the techniques for an application may degrade the program performance and increase the compilation time. The 
selection is dependent on the program domain, the compiler setting and the system architecture. The objective 
is to find the best set of techniques from the various options provided by the GCC compiler. The framework 
should handle all the new set of techniques that get added with the new release. The framework should be 
capable of finding the best set of optimization techniques for any program that is provided as input. Since there 
are more number of techniques, finding the best set is not feasible manually. The process of selection is 
automated in order to minimize the execution time, compilation time, tuning time and normalized tuning time. 
The existing algorithms such as the Combined Elimination, Batch Elimination, Branch and Bound and 
Optimality Random Search are modified and the results are compared with the newly developed Push and Pop 
Optimal Search Algorithm. We have implemented the algorithms on both a Pentium IV machine and a Core 2 
Duo machine, by measuring the performance of MiBench benchmark programs under a set of 65 GCC 
compiler options. It is found that the Push and Pop algorithm shows better performance when compared with 
other algorithms. 

Key-Words: - Optimization; Execution Time; Orchestration Algorithms; GCC Compiler Options; Benchmark 
Applications. 

 
1 Introduction and Related work 

The behavior of the compiler is dependent on the 
program domain, the compiler setting and the 
system architecture. Therefore it can not be 
determined how a compiler responds to a program 
each time. GCC compiler provides three different 
levels of optimizations. The optimizations are to be 
applied upon the program without losing any of its 
features. Turning all the techniques on for an 
application potentially degrade the program 
performance and increases the compilation time. 
Every time when a recent version of the GCC 
compiler is released, it comes with more flags for 
optimization.  

The Iterative Elimination [1] failed to predict the 
correct order of optimizations, but only the set of 
optimizations that are to be turned on are predicted. 
The concept of parallel programming can be used to 
test upon distributed memory architectures. The 
Milepost [6] is a compiler technology that can 
automatically learn how best it is to optimize 
programs for heterogeneous embedded processors 

using machine learning. The paper claims that it 
improves the execution time of MiBench benchmark 
by 11%. But Milepost GCC [3] uses only static 
program features for extracting the features of the 
given application. It uses GCC [18] , [19] as the 
compiler infrastructure for Milepost and it is not 
implemented on any of other architectures. Fine-
grain run time adaptation for multiple program 
inputs on different multi-core architectures as 
proposed in are yet to be included in this 
architecture. The Branch and Bound algorithm 
served better than many of the existing algorithms 
but its impact is measured on overall performance 
and not on individual code segments. The process 
has to be repeated for each set of program since the 
program features are not extracted using any 
performance like PAPI which can provide more 
sophisticated functionality of user callbacks on 
counter overflow and event multiplexing. A 
Random Search Strategy can be implemented using 
the dynamic program features to extract the 
characteristics of an application as proposed in [6]. 
But the random set of techniques selected may not 
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be always the best and hence the results cannot be 
stated as the best. The Combined Elimination [4] 
strategy can be used to find the best set of 
techniques but it appears to be less effective when 
the process of finding the relative improvement 
percentage consumes many iterations. One another 
strategy proposed in called as the Batch Elimination 
[4] which eliminates the techniques one by one. But 
it does not test the combined effects of the 
optimization techniques and hence it cannot produce 
best results. J.Andrews et al [2],[7],[9] uses machine 
learning algorithm for selecting best set of 
techniques, but not used dynamic program features. 
Grigori Fursin et al. [10] have presented a novel 
probabilistic approach based on competition among 
pairs of optimizations (program reaction to 
optimizations) for enabling optimization knowledge 
reuse and for achieving the best possible iterative 
optimization performance. Malik Khan et al. [11] 
have presented a novel compiler framework for 
CUDA code generation. Qingping Wang et al. [12] 
have introduced methods for constructing policies to 
dynamically select the most appropriate TM 
algorithm based on static and dynamic information. 
John R. Wernsing et al.[13] have developed a 
framework for hybrid computers. Christophe 
Dubach et al. [14]. L. Almagor et al. [15] have 
evaluated how optimization sequences which affects 
optimization. Basilio B. Fraguela et al. [16] have 
developed an efficient algorithm for HTA programs. 
M. Burtscher et al. [17] have designed a tool for 
high performance application. 

There arises a need to design a framework that 
could handle the new set of techniques that get 
added each time. Research has been going on for a 
long time on designing the framework for 
automation. The Batch Elimination algorithm 
immediately eliminates the techniques that give a 
negative effect. The problem with this algorithm is 
that the effects that these techniques have with other 
techniques upon combination with them could not 
be analyzed. The Optimality Random Search 
Strategy picks a set of predefined sequence for a 
program that has to be tested. But the challenge with 
this algorithm is that the algorithm requires 
predefined sequences for its operation. To equip the 
algorithm with the capabilities to handle any 
program that is provided as input became a non-
trivial task. The evolution of the combined 
elimination strategy is helpful in finding a set of 
techniques that suits for any program. The 
Combined elimination eliminates one single 
technique at a time and so the need to speed up the 
process of elimination arises. So the advanced 

combined elimination eliminates two techniques at a 
single time. It is found that there could be better sets 
than the sets that resulted after the implementation 
of the advanced combined elimination algorithm. 
The set of outputs generated in each of the iterations 
of the advanced combined elimination gets stored 
into a stack along with the execution time required 
for the selected set. The set of techniques that has 
got the least execution time is popped out of the 
stack and it is selected as the resultant set. This 
proved to be efficient than any other technique and 
proved 20% more efficient than the closest 
alternative. The Push and Pop Optimality Search 
Algorithm is the most efficient technique and it has 
showed better speed up than any of the other 
algorithms tested for the MiBench Benchmark 
applications. 

 
2 Detailed Framework 
GCC provides a list of optimization techniques. 
Some techniques can improve the performance of 
the program while some of the techniques will 
degrade the performance of the program. The 
objective is to find the best set of techniques. The 
six algorithms serve the same purpose of selecting 
the optimization techniques. But the fast and 
efficient algorithm is to be preferred for finding the 
best set with minimal execution time, compilation 
time, tuning time and normalized tuning time. The 
best set of techniques selected by an algorithm can 
be used to compile a program with improved 
performance. 

The GCC compiler can be used to compile the 
program with the best set of techniques that are 
selected. This ultimately improves the program’s 
performance. The performance analyzer tool like 
PAPI can be used to analyze the features of the 
program. This helps us to predict the best sets for 
the programs with the similar features without 
consuming much of time. The feedback from the 
performance analyzer tool helps us to see whether 
any more iteration is to be made. The process 
repeats until a set of techniques which offers the 
minimum compilation time, execution time, tuning 
time and normalized time is found out. The process 
of finding the best set of techniques requires many 
iterations and it is a time consuming task. An 
algorithm which offers better performance for most 
of the programs tested is the reliable algorithm that 
we can be preferred. 
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 Fig.1 Automated Framework with PAPI 
Interface 

The Figure 1 shows automated framework 
integrated with PAPI. PAPI [8], [12] is useful for 
collecting dynamic program features during run 
time. The recent research shows that program using 
dynamic program features works well than program 
using static program features. With the help of PAPI 
interface set of performance counter events 
collected with respect to system architecture. The 
performance counter event varies with respect to 
system architecture. Using PAPI query interface we 
can collect various events such as hardware 
interrupts, floating point instructions, level 1 cache 
related operations and level 2 cache related 
operations. PAPI implements the features in 
software where possible. Also, processors do not 
support the same metrics, thus we can monitor 
different events depending on the processor in use. 
Therefore, the interface remains constant, but how it 
is implemented can vary. In addition to raw counter 
access, PAPI provides sophisticated functionality of 
user callbacks on counter overflow and event 
multiplexing. 

3 Proposed Algorithms 
For finding best set of optimization techniques from 
65 available optimization techniques the following 
strategies are applied. They are  
1. Optimality Random search 
2. Push and Pop algorithm 
3. Advanced combined elimination 
4. Advanced batch elimination 
5. Genetic algorithm 
6. Branch and bound algorithm. 
 

3.1 Optimality random search 
Input: n number of optimization techniques 
Output: Best set of combination. 
Steps: 
1. Calculate Tb with F0=1, Fi=1.. Fn=1. 
2. Pick Sequence from S[n] where S[n]={Fx=0, 

Fy=1, Fz=0} and n=random(x). 
3. Compile each every benchmark application with 

S[n] and run with large datasets to measure the 
execution time. 

4. Calculate Speed Up = Tb/execution time. 
5. Repeat step 2 to 4 until the best set is found. 

This is similar to the algorithm proposed in [6]. The 
algorithm searches for the best set of techniques 
from the predefined sets of techniques which are 
randomly generated during the initial phase of 
execution of the algorithm. The set of techniques are 
sorted upon the basis of speed up and the list of 
techniques with the best speed up is selected as the 
best set. 

3.2  Advanced combined elimination 
Input: Set of “n” optimization techniques 
Output: Best set of techniques (ON - OFF 
Combination) 
1. Calculate Base Time, Tb = T(Fi=1, Fi+1=1, 
Fi+2=1,…,Fn-1=1, Fn=1). 
2. For every benchmark application, select a 
sequence of techniques 
  2.1. Initialize Seq = {F1, F2, ..., Fn} 
  2.2. Compile and execute the application. 
  2.3. Measure the RIP value of each set of two 
optimization options Fi in Seq relative to the base 
time Tb. 
 2.4. If Fi=1 gives negative RIP, then set Fi=0. 
3. Repeat steps 2 until all options in Seq have 
nonnegative RIPs. 
4. When RIP (Fn >=0), that sequence Seq, represents 
the final solution. 
This algorithm is the modified version of the 
combined elimination algorithm [4]. The RIP of 
each techniques are calculated and are sorted in the 
descending order. Each time, two most negative 
values are eliminated and the process of elimination 
continues until there exists any non-negative RIP 
values for any of the techniques. It was found that 
the best set of techniques found using this algorithm 
does not give the best performance all of the time. 
 
3.3  Push and Pop elimination 
Input: Set of “n” optimization techniques 
Output: Best set of techniques 
1. Set Seq = {F1, F2, ..., Fn} and Baseline = {F1 = 1, 
F2 = 1, ..., Fn = 1}. 
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2. Compile and execute the application under the 
baseline setting to get the base time TB. Measure the 
RIP(Fi = 0) of each set of two optimization options 
Fi in S relative to the Baseline. 
3. Push the sequence to an array with the set of 
techniques and their execution time. 
4. Let Y = {y1,y2, ...,yn} be the set of optimization 
options with negative RIPs. Y contatains  list of 
values  stored  in an ascending order. Remove y1 
from S and set y1 to 0 in B. For i from 2 to n, 
4.1 Measure the RIP of yi relative to the basetime 

B. 
4.2 If the RIP of yi is negative, remove yi from S. 
4.3 Set yi to 0 in B. 
5. Repeat Steps 2 and 3 until all options in S have 
nonnegative RIPs. 
6. Sort the stored sequences in the ascending order 
of their execution time. 
7. Pop out the best sequence which is the optimal 
solution. 

The Push and Pop Algorithm is proposed in order to 
rectify the defects of the advanced combined 
elimination algorithm. In this proposed algorithm, 
the set of techniques which are generated in each 
iteration of the advanced combined elimination 
algorithm are stored into a stack along with their 
execution time. Finally, when the algorithm has 
finished its execution, the stack element, with the 
least execution time is popped out. This algorithm 
proved to be the best for all of the six programs 
tested except for the dijkstra program. 
 
3.4 Advanced batch elimination 
Input: Set of “n” optimization techniques 
Output: Best set of techniques 
1. Compile the application under the baseline B= 

{F1 = 1, F2 = 1, ..., Fn = 1}. Compile and 
execute the application to get the basetime  TB. 

2. For each optimization Fi, switch it off from B 
and compile the application. Execute the 
generated version to get T(Fi = 0). 

3. Set Fi=0, when execTime(Fi=1) > 
execTime(Fi=0). 

4. Compile the program using the techniques with 
Fi=1 after the execution of steps 1 to 3 to 
generate the optimal result. 

This algorithm is a modified version of the Batch 
Elimination Algorithm. The techniques that has a 
greater execution time when they are ON as 
compared to the execution time with those 
techniques turned OFF are eliminated. 

3.4 Genetic algorithm 

Input: Set of “n” optimization techniques 
Output: Best set of techniques 
1. Select a Chromosome sequence C1 ={fi=1, 
fi+1=1, fi+2=1, fi+3=1, fi+4=1} 
2. Perform mutation: Generate x, where 0≥x≤4. 
Make fi+x=1, if fi+x=0 and fi+x=0, if fi+x=1. 
3. Perform the 2nd level of mutation by repeating 
step 2. 
4. Increment i=i+5. Repeat step 1 to generate 
Chromosome sequence C2. 
5. Exchange chromosomes in both of the sequences 
tested where C3={C1. f0 , C1. f1 , C2. f0 , C2. f1, 
C2. f2}. 
6. Perform this for all the 65 chromosomes available 
and store each chromosome sequence in an array. 
7. Compile each and every benchmark application 
with C[n] and run with large datasets to measure the 
execution time (execTime). 
8. Calculate Speed Up = Tb/execTime. 
9. Repeat step 7 to 8 until the best set is found. 

The Genetic Algorithm initially generates a 
chromosome sequence with five sets of 
chromosomes which are optimization techniques. 
Then a mutation is performed upon this 
chromosome sequence in order to turn one 
technique in the selected sequence OFF. A second 
mutation is also performed upon the selected 
sequence. The process is repeated with another set 
of chromosome. Then the crossover is done in order 
to combine the properties of both of the 
chromosome sequences. The chromosome 
sequences are tested upon the programs and they are 
sorted upon the basis of their speed ups. The set of 
chromosomes with the best speed up is the best set 
of techniques for the given program. 

3.5 Branch and Bound Algorithm 
Input: Set of “n” optimization techniques 
Output: Best set of techniques 
1. Initialize all falgs are on in set B. 
2. Initialize relative improvement percentage upper 
bound.  
3. Repeat the following until the stack is not empty. 
     3.1. For each Fx in S, x=1 to n 
      {Compute RIP (Fx=0)} Find the option(T) in S 
with most negative RIP. 

 3.2 .Find the set of options(S’) such that it gives, 
i.e.  RIP<(60%of RIP_UB) 

     3.3 .If S’ set is empty then return; 
     3.4. Else, {For all the elements in S’ 
            Set all the flags are OFF;} 
      3.5. If RIP(FT=0)<RIP_UB  
             Then, RIP_UB=RIP(FT=0) 
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4.     Result contains RIP values contains positive     
value  

 Return 
 
4 Experimental set up 
We have conducted experiments using Intel core 2 
duo T6600 processor with speed 2.2Ghz.With 3GB 
DDR2 RAM,L1 cache 128KB,L2 cache 2 MB,using 
ubuntu11.10 operating system,GCC compiler 
4.5.2.Performance counter events collected using 
PAPI library. The following Table1 shows some of 
the important optimization techniques from GCC 
compiler [10]. All 65 optimization techniques which 
includes ON or OFF applied to each application. 
Table 1 Levels of optimization techniques 

Level-o1 
techniques 

 

Level-o2 
techniques 

 

Level-o3 
techniques 

 

fcprop-
registers 

fdefer-pop 

fdelayed-
branh 

fguess-
branch-
probability 

fip-
conversion 

fip-
conversion2 

floop-
optimize 

fmerge-
constants 

fomit-
frame-
pointer 

ftree-ccp 

ftree-ch 

ftree-copy-
rename 

ftree-dce 

falign-functions 

falign-jumps 

falign-loops 

falign-labels 

fcaller-saves 

fcross-jumping 

fdelete-null-
pointer-checks 

fexpesive-
optimizations 

fforce-mem 

fgcse 

fgcse-lm 

fgcse-sm 

foptimize-sibling-
calls 

fpeephole2 

fregmove 

freorder-blocks 

freorder-functions 

fgcse-after-reload 

finline-functions 

funswitch-loops 

ftree-
dominator-
opts 

ftree-dse 

ftree-fre 

ftree-lrs 

ftree-sra 

ftree-ter 

 

frerun-cse-after-
loop 

frerun-loop-opt 

fsched-interblock 

fsched-spec 

fschedule-insns 

fschedule-insns2 

fstrength-reduce 

fstrict-aliasing 

fthread-jumps 

ftree-pre 

fweb 
 

4.1 Program used for experiments 

The algorithms consists of atomic components such 
as arrays, structures etc. which are helpful in its 
implementation. The execution of a script file is also 
required at times in order to perform the execution 
of benchmark applications used in the algorithm and 
to find their execution time. The algorithms are 
tested upon six benchmark applications [5] which 
are as follows: 
basicmath 
The basic math test performs simple mathematical 
calculations that often do not have dedicated 
hardware support in embedded processors. This 
benchmark application is used for solving many 
mathematical computations such as square root 
calculations, function solving and angle conversions 
from degrees to radians.. The input data is a fixed 
set of constants. 
bitcount  
The bit count algorithm tests the bit manipulation 
abilities of a processor by counting the number of 
bits in an array of integers. It does this using five 
methods including an optimized 1-bit per loop 
counter, recursive bit count by nibbles, non-
recursive bit count by nibbles using a table look-up, 
non recursive bit count by bytes using a table look-
up and shift and count bits. The input data is an 
array of integers with equal numbers of 1’s and 0’s. 
susan 
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Susan is an image recognition package. It was 
developed for recognizing corners and edges in 
Magnetic Resonance Images of the brain. It is 
typical of a real world program that would be 
employed for a vision based quality assurance 
application. It can smooth an image and has 
adjustments for threshold, brightness, and spatial 
control. The small input data is a black and white 
image of a rectangle while the large input data is a 
complex picture. 
dijkstra 
The Dijkstra benchmark constructs a large graph in 
an adjacency matrix representation and then 
calculates the shortest path between every pair of 
nodes using repeated applications of Dijkstra’s 
algorithm. Dijkstra’s algorithm is a well known 
solution to the shortest path problem and completes 
in O(n2) time. 
Patricia  
A Patricia tree is a data structure used in place of 
full trees with very sparse leaf nodes. Often, Patricia 
tries are used to represent routing tables in network 
applications. The input data for this benchmark is a 
list of IP traffic from a highly active web server for 
a 2 hour period. 
String search 
This benchmark searches for given words in phrases 
using a case insensitive comparison algorithm. 

4.2 Script File Format 
gcc -static -o3 program_name.c -o output; 
This is used to compile the C program with all the 
optimization flags ON and to generate an output file 
called ‘output’. 
time -f \"%e\" -o output.log ./output 
This is used to store the time required to execute the 
output file to an external file called output.log. 

Compilation and Execution Procedure 

The algorithms were implemented in C++ and so 
they can be compiled using the G++ compiler. 
g++ program_name.cc 
Compiles the C++ program and generates an output 
file called as ‘a.out’. 
./a.out 
Runs the program and prints the output of the 
program onto the screen. 
gcc -static -o3  basicmath_small.c rad2deg.c cubic.c  
isqrt.c -o output –lm 

A Benchmark Application can be compiled using 
the GCC compiler using the above command. 

. /output 
The program can be run by specifying the name of 
the output file.  
 
4.3 Performance Metrics 

There are a number of factors that we consider in 
order to access the performance of the programs 
which are listed as follows: 

Relative Improvement Percentage (RIP) 

It’s calculated using the following formula 

RIP (Fi=0) =  X 100%  (1) 

Where, 
 Tb is the Base Time with all the program 

compiled with the highest level of 
optimization. 

 T(Fi=0) is the execution time with the 
particular technique turned OFF. 

It is upon the basis of the Relative Improvement 
Percentage that many of the algorithms such as the 
Advanced Combined Elimination and Push and Pop 
Combined Elimination work. 

Tuning Time 

It is the time required to run an application 
with the best set of techniques selected by an 
algorithm. 

Normalized Tuning Time 

It is calculated using the following formula: 

  (2) 
Speed up is the ratio between base time and time 
required to fine tune the code. Base time is 
measured by compiling and running the applications 
by initializing all flags are ON.  
 
5 Results and Discussions 
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Table.2 Number of Iterations required to obtain best sets of values 

Number of Iterations 

Benchmark ORSA ACE P&P ABE GA B&B 

basic_math 55 22 23 65 24 25 

bit_cnt 55 15 16 65 18 22 

dijkstra 55 14 15 65 25 27 

patricia 55 21 22 65 21 31 

stringsearch 55 12 13 65 18 19 

susan 55 18 19 65 24 26 

 
Table.3 Tuning time for different algorithms with respect to speed up 

Benchmark ORSA ACE P&P ABE GA B&B 

basic_math 1.42 1.39 1.32 1.42 1.39 1.39 

bit_cnt 0.293 0.288 0.221 0.313 0.301 0.299 

dijkstra 0.14 0.17 0.15 0.16 0.15 0.16 

patricia 0.522 0.412 0.401 0.422 0.422 0.482 

stringsearch 0.027 0.032 0.025 0.032 0.028 0.031 

susan 0.219 0.119 0.109 0.129 0.116 0.118 

 
Table.4 Maximum Speed up between different algorithms 

Benchmark ORSA ACE P&P ABE GA B&B 

basic_math 1.0347 1.0058 1.0469 1.0275 1.006 1.006 

bit_cnt 1 1.0174 1.3258 1.0683 1.0273 1.0204 

dijkstra 1.357 1.1176 1.2667 1.875 1.2667 1.175 

patricia 1.0524 1.024 1.23597 1 1 1.1422 

stringsearch 1 1.08 1.185 1.185 1.037 1.1481 

susan 0.5433 1 1.0917 1.084 1.0259 1.0085 
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Fig. 2 Number of iterations required to find an optimal set 

 

 
Fig.3 Comparison of different Tuning time 

 
Table.5 Comparison of Normalized tuning time 

 ORSA ACE P&P ABE GA B&B 

basic_math 0.2094 0.2048 0.2016 0.2089 0.2054 0.2051 

bit_cnt 0.0898 0.0891 0.0724 0.0942 0.0909 0.0917 

dijkstra 0.1286 0.1467 0.1329 0.1417 0.1305 0.1417 

patricia 0.1791 0.1582 0.1557 0.1608 0.1712 0.1608 

stringsearch 0.0194 0.0228 0.0181 0.0227 0.0201 0.0221 

susan 0.0496 0.0286 0.0264 0.0308 0.028 0.0285 
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The automated framework from Fig.1 is 
implemented. The framework which accommodates 
different optimization selection algorithms. All the 
selection algorithms are explained in section 3.   The 
selection algorithm selects the best combination of 
optimization sequences. The best combination is 
compiled with gcc compiler for a benchmark 
application. The various parameters such as 
compilation time and execution time are measured. 
During run time various performance counter values 
are collected using PAPI [1], [20] library. The above 
steps are repeated until best combination is found 
which reduces compilation time and execution time. 
Table 1 shows set of important optimization 
techniques used in this research.  Table 2 lists 
numbers of iterations are required to find an optimal 
set.  While testing the benchmark applications with 
large data sets, it is observed that ORSA required 55 
iterations since it has to check all the random 
sequences generated for the programs that are 
tested. BE also requires 65 iterations since it checks 
all the available sets of techniques in order to 
analyze which techniques should be turned ON and 
which are to be turned OFF. ACE, B&B and GA has 
got varying values for the number of iterations 
depending on the sequences that are generated. P&P 
algorithm iterates one step more than CE since it has 
to check all of the sequences that are generated by 
the CE algorithm.Figure 2 shows number of compa 
-risons required to find an optimal set for every 
optimization algorithm. Table 2 lists tuning 
time of different optimization algorithms with 
respect to speed up. Tuning time is measured 
once an optimal set is found. Push and pop 
elimination gives better tuning for most of the 
bench mark applications that are tested except for 
the dijkstra program. For the program dijkstra, 
optimality random search algorithm gives the better 
results. This could not be always the best solution, 
because the sequences generated by this algorithm 
are randomly generated and they are not reliable. 
Push and pop eliminations improves tuning time by 
20%. Figure 3 shows comparison of tuning time for 
every benchmark applications. 
 
The Normalized Tuning Time is a very efficient 
metric since the execution time at three 
different times is taken into consideration for its 
computation. Normalized tuning time is 
measured using equation 2. We Normalize the 
tuning time because execution time for different 
bench mark applications are not same. Table 5 

lists normalized tuning time for different 
benchmark applications.  
 

 
 

Fig.4 Comparison of normalized tuning time 

This graph and results also proves that the Push and 
Pop Combined Elimination Algorithm is the reliable 
algorithm. Figure 4 shows comparison of 
normalized tuning time. 
6 Conclusion 

The algorithms tested with six different benchmark 
applications providing large data sets show better 
performance for Push and Pop Algorithm. It is a 
modified version of the Combined Elimination [7]. 
Each program is run three times in order to reach the 
conclusion. The Push and Pop algorithm shows 
consistent performance for all of the benchmark 
programs. The Push and Pop algorithm can be used 
to improve the programming performance of any 
program and to pick the right set of optimization 
techniques. The best set that is picked by the Push 
and Pop algorithm can be used to enhance the 
execution time, compilation time, tuning time, 
normalized tuning time and speed up. Another 
important fact is that the results could be found in a 
few numbers of iterations. Performance analyzer 
tools can be used to study static and dynamic 
program features and incorporating it with the 
algorithm can be helpful in finding the results even 
faster. This research covers an analysis and study of 
all the optimization techniques available in the GCC 
Compiler v2.6 [18]. Applying various algorithms 
upon six different benchmark applications run with 
large data sets give the conclusion that the Push and 
Pop algorithm is better than all other algorithms. 
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Future research can be done upon this by enhancing 
the existing framework by combining static and 
dynamic program features. In future the framework 
can also be extended by including more benchmark 
applications with various optimization algorithms. 
Other open source compilers such as LLVM, ROSE, 
Open Path, etc. can also be considered. 
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