
A New Hybrid Algorithm for the Multiple-Choice Multi-Dimensional
Knapsack Problem

MAHMOUD ZENNAKI

Computer science department, faculty of mathematics and computer science
University of Science and Technology of Oran ‘Mohamed Boudiaf’ USTO MB

PO 1505 El M’naoeur, Bir el Djir, Oran, Algeria
mahmoud.zennaki@univ-usto.dz

Abstract: In this paper, we approximately solve the multiple-choice multi-dimensional knapsack problem. We
propose a hybrid algorithm based on branch and bound method and Pareto-algebraic operations. The algorithm
starts by an initial solution and then combines one-by-one groups of the problem instance to generate partial
solutions in each iteration. Most of these partial solutions are discarded by Pareto dominance and bounding
process leading at the end to optimality or near optimality in the case when only a subset of partial solutions is
maintained at each step. Furthermore, a rounding procedure is introduced to improve the bounding process by
generating high quality feasible solutions during algorithm execution. The performance of the proposed
heuristic has been evaluated on several problem instances. Encouraging results have been obtained.

Key-Words: combinatorial optimization, heuristics, knapsacks, branch and bound.

1 Introduction
Recently, a more complex variant of knapsack
problem, an NP-hard problem, has been studied by a
large number of researchers. This variant called
multi-dimensional multiple-choice knapsack
problem (MMKP) is among the most challenging of
the encountered optimization problems. The MMKP
problem instances appear for example in chip
multiprocessor run-time resource management,
global routing of wiring in circuits [1] and other
practical problems as the service level agreement
and, the model of allocation resources [2].

The basic 0-1 knapsack problem considers
items, where each item has a profit value and a
resource cost given by the weight . The objective
is to put items in a knapsack so that the resource
capacity of the knapsack is not exceeded and the
summed value of packed items is maximal. Instead
of items, groups of items may be considered
where one item from each group must be selected,
leading to the multiple-choice knapsack problem
(MCKP). The multi-dimensional knapsack problem
(MDKP) is another variant in which a multi-
dimensional resource cost is considered for each
item and each dimension has its own capacity. The
multi-dimensional multiple-choice knapsack
problem (MMKP) [3] combines the two
aforementioned variants, and is the focus of this
paper.

Formally, the MMKP can be stated as follows:
given classes of items, where each class ,

, has items. Each item , ,

of class has the non-negative profit value , and
requires resources given by the weight vector

 where each weight component
, is also a nonnegative value. The

amounts of available resources are given by a vector
. The aim of the MMKP is to pick

exactly one item from each class in order to
maximize the total profit value of the pick, subject
to resource constraints. If we consider decision
variables when item of the -th class is
picked, 0 otherwise, the MMKP can be formulated
in an Integer Linear Program (ILP) as follows:

We are talking about regular MMKP instances

when unlike irregular ones.
This paper presents BPH, for Branch and bound

Pareto-algebraic Heuristic. BPH is a heuristic based
on Branch and Bound (B&B) and uses the principle
of Pareto algebra [4], [5], which is a framework for
calculation of Pareto-optimal solution in multi-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 219 Issue 7, Volume 10, July 2013

dimensional optimization problems. This
combination of B&B and Pareto algebra concepts
allow solving to near-optimality large MMKP
instances in a reduced CPU time. At each step of the
heuristic, partial solutions are computed by
considering groups of items one at a time. Based on
Pareto algebra, some dominated solutions are
discarded, and then bound principle is applied by
solving correspondent ILP relaxation. The bound
process can discard more partial solutions, leading
to a reduced number of active partial solutions
during heuristic execution. When handling large
instances, the practical run-time of BPH is
determined by the number of partial solutions
considered in each step. This provides a parameter
to control the run-time of these computations and to
trade-off run-time and quality of the final solution.

The remainder of the paper is organized as
follows. In section 2, we present a brief reference of
some sequential exact and approximate algorithms
for MMKP. Section 3 introduces the BPH heuristic
by means of an example; it further presents the
relevant concepts of Pareto algebra. Then, in section
4, the proposed algorithm is presented in detail. In
section 5, the performance of BPH is tested on a set
of problem instances extracted from the literature
including some very large instances. We conclude in
the last section our paper with some interesting
remarks.

2 Related works
As for other combinatorial optimization problems,
two types of solution approaches for MMKP have
been proposed in the literature. Exact solutions find
an optimal solution for MMKP instances; heuristic
solutions try to find a near-optimal solution, but
require much less computation time than exact
solutions.

Almost all successful exact methods are based on
branch and bound algorithm. In [6], the author uses
a branch and bound search tree to represent the
solution space and linear programming to find
bounds. The order in which the decision variables
are considered has an important effect on the size of
the search tree. Sbihi in [7] and [8] proposes a more
powerful exact branch and bound algorithm for
MMKP based on best-first search strategy. The
approach fixes selected items during exploration,
using linear programming to compute bounds during
the search.

The literature also describes heuristic methods.
The first heuristics developed in [3], [6], [9], [10],
[11], [12] and [13] share the idea to project all
resource dimensions of a candidate solution to a

single aggregate resource, effectively reducing the
multi-dimensional search space into a two-
dimensional search space. Items are sorted with
respect to a specific utility metric, which is unique
for each approach. The approaches first find a
feasible solution for an MMKP instance and then
iterate over the sorted list of items to improve the
candidate solution. Column generation approach has
been also used in [14], explicitly targeting large-
scale MMKP problems. The approach uses a
rounding stage and then restricts the resource
constraints and solves an exact instance of the
restricted MMKP. The authors in [15] extend this
approach and propose a hybrid algorithm that
combines local branching and column generation
techniques to generate higher-quality solutions.
Cherfi provides a final extension of this algorithm,
called BLHG, in his PhD thesis [16]. Recently,
Crevits et al. [17] proposed a new iterative
relaxation-based heuristic for MMKP. The approach
generates upper bounds for the problem using
relaxation and refinement. It generates lower bounds
based on a restricted version of the problem. A new
semi-continuous relaxation leads to high solution
quality. In [18], the authors propose for the first
time a compositional Pareto-algebraic MMKP
heuristic. It is parameterized by the number of
partial solutions considered in each compositional
step. Pareto optimality is the central criterion to
compare partial solutions and discard suboptimal
ones. The authors achieve remarkable solution
quality and computation times. This work has been
extended in [1] improving both quality and speed
and enabling a better tuning to the problem at hand
by fully parameterizing the heuristic.

Motivated by the success of branch and bound
algorithm in exact methods and Pareto-algebra in
approximate methods, we propose a more powerful
heuristic based on a combination of the two
aforementioned approaches enhanced by a rounding
procedure which can generate high quality feasible
solutions during the search process.

3 Pareto-algebraic concepts
This section describes basic Pareto-algebraic
notions [4], [5]. We give an example illustrating
how MMKP can be solved using a Pareto algebra
approach. We then define the basic concepts and
operations for multi-dimensional optimization.
Finally, we discuss algorithmic aspects for Pareto
algebra.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 220 Issue 7, Volume 10, July 2013

3.1 An example
We illustrate in figure 1 the Pareto-algebraic
solution to MMKP. A regular MMKP instance with
three groups of same number of items is given. Each
item has a value v and a two-dimensional weight
and . The amounts of available resources are
given by and .

First, groups of items are represented as sets of
tuples. For example, group is represented by the
set , where the first
element of each triple represents the value of the
item, and the other two elements represent its two
dimensional weight. Then, the sets of items are
iteratively combined by means of the so-called
product-sum operation ⊗ [1]. This operation takes
all combinations of items from the two groups
(card() card() card()), summing for
each combination their values and weights. An
important observation is that elements of this
operation can be seen as partial solutions to the
MMKP instance and have the same representation
as items. Thus, the final solution of MMKP can be
obtained by combining groups one-by-one,

.

Fig. 1. Example of Pareto-algebraic solution

An important aspect of the solution process is

that throughout the application of product-sum
operation between groups of items, some of partial
solutions in the resulting sets can be discarded. One

reason to discard a partial solution is that it violates
resource constraints. That is represented in figure 1
by the intersection of sets of tuples with the set of
feasible configurations . Another relevant reason
to discard a solution candidate is that it is not better
than some other candidate. For example, partial
solution (39,14,15) from dominates both
(38,15,18) and (36,14,19), because it has an equal or
higher value combined with same or lower weights
compared to dominated configurations. Such
dominated partial solution candidates are not of
interest because they can never lead to the optimal
solution in the end. Removing dominated elements
from a set is referred to as Pareto minimization,
denoted by the ‘min’ operation. The result of Pareto
minimization is the set of so-called Pareto points,
i.e., the points (partial solutions, in this case) that
are not dominated by any of the other points in the
set. This is where the name Pareto algebra comes
from. It defines an algebra of operations on sets of
Pareto points [4]. We can also see in Figure 1 that
the min operation is applied earlier on groups of
items to remove any dominated or infeasible items.
It is denoted for group by .

Finally, a set of feasible non dominated solution
candidates for the MMKP instance is obtained. In
figure 1, the set represents this final set which
consists of four remaining candidates, the one with
the highest value, (58,22,21), is the solution to the
MMKP instance.

The essence of this method was used in [1] for
the design of an efficient heuristic since exact
solution cannot be practical. The number of partial
solutions grows exponentially even with eliminating
dominated and infeasible solutions. However, the
amount of dominated and infeasible solutions
remains very low to envisage any exact solution to
the MMKP. Another way to discard partial solutions
can be very profitable to the solution process. This
is one of the key ideas used in this paper.

Before discussing algorithmic aspects of the
Pareto-algebraic approach, we summarize and
formalize the basic definitions of Pareto algebra.

3.2 Pareto algebra definitions
We summarize in this section some of the
definitions given in [5]. Pareto algebra is based on
partial order that denotes preferred values of a set

 of quantities (quality metric or any other
quantified aspect). If is total, the quantity is basic.
In figure 1, weights and are taken from
intervals of non-negative real numbers that form
two basic quantities with the usual total order ≤;

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 221 Issue 7, Volume 10, July 2013

value is taken from the basic quantity of real
numbers with total order ≥ as the preference.

A configuration space is the Cartesian product
 of a finite number of quantities; a

configuration is an element of such
a space. The groups of items in an MMKP instance
can thus be captured as configuration sets in Pareto
algebra.

The already introduced product-sum operation ⊗
can be now defined as follows:

 with + denoting the element-
wise addition on configurations while dominance
relation defines preference among configurations. If

, then dominates iff for every
quantity , expressing that is
in all aspects at least as good as and thus can
never lead to optimal configuration. Dominance is
reflexive, i.e., a configuration dominates itself. The
irreflexive strict dominance relation is denoted . A
configuration is a Pareto point of a configuration set
iff it is not strictly dominated by any other
configuration. Configuration set is Pareto
minimal iff it contains only Pareto points. Figure 1
shows the Pareto minimal configuration set

. The crossed out configurations are
dominated and hence not Pareto points.

A key objective of Pareto algebra is to support
compositional reasoning with sets of Pareto points.
This means that Pareto minimization may be
performed at any intermediate step. For this to work,
it should not be possible that configurations that are
dominated in intermediate steps could potentially be
optimal later on, because dominated configurations
are discarded at intermediate steps.

3.3 Algorithmic aspects
Many algorithms have been developed to tackle the
problem of Pareto minimization in Pareto algebra
(see [19] for an overview). A very simple algorithm
for Pareto minimization is the Simple Cull
algorithm [20], [21], also known as a block-nested
loop algorithm [22]. Simple Cull is a nested loop
that essentially compares configurations in the set of

 points to be minimized in a pairwise fashion,
leading to an worst-case complexity even if
observed run-time complexity is often lower. Kung
and Bentley [23], [24] developed a divide-and-
conquer approach, that is still the algorithm with the
best worst-case computational complexity

, where is the dimensionality of
these points. Due to its simplicity and practical
efficiency, Simple Cull was used in [1] as a core of
a Pareto-algebraic heuristic. Procedure ProductSum-

Min gives the correspondent pseudo code in the
form of a three-deep nested loop that takes two
configuration sets (groups of items or sets of partial
solutions) and a vector of (resources or weights)
bounds as input. It outputs a Pareto-minimal result
set of feasible, compound configurations, i.e., partial
solutions to the MMKP instance that consider all the
groups of items that contributed to the two input
configuration sets. Line 1 initializes the result set.
Lines 2-4 create, and iterate over, all compound
configurations, realizing the product-sum operation.
Line 5 then checks feasibility of newly created
configurations, enforcing the resource constraints.
Lines 6-10 check whether the new compound
configuration dominates any compound
configurations in the result set that so far were
Pareto points, or whether the new configuration is
itself dominated. After completion of the loops, line
11 returns the result.

Input: , configuration sets, a vector of bounds
Output: result a minimized, compound configuration set,
with only feasible configurations
// Initialize the result to the empty set
1. result = ∅
// Iterate over all combinations of configurations
2. for all do
3. for all do
 // Create a compound configuration
4.
 // Continue only if the configuration is feasible
5. if feasible(,) then
 // Minimize the result set
 // Maintain an attribute to check whether
 // is dominated
6. dominated = false
 // Iterate over all configurations so far
 // in the result set
7. for all do
 // Check whether the configuration of
 //the result set is dominated; if so, remove it
8 if ≺ then result = result \ { }
 // Check whether configuration is itself
 //dominated; if so, stop minimization
9. else if ≺ then dominated = true; break
 // Add configuration to the result set if not dominated
10. if not dominated then result = result ∪ { }
11. return result

Fig. 2. Simple Cull-based procedure

Note that Procedure ProductSum-Min follows
the structure of the two-deep nested loop of Simple
Cull; in Simple Cull, the outer loop iterates over all
points in the set to be optimized and the inner loop
iterates over the result set being maintained. In
ProductSum-Min, the outer loop of Simple Cull is
turned into the nested loop of lines 2 and 3 to create

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 222 Issue 7, Volume 10, July 2013

all the configurations that need to be considered for
the result. The size of this configuration set is

; the worst-case size of the result
set is also (when all compound configurations are
Pareto points). The worst-case complexity of
ProductSum-Min is therefore , i.e., quadratic
in terms of the size of the set to be minimized,
which is exactly the complexity of Simple Cull.

4 A branch and bound based heuristic
This section introduces our MMKP branch and
bound-based heuristic. The proposed approach
combines the classical branch and bound algorithm
with the Pareto-algebraic heuristic described in [1].
This was motivated by the success of B&B method
to solve some small to medium MMKP instances.
We first explain the basic algorithm and its
parameters. We then provide more detail about these
parameters, namely the initial step, the best-first
search strategy applied in branch and bound
algorithm, and the rounding procedure used to
improve solution quality during algorithm
execution.

4.1 The basic algorithm
The algorithm is based on combining one-by-one
groups of the MMKP instance using Pareto-algebra
product operation as explained in figure 1. It is
obvious that exact solution based on Pareto-algebra
product cannot be considered for large instances.
Explicit enumeration of all configurations lead to a
solution space of cardinality or in the case of
regular instances . For a medium regular MMKP
instance with and we have a space
of size ! This is why discarding partial
solutions is more than necessary.

The heuristic developed in [1] called CPH for
Compositional Pareto-algebraic Heuristic consists
on discarding dominated and infeasible
configurations, and since dominance does not often
appear, a parameter that limits the number of
partial solutions is considered in each step of the
heuristic. It is clear that this parameter has a great
influence on final solution quality. A small value of

 deteriorates noticeably solution quality. Our basic
idea is to add a more powerful criterion to discard
partial solutions. This is achieved by combining
B&B algorithm to CPH heuristic. The enumeration
is done in a more intelligent way allowing greater
values of parameter , which lead to improve
solution quality particularly when tackling large
MMKP instances.

We consider Pareto-algebra product operation as
a kind of branching, and then an upper bound is
computed for each configuration. Based on this
upper bound, a configuration can be discarded even
if it is feasible or not dominated. The basic
algorithm is detailed in figure 3.

Input: MMKP instance consisting of a vector of
configuration sets and a vector of resource capacity ,
and maximum number of partial solutions maintained
at each iteration
Output: best solution found
// Keep only Pareto points in the configuration sets
1. for all do min(
//Generate an initial Solution
2. = initialSol()
3.
//Sort vector in order to consider groups with fewer
items first
4. sort()
// Initialize the set of partial solutions
5.
// Combining groups one-by-one
6. for all do
// Combine partial solutions with configuration set
// (Branching step) and discard from any infeasible
// or dominated configuration
 = ProductSum-Min(, ,)
 // Bounding step
 for all configuration do
 // Compute a bound value
 = computeBound(
 if then
 // Discard partial solution due to ‘Bound’
 \ { }
 else
 = rcRound()
 // Update eventually
 if then

 // Apply best-first search strategy
 selectBest(
7. = bestConfiguration()
 if then
8. return

Fig. 3. A B&B Pareto-algebraic heuristic

As a first step, the algorithm tries to find Pareto
points in each configuration set. Dominated
configurations cannot contribute to an optimal
solution of the MMKP instance. However, in the
publicly available benchmarks used in
experimentations, there is practically no dominated
items, but in some real case instances, they can be
more. In lines 2 and 3, we generate a feasible initial
solution which is set to the actually best solution.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 223 Issue 7, Volume 10, July 2013

The quality of this solution has an influence on the
efficiency of B&B. Line 4 concern irregular
instances when groups have different numbers of
items, in this case groups are sorted on their
cardinality , in ascending order, because it is
beneficial to consider groups with fewer items first.
The fewer items the two configuration sets being
combined have, the faster is the product operation
and the more accurate is the result after reducing the
set of partial solutions. Line 5 does the initialization
for the Pareto-product operation. In each iteration, a
configuration set of partial solutions is
maintained. This set is initialized with the first
configuration set in vector , , which is
subsequently removed from the vector of
configurations.

The for loop in line 6 implements the
combination one-by-one of configuration sets. This
combination can be considered as a kind of
branching in a classical B&B algorithm; it iterates
over the list of remaining configuration sets. In each
iteration, it performs four actions. First the
dominated and infeasible configurations are
discarded by the ProductSum-Min procedure.
Second, a nested for-loop implements the bound
part of the algorithm. For each configuration, a
bound value is computed by solving the
correspondent relaxation LP. Although it may seem
time consuming, but bounding process can discard
more configurations than dominance and, using
efficient solver like Cplex [25] which can solve very
large LP in a reduced CPU time, gives in
experimentations reasonable running time even for
large MMKP instances. With this bound denoted

, we can discard the current configuration if
 is less than or equal to ;

 denotes the objective function value of
partial solution . Otherwise, the configuration
remain in . The third action consists of
improving eventually the value of . Since it is
unusual to get an integer solution after solving the
corresponding LP with Cplex, we designed a
rounding procedure based on reduced costs (more
details are given in section 4.4). This technique can
generate high quality feasible solutions leading to an
improvement of . The gradual improvement of

 during the iterative process leads to discard a
large number of partial solutions. Fourth, we apply
the best-first search strategy by sorting the
configuration on their bound value , in
descending order. Then, at most configurations
are selected in the new . The experimentations
show that in some cases the number of discarded
partial solutions is so important that the number of

remaining configurations is less than . In this case
the solution is exact; otherwise the algorithm
becomes a heuristic.

At line 7, contains feasible Pareto-optimal
configurations that are all candidate solutions for the
considered MMKP instance. Any maximal-value
configuration among these candidates which is
better than , is typically already a good or even
optimal solution for the MMKP instance. Finally,
the best solution found is returned in line 8.

4.2 A starting solution
The algorithm starts with an initial solution using
greedy procedures. A constructive procedure (CP)
and a complementary one (CCP), proposed in [10],
are used to construct an initial solution by applying
CP and improve it by applying CCP. The first
procedure CP operates in a greedy way in order to
produce a feasible solution without focalizing on the
quality of the obtained solution. Procedure CCP is
applied in order to improve the quality of the initial
solution (See [10] for more details). In some cases,
particularly when solving large MMKP instances,
the procedure CP cannot always produce a feasible
solution; we use as a substitute to CP, a simple
descent procedure based on a swap neighborhood
which leads in most cases to feasible solutions. One
can also use Cplex MIP solver (for Mixed Integer
Programming) in a reduced time to generate an
acceptable feasible solution. In the worst case, when
any feasible solution can be obtained we set to
-1.

4.3 Best-first search strategy
The best-first search strategy keeps the most
relevant configurations in the set of partial solutions

. This set is sorted on the bound value , in
descending order. Of course, there is no guarantee
that optimal solution will be obtained from this set,
but when combined with the rounding procedure
detailed in the next section, it leads to high quality
feasible solutions, discarding thereby more partial
solutions in the case of an improvement of .

4.4 Rounding procedure
Final configurations which correspond to feasible
solutions to MMKP instance are obtained only at the
end of the algorithm. This leads to a non efficient
B&B algorithm; the best solution is updated
only at the end of the iterative process. In some
cases, solutions of LP are integer, but this happens

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 224 Issue 7, Volume 10, July 2013

rarely! To overcome this drawback, a rounding
technique is introduced to generate feasible
solutions during the search process, based on
reduced or marginal costs denoted in simplex theory
by . First consider the following LP which
corresponds to ILP-MMKP continuous relaxation:

Note by , the optimal non integer

solution of LP-MMKP. As stated in linear
programming theory, the vector consists of basic
variables and, free variables which are all
equal to zero. Because is optimal, all reduced
costs of free variables are negative
meaning that if a free variable is swapped with a
basic variable, the objective function value will
decrease. Since is a non integer solution, we
have:

meaning that it exists at least one group with non
integer basic variables. It’s clear that rounding non
integer basic variables would very likely lead to
an infeasible solution. For this, we suggest to set to
zero all non integer basic variables, and then select a
free variable to be set to 1, and in order to
generate high quality feasible solution, the selected
free variable is that which has the smallest
reduced cost in order to minimize the loss of
objective function value. Formally, decision
variables for group are modified as follows:

This process can be iterated until a feasible solution
is generated or simply return the obtained solution
even if it is infeasible. In any case, the generated

solution by this procedure is of interest only if it is
feasible and has value greater than the best solution

.

5 Computational results
The purpose of this section is to experimentally
investigate the various aspects of BPH on standard
benchmarks. We evaluate the performance of BPH
compared to the state-of-the-art best results. The
obtained results are also compared to those obtained
when running one hour Cplex Solver v12.2 on the
same set of instances. Our algorithms were coded in
C++ and all experiments were done on a PC with a
2.8 GHz Intel i5 CPU and 3GB of memory.

Table 1. Small to medium size test problem details

Regular instances
#Inst Opt
I01 5 5 5 25 173
I02 10 5 5 50 364
I03 15 10 10 150 1602
I04 20 10 10 200 3597
I05 25 10 10 250 3905,7
I06 30 10 10 300 4799.3

Irregular instances
#Inst Opt
RTI07 10 5 5 23 564
RTI08 20 10 10 109 6576
RTI09 30 10 10 158 7806.2
RTI10 30 20 10 235 7032
RTI11 30 20 20 208 6880
RTI12 40 10 10 241 11564
RTI13 50 10 10 295 10561

Table 2. Large size test problem details

Regular instances
#Inst Upper b.
I07 100 10 10 1000 24607.95
I08 150 10 10 1500 36904.41
I09 200 10 10 2000 49193.87
I10 250 10 10 2500 61486.30
I11 300 10 10 3000 73797.74
I12 350 10 10 3500 86100.45
I13 400 10 10 4000 98448.64

Irregular instances

INST21 100 10 10 565 44315
INST22 100 10 20 538 42076
INST23 100 10 30 541 42763
INST24 100 10 40 584 42252
INST25 100 20 10 871 44201
INST26 100 20 20 842 45011
INST27 200 10 10 1076 87650
INST28 300 10 10 1643 134672
INST29 400 10 10 2223 179245
INST30 500 10 10 2704 214257

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 225 Issue 7, Volume 10, July 2013

5.1 Problem details
The problems we considered are summarized in
Tables 1 and 2. We tested a total of 30 instances
corresponding to two groups: (i) regular instances
with groups containing the same number of items,
that is and (ii) irregular
instances with heterogeneous groups; we denote by

 the highest number of items in a group, that is
. The instances I01 to

I13 are the well studied regular benchmarks defined
in [26], and the instances from RTI01 to INST30 are
new instances described in [27].

5.2 Various aspects of BPH
In this section, various aspects of BPH are
experimented, especially the impact of B&B
algorithm and its ability to discard partial solutions
more than Pareto-dominance. It is why we compare
in Tables 3 and 4 for each instance, the number of
solutions discarded by Pareto-dominance and
bounding process. The running time is also carefully
examined to show the impact of solving a large
number of LP during the Pareto-product process.
Recall that we use Cplex 12.2 as LP solver and we
set parameter to 100 to maintain 100 partial
solutions during each iteration. The final aspect of
BPH we experiment is the rounding procedure and
its ability to generate feasible solutions which can
improve the bounding process. It is why we present
in Tables 3 and 4 the value of the solution found in
the first iterations of BPH.

Table 3. Experimentation of discarding rate
#Inst CONFIGURATION DISCARD

Pareto B&B %
I01 21 68 23/76
I02 28 791 2/98
I03 43 275 13/87
I04 110 117 48/52
I05 0 10 0/100
I06 0 2174 0/100
RTI07 2 18 10/90
RTI08 98 244 29/71
RTI09 7 1090 0.6/99.4
RTI10 57 201 22/78
RTI11 211 172 55/45
RTI12 144 312 31/69
RTI13 127 274 31/69
I07 6 122 4/96
I08 148 97 60/40
I09 112 138 45/55
I10 110 155 41/59
I11 131 176 43/57
I12 127 188 40/60
I13 150 162 48/52
INST21 80 298 21/79
INST22 266 2182 11/89
INST23 736 9025 8/92

INST24 0 797 0/100
INST25 241 181 57/43
INST26 0 1941 0/100
INST27 86 183 32/68
INST28 133 269 33/67
INST29 168 160 51/49
INST30 39 1637 2/98

AVERAGE 25/75

Table 4. First and final solution given by BPH
#Inst Initial

solution
First Sol. Final solution T(s) Value % Value %

I01 161 169 2.3 173 0 0,25
I02 341 355 2.4 364 0 1,15
I03 1511 1546 3.5 1601 0.1 1,98
I04 3397 3454 3.9 3557 1.1 3,5
I05 3591.59 3905.7 0 3905.7 0 0.31
I06 4567.9 4798.8 0.0 4798.8 0.0 5.68
RTI07 564 564 0 564 0 0.3
RTI08 - 6164 6.2 6536 0.6 2
RTI09 7461.2 7748.2 0.7 7806.2 0 1.8
RTI10 5519.4 6359.8 9.5 6979.4 0.7 4
RTI11 - 6075 11 6779.4 1.4 5
RTI12 - - - 11476 0.7 8
RTI13 - 9793 7.2 10420 1.3 10
I07 23753 24291 1.2 24584 0.0 85
I08 35485 36681 0.6 36773 0.3 213
I09 47685 48978 0.4 49060 0.2 425
I10 59492 59492 3.2 61391 0.1 739
I11 71378 73561 0.3 73645 0.2 1145
I12 83293 85794 0.3 85996 0.1 1713
I13 95141 98183 0.2 98368 0.0 2349
INST21 - 43636 1.5 44070 0.5 57
INST22 - - - 41734 0.8 587
INST23 - - - 42172 1.3 2051
INST24 - 41776 1.1 41776 1.1 460

Experiments show the limits of Pareto-
dominance. In fact, table 3 shows that among all
discarded solutions, only 25% of partial solutions
have been discarded by Pareto-dominance. In
addition, we include in this rate configurations
which have been discarded due to infeasibility. In
Contrast to Pareto-dominance, the bounding process
led to the elimination of a large number of
configurations. Furthermore, the running time
remains reasonable despite solving a large number
of LP. This is due to Cplex solver efficiency when
dealing with LPs but also to the ability of bounding
process to discard more configurations. The
comparative study we present in the next section
will also focus on running time. Moreover, the value
of the solution obtained in the first iterations of BPH
is presented to show the effectiveness of rounding
procedure. In fact, Pareto-product based algorithms
can find feasible solutions only in the final iteration,
when the last group is combined with the set of
partial configurations. Due to rounding procedure,
high quality feasible solutions have been generated
throughout algorithm execution. In most cases,
value of the solution found in the first iterations is

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 226 Issue 7, Volume 10, July 2013

significantly better than the starting solution
generated par CP and CCP algorithms, and in
addition obtained in a negligible time. This is
particularly useful in real-time applications when
the running time is a crucial parameter. On the other
hand, the progressive improvement of the best
solution by rounding procedure has
contributed to improve the bounding process.

5.3 Comparative study
In the final set of experiments, we compare BPH
with the state-of-the-art heuristics both for regular

and irregular instances. We focus only on medium
to large instances. We present in table 5 the main
results obtained on the classical large regular
benchmarks I07 to I13 since the early Moser’s Work
on MMKP [3]. Therefore, we review results
obtained in [9], [2], [16], [17], [1]. Medium to large
irregular benchmarks results are summarized in
table 6. These instances have been experimented for
the first time in [1]. For both tables, we include
results obtained by MIP solver Cplex 12.2 during
one hour of running time and also results obtained
by a classical genetic algorithm we applied on
MMKP instances.

Table 5. Results for large regular benchmarks

#Inst Moser
1997

Khan
2002

Hifi
2005

Cherfi
2009

Crevits
2012

Shoj.20’
2013

Cplex
(1h)

G.A. BPH Upper
Bound Value T(s) Value T(s)

I07 23556 23912 24587 24587 24592 24592 24589 24185 440 24584 85 24607.95*
I08 35373 35979 36877 36894 36888 36886 36886 35826 553 36773 213 36904.41*
I09 47205 47901 49167 49179 49179 49185 49176 47874 718 49060 425 49193.87*
I10 58648 59818 61437 61464 61466 61465 61465 59680 577 61391 739 61486.30*
I11 70532 71760 73773 73783 73779 73782 73788 72004 1213 73645 1145 73797.74*
I12 82377 84141 86069 86080 86091 86084 86080 83815 1370 85996 1713 86100.45*
I13 94166 96003 98429 98438 98433 98437 98437 95576 1488 98368 2349 98448.64*

Table 6. Results for medium to large irregular benchmarks

#Inst Shojaei 2013 Cplex
(1h) G.A. B&B Pareto-algebraic Heuristic Opt/Upper

Bound* Value T(s) First Sol. Final Sol. T(s)
RTI10 6096 0.27 Opt 7003 6359.8 6979.4 4 7032
RTI11 5449 0.45 Opt - 6075 6779.4 5 6880
RTI12 10860 0.12 Opt - - 11476 8 11564
RTI13 8636 0.20 Opt - 9793 10420 10 10561
INST21 44270 3600 44262 43172 43636 44070 57 44315*
INST22 41976 3600 41976 40302 - 41734 587 42076*
INST23 42562 3600 42550 - - 42172 2051 42763*
INST24 41918 3600 41918 - 41776 41776 460 42252*
INST25 44156 3600 44146 40441 - 44001 71 44201*
INST26 44869 3600 44835 - 44701 44790 638 45011*
INST27 87616 3600 87600 84121 86752 87442 239 87650*
INST28 134634 3600 134610 127960 134114 134288 655 134672*
INST29 179206 3600 179202 172794 178660 178912 1346 179245*
INST30 214198 3600 214198 208424 214178 214178 4225 214257*

We can draw several conclusions from these results.
First, tables 5 and 6 show that BPH results are
competitive in terms of quality and running time
especially those given in bold. Second, in columns
reporting the pure Cplex results with a time budget
of one hour, we may conclude that hybrid heuristics
outperform pure Cplex when given equal time
budgets. Third, the results we obtained with genetic
algorithms are disappointing despite the use of
several repair operators to deal with infeasible
solutions generated by crossover operator. In fact,
we are persuaded that in the case of MMKP, any
purely heuristic approach is doomed to fail.
Hybridization with exact methods is better suited.
Finally, note that with BPH heuristic, we have only

one parameter to adjust; the parameter
representing the number of partial solutions
maintained at each iteration, while in all the state-
of-the-art heuristics, there are several parameters to
consider, and it is well known that when using
approximate algorithms to solve optimization
problems, different parameter settings lead to results
of variable quality and the configuration of these
parameters is a difficult task.

5 Conclusion
We have solved the multiple-choice multi-
dimensional knapsack problem using a hybrid
algorithm: Branch and bound Pareto-algebraic

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 227 Issue 7, Volume 10, July 2013

Heuristic. The algorithm is mainly based on Pareto-
product operation which combines one-by-one all
groups of the MMKP instance at hand. Then, a large
part of generated partial solutions is discarded either
by Pareto-dominance or better by B&B method. A
rounding procedure is used to generate high quality
feasible solutions during BPH execution, improving
the bounding process. Computational results show
that BPH yields high quality solutions within a
reasonable computing time, and can generate good
solutions within a negligible run time due to
rounding technique.

References:
[1] Shojaei H., Basten T., Geilen M., and Davoodi

A., “A fast and scalable multi-dimensional
multiple-choice Knapsack heuristic”, in ACM
Trans. on Design Automation of Electronic
Systems (TODAES). Volume 18 Issue 4, 2013.

[2] Hifi M., Michrafy M., and Sbihi A, “A reactive
local search-based algorithm for the multiple-
choice multidimensional knapsack problem”.
Comput. Optim. Appl. 33, 2-3, 271–285, 2006.

[3] Moser M., Jokanovic D.P., and Shiratori N..
“An algorithm for the multidimensional
multiple-choice knapsack problem”. IEICE
Trans. Fund. Electron. Comm. Comput. Sci.
80, 3, 582–589, 1997.

[4] Geilen M., Basten T., Theelen B.D., and Otten
R., “An algebra of Pareto points”. In Proc.
ACSD. IEEE,88–97, 2005

[5] Geilen M., Basten T., Theelen B.D., and Otten
R., “An algebra of Pareto points”. Fundamenta
Informaticae 78, 1, 35–74. 2007

[6] Khan S., “Quality adaptation in a multisession
multimedia system: Model, algorithms and
architecture”. Ph.D. thesis, Univ. of Victoria,
Victoria, B.C., Canada, 1998.

[7] Sbihi A., “Hybrid methods in combinatorial
optimization: Exact algorithms and heuristics”.
Ph.D. thesis, Univ. of Paris I, France, 2003.

[8] Sbihi A., “A best first search exact algorithm
for the multiple-choice multidimensional
knapsack problem”. J. Comb.Optim. 13, 4,
337–351, 2007.

[9] Khan S., Li K.F., Manning E.G., and Akbar
M.M., “Solving the knapsack problem for
adaptive multimedia systems”. Stud. Inform.
Univ. 2, 1, 157–178, 2002.

[10] Hifi M., Michrafy M., and Sbihi A., “Heuristic
algorithms for the multiple-choice
multidimensional knapsack problem”.
Operational Research Society 55, 12, 1323–
1332, 2004.

[11] Parra-Hernandez R., and Dimopoulos N.J., “A
new heuristic for solving the multichoice
multidimensional knapsack problem”. IEEE
Trans. on Systems, Man, and Cybernetics A 35,
5, 708–717, 2005.

[12] Akbar M.M., Rahman M.S., Kaykobad M.,
Manning E.G., and Shoja G.C, “Solving the
multidimensional multiple-choice knapsack
problem by constructing convex hulls”.
Comput. Oper. Res. 33, 5, 1259–1273, 2006.

[13] Hiremath C.S., and Hill R.R., “New greedy
heuristics for the multiple-choice multi-
dimensional knapsack problem”. Int. J.
Operational Research 2, 4, 495–512, 2007.

[14] Cherfi N., and Hifi M., “A column generation
method for the multiple-choice multi-
dimensional knapsack problem”. Comput.
Optim. Appl. 46, 1, 51–73.

[15] Cherfi N., and Hifi M., “Hybrid algorithms for
the multiple-choice multi-dimensional
knapsack problem”. Int. J.Operational
Research 5, 1, 89–109, 2009.

[16] Cherfi N., “Hybrid algorithms for knapsack
problems”. Ph.D. thesis, University of Paris I,
France, 2009.

[17] Crevits I., Hanafi S., Mansi R., and Wilbaut C.,
“Iterative semi-continuous relaxation heuristics
for the multiple-choice multidimensional
knapsack problem”. Computers & Operations
Research 39, 32 – 41, 2012.

[18] Shojaei H., Ghamarian A., Basten T., Geilen
M., Stuijk S., and Hoes R., “A parameterized
compositional multi-dimensional multiple-
choice knapsack heuristic for CMP run-time
management”. In Proc. DAC. ACM, 917–922,
2009.

[19] Godfrey P., Shipley R., and Gryz J., “Maximal
vector computation in large data sets”. In Proc.
31st Int. Conf. on VLDB. VLDB Endowment,
229–240, 2005.

[20] Preparata F., and Shamos M., “Computational
Geometry – An Introduction”. Springer. 1985.

[21] Yukish M., “Algorithms to identify Pareto
points in multi-dimensional data sets”. Ph.D.
thesis, Pennsylvania State University, 2004.

[22] Borzsonyi S., Kossmann D., and Stocker K.,
“The skyline operator”. In Proc. IEEE Conf. on
Data Engineering. IEEE, 421–430, 2001.

[23] Kung H., Luccio F., and Preparata F., “On
finding the maxima of a set of vectors”.
Journal of the ACM 22, 469– 476, 1975.

[24] Bentley J., “Multidimensional divide-and-
conquer”. Communications of the ACM 23, 214
– 229, 1980.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 228 Issue 7, Volume 10, July 2013

[26] Cplex, “IBM ILOG Cplex”. http://www-
01.ibm.com/software/websphere/products/opti
mization/academic-initiative/, 2012.

[26] MMKP benchmarks, “MMKP benchmarks”.
ftp://cermsem.univparis1.fr/pub/CERMSEM/hi
fi/MMKP/MMKP.html, 2010.

[27] MMKP benchmarks, “MMKP benchmarks”.
http://www.es.ele.tue.nl/pareto/mmkp/, 2012.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Mahmoud Zennaki

E-ISSN: 2224-3402 229 Issue 7, Volume 10, July 2013

