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Abstract: In this paper, we approximately solve the multiple-choice multi-dimensional knapsack problem. We 
propose a hybrid algorithm based on branch and bound method and Pareto-algebraic operations. The algorithm 
starts by an initial solution and then combines one-by-one groups of the problem instance to generate partial 
solutions in each iteration. Most of these partial solutions are discarded by Pareto dominance and bounding 
process leading at the end to optimality or near optimality in the case when only a subset of partial solutions is 
maintained at each step. Furthermore, a rounding procedure is introduced to improve the bounding process by 
generating high quality feasible solutions during algorithm execution. The performance of the proposed 
heuristic has been evaluated on several problem instances. Encouraging results have been obtained. 
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1 Introduction 
Recently, a more complex variant of knapsack 
problem, an NP-hard problem, has been studied by a 
large number of researchers. This variant called 
multi-dimensional multiple-choice knapsack 
problem (MMKP) is among the most challenging of 
the encountered optimization problems. The MMKP 
problem instances appear for example in chip 
multiprocessor run-time resource management, 
global routing of wiring in circuits [1] and other 
practical problems as the service level agreement 
and, the model of allocation resources [2]. 

The basic 0-1 knapsack problem considers  
items, where each item has a profit value  and a 
resource cost given by the weight . The objective 
is to put items in a knapsack so that the resource 
capacity of the knapsack is not exceeded and the 
summed value of packed items is maximal. Instead 
of  items,  groups of items may be considered 
where one item from each group must be selected, 
leading to the multiple-choice knapsack problem 
(MCKP). The multi-dimensional knapsack problem 
(MDKP) is another variant in which a multi-
dimensional resource cost is considered for each 
item and each dimension has its own capacity. The 
multi-dimensional multiple-choice knapsack 
problem (MMKP) [3] combines the two 
aforementioned variants, and is the focus of this 
paper. 

Formally, the MMKP can be stated as follows: 
given  classes  of items, where each class , 

, has  items. Each item , , 

of class  has the non-negative profit value , and 
requires resources given by the weight vector 

 where each weight component 
,  is also a nonnegative value. The 

amounts of available resources are given by a vector 
. The aim of the MMKP is to pick 

exactly one item from each class in order to 
maximize the total profit value of the pick, subject 
to resource constraints. If we consider decision 
variables  when item  of the -th class is 
picked, 0 otherwise, the MMKP can be formulated 
in an Integer Linear Program (ILP) as follows: 

 

 

 
We are talking about regular MMKP instances 

when  unlike irregular ones. 
This paper presents BPH, for Branch and bound 

Pareto-algebraic Heuristic. BPH is a heuristic based 
on Branch and Bound (B&B) and uses the principle 
of Pareto algebra [4], [5], which is a framework for 
calculation of Pareto-optimal solution in multi-
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dimensional optimization problems. This 
combination of B&B and Pareto algebra concepts 
allow solving to near-optimality large MMKP 
instances in a reduced CPU time. At each step of the 
heuristic, partial solutions are computed by 
considering groups of items one at a time. Based on 
Pareto algebra, some dominated solutions are 
discarded, and then bound principle is applied by 
solving correspondent ILP relaxation. The bound 
process can discard more partial solutions, leading 
to a reduced number of active partial solutions 
during heuristic execution. When handling large 
instances, the practical run-time of BPH is 
determined by the number of partial solutions 
considered in each step. This provides a parameter 
to control the run-time of these computations and to 
trade-off run-time and quality of the final solution. 

The remainder of the paper is organized as 
follows. In section 2, we present a brief reference of 
some sequential exact and approximate algorithms 
for MMKP. Section 3 introduces the BPH heuristic 
by means of an example; it further presents the 
relevant concepts of Pareto algebra. Then, in section 
4, the proposed algorithm is presented in detail. In 
section 5, the performance of BPH is tested on a set 
of problem instances extracted from the literature 
including some very large instances. We conclude in 
the last section our paper with some interesting 
remarks. 
 
 
2 Related works 
As for other combinatorial optimization problems, 
two types of solution approaches for MMKP have 
been proposed in the literature. Exact solutions find 
an optimal solution for MMKP instances; heuristic 
solutions try to find a near-optimal solution, but 
require much less computation time than exact 
solutions.  

Almost all successful exact methods are based on 
branch and bound algorithm. In [6], the author uses 
a branch and bound search tree to represent the 
solution space and linear programming to find 
bounds. The order in which the decision variables 
are considered has an important effect on the size of 
the search tree. Sbihi in [7] and [8] proposes a more 
powerful exact branch and bound algorithm for 
MMKP based on best-first search strategy. The 
approach fixes selected items during exploration, 
using linear programming to compute bounds during 
the search.  

The literature also describes heuristic methods. 
The first heuristics developed in [3], [6], [9], [10], 
[11], [12] and [13] share the idea to project all 
resource dimensions of a candidate solution to a 

single aggregate resource, effectively reducing the 
multi-dimensional search space into a two-
dimensional search space. Items are sorted with 
respect to a specific utility metric, which is unique 
for each approach. The approaches first find a 
feasible solution for an MMKP instance and then 
iterate over the sorted list of items to improve the 
candidate solution. Column generation approach has 
been also used in [14], explicitly targeting large-
scale MMKP problems. The approach uses a 
rounding stage and then restricts the resource 
constraints and solves an exact instance of the 
restricted MMKP. The authors in [15] extend this 
approach and propose a hybrid algorithm that 
combines local branching and column generation 
techniques to generate higher-quality solutions. 
Cherfi provides a final extension of this algorithm, 
called BLHG, in his PhD thesis [16]. Recently, 
Crevits et al. [17] proposed a new iterative 
relaxation-based heuristic for MMKP. The approach 
generates upper bounds for the problem using 
relaxation and refinement. It generates lower bounds 
based on a restricted version of the problem. A new 
semi-continuous relaxation leads to high solution 
quality. In [18], the authors propose for the first 
time a compositional Pareto-algebraic MMKP 
heuristic. It is parameterized by the number of 
partial solutions considered in each compositional 
step. Pareto optimality is the central criterion to 
compare partial solutions and discard suboptimal 
ones. The authors achieve remarkable solution 
quality and computation times. This work has been 
extended in [1] improving both quality and speed 
and enabling a better tuning to the problem at hand 
by fully parameterizing the heuristic. 

Motivated by the success of branch and bound 
algorithm in exact methods and Pareto-algebra in 
approximate methods, we propose a more powerful 
heuristic based on a combination of the two 
aforementioned approaches enhanced by a rounding 
procedure which can generate high quality feasible 
solutions during the search process. 
 
 
3 Pareto-algebraic concepts 
This section describes basic Pareto-algebraic 
notions [4], [5]. We give an example illustrating 
how MMKP can be solved using a Pareto algebra 
approach. We then define the basic concepts and 
operations for multi-dimensional optimization. 
Finally, we discuss algorithmic aspects for Pareto 
algebra. 
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3.1 An example 
We illustrate in figure 1 the Pareto-algebraic 
solution to MMKP. A regular MMKP instance with 
three groups of same number of items is given. Each 
item has a value v and a two-dimensional weight  
and . The amounts of available resources are 
given by  and . 

First, groups of items are represented as sets of 
tuples. For example, group  is represented by the 
set , where the first 
element of each triple represents the value of the 
item, and the other two elements represent its two 
dimensional weight. Then, the sets of items are 
iteratively combined by means of the so-called 
product-sum operation ⊗ [1]. This operation takes 
all combinations of items from the two groups 
(card( )  card( )  card( )), summing for 
each combination their values and weights. An 
important observation is that elements of this 
operation can be seen as partial solutions to the 
MMKP instance and have the same representation 
as items. Thus, the final solution of MMKP can be 
obtained by combining groups one-by-one, 

. 
 

 
Fig. 1. Example of Pareto-algebraic solution 

 
An important aspect of the solution process is 

that throughout the application of product-sum 
operation between groups of items, some of partial 
solutions in the resulting sets can be discarded. One 

reason to discard a partial solution is that it violates 
resource constraints. That is represented in figure 1 
by the intersection of sets of tuples with the set of 
feasible configurations . Another relevant reason 
to discard a solution candidate is that it is not better 
than some other candidate. For example, partial 
solution (39,14,15) from  dominates both 
(38,15,18) and (36,14,19), because it has an equal or 
higher value combined with same or lower weights 
compared to dominated configurations. Such 
dominated partial solution candidates are not of 
interest because they can never lead to the optimal 
solution in the end. Removing dominated elements 
from a set is referred to as Pareto minimization, 
denoted by the ‘min’ operation. The result of Pareto 
minimization is the set of so-called Pareto points, 
i.e., the points (partial solutions, in this case) that 
are not dominated by any of the other points in the 
set. This is where the name Pareto algebra comes 
from. It defines an algebra of operations on sets of 
Pareto points [4]. We can also see in Figure 1 that 
the min operation is applied earlier on groups of 
items to remove any dominated or infeasible items. 
It is denoted for group  by . 

Finally, a set of feasible non dominated solution 
candidates for the MMKP instance is obtained. In 
figure 1, the set  represents this final set which 
consists of four remaining candidates, the one with 
the highest value, (58,22,21), is the solution to the 
MMKP instance.  

The essence of this method was used in [1] for 
the design of an efficient heuristic since exact 
solution cannot be practical. The number of partial 
solutions grows exponentially even with eliminating 
dominated and infeasible solutions. However, the 
amount of dominated and infeasible solutions 
remains very low to envisage any exact solution to 
the MMKP. Another way to discard partial solutions 
can be very profitable to the solution process. This 
is one of the key ideas used in this paper. 

Before discussing algorithmic aspects of the 
Pareto-algebraic approach, we summarize and 
formalize the basic definitions of Pareto algebra. 
 
 
3.2 Pareto algebra definitions 
We summarize in this section some of the 
definitions given in [5]. Pareto algebra is based on 
partial order  that denotes preferred values of a set 

 of quantities (quality metric or any other 
quantified aspect). If  is total, the quantity is basic. 
In figure 1, weights  and  are taken from 
intervals of non-negative real numbers that form 
two basic quantities with the usual total order ≤; 
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value  is taken from the basic quantity of real 
numbers with total order ≥ as the preference.  

A configuration space  is the Cartesian product 
 of a finite number of  quantities; a 

configuration  is an element of such 
a space. The groups of items in an MMKP instance 
can thus be captured as configuration sets in Pareto 
algebra. 

The already introduced product-sum operation ⊗ 
can be now defined as follows: 

 with + denoting the element-
wise addition on configurations while dominance 
relation defines preference among configurations. If 

, then  dominates  iff for every 
quantity ,  expressing that  is 
in all aspects at least as good as  and thus  can 
never lead to optimal configuration. Dominance is 
reflexive, i.e., a configuration dominates itself. The 
irreflexive strict dominance relation is denoted . A 
configuration is a Pareto point of a configuration set 
iff it is not strictly dominated by any other 
configuration. Configuration set  is Pareto 
minimal iff it contains only Pareto points. Figure 1 
shows the Pareto minimal configuration set 

. The crossed out configurations are 
dominated and hence not Pareto points. 

A key objective of Pareto algebra is to support 
compositional reasoning with sets of Pareto points. 
This means that Pareto minimization may be 
performed at any intermediate step. For this to work, 
it should not be possible that configurations that are 
dominated in intermediate steps could potentially be 
optimal later on, because dominated configurations 
are discarded at intermediate steps. 
 
 
3.3 Algorithmic aspects 
Many algorithms have been developed to tackle the 
problem of Pareto minimization in Pareto algebra 
(see [19] for an overview). A very simple algorithm 
for Pareto minimization is the Simple Cull 
algorithm [20], [21], also known as a block-nested 
loop algorithm [22]. Simple Cull is a nested loop 
that essentially compares configurations in the set of 

 points to be minimized in a pairwise fashion, 
leading to an  worst-case complexity even if 
observed run-time complexity is often lower. Kung 
and Bentley [23], [24] developed a divide-and-
conquer approach, that is still the algorithm with the 
best worst-case computational complexity 

, where  is the dimensionality of 
these points. Due to its simplicity and practical 
efficiency, Simple Cull was used in [1] as a core of 
a Pareto-algebraic heuristic. Procedure ProductSum-

Min gives the correspondent pseudo code in the 
form of a three-deep nested loop that takes two 
configuration sets (groups of items or sets of partial 
solutions) and a vector of (resources or weights) 
bounds as input. It outputs a Pareto-minimal result 
set of feasible, compound configurations, i.e., partial 
solutions to the MMKP instance that consider all the 
groups of items that contributed to the two input 
configuration sets. Line 1 initializes the result set. 
Lines 2-4 create, and iterate over, all compound 
configurations, realizing the product-sum operation. 
Line 5 then checks feasibility of newly created 
configurations, enforcing the resource constraints. 
Lines 6-10 check whether the new compound 
configuration dominates any compound 
configurations in the result set that so far were 
Pareto points, or whether the new configuration is 
itself dominated. After completion of the loops, line 
11 returns the result. 
 
Input: ,  configuration sets,  a vector of bounds 
Output: result a minimized, compound configuration set, 
with only feasible configurations 
// Initialize the result to the empty set 
1. result = ∅                 
// Iterate over all combinations of configurations 
2. for all  do    
3.    for all  do 
         // Create a compound configuration 
4.                    
         // Continue only if the configuration is feasible 
5.       if feasible( , ) then    
              // Minimize the result set 
              // Maintain an attribute to check whether  
               //  is dominated 
6.           dominated = false        
              // Iterate over all configurations so far  
              // in the result set 
7.            for all  do    
                   // Check whether the configuration  of  
                   //the result set is dominated; if so, remove it 
8                 if  ≺  then result = result \ { } 
                   // Check whether configuration  is itself  
                  //dominated; if so, stop minimization 
9.               else if  ≺   then dominated = true; break 
  // Add configuration  to the result set if not dominated 
10.          if not dominated then result = result ∪ { } 
11. return result 

Fig. 2. Simple Cull-based procedure 
 

Note that Procedure ProductSum-Min follows 
the structure of the two-deep nested loop of Simple 
Cull; in Simple Cull, the outer loop iterates over all 
points in the set to be optimized and the inner loop 
iterates over the result set being maintained. In 
ProductSum-Min, the outer loop of Simple Cull is 
turned into the nested loop of lines 2 and 3 to create 
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all the configurations that need to be considered for 
the result. The size of this configuration set is 

; the worst-case size of the result 
set is also  (when all compound configurations are 
Pareto points). The worst-case complexity of 
ProductSum-Min is therefore , i.e., quadratic 
in terms of the size of the set to be minimized, 
which is exactly the complexity of Simple Cull. 
 
 
4 A branch and bound based heuristic 
This section introduces our MMKP branch and 
bound-based heuristic. The proposed approach 
combines the classical branch and bound algorithm 
with the Pareto-algebraic heuristic described in [1]. 
This was motivated by the success of B&B method 
to solve some small to medium MMKP instances. 
We first explain the basic algorithm and its 
parameters. We then provide more detail about these 
parameters, namely the initial step, the best-first 
search strategy applied in branch and bound 
algorithm, and the rounding procedure used to 
improve solution quality during algorithm 
execution. 
 
 
4.1 The basic algorithm 
The algorithm is based on combining one-by-one 
groups of the MMKP instance using Pareto-algebra 
product operation as explained in figure 1. It is 
obvious that exact solution based on Pareto-algebra 
product cannot be considered for large instances. 
Explicit enumeration of all configurations lead to a 
solution space of cardinality  or in the case of 
regular instances . For a medium regular MMKP 
instance with  and  we have a space 
of size ! This is why discarding partial 
solutions is more than necessary. 

The heuristic developed in [1] called CPH for 
Compositional Pareto-algebraic Heuristic consists 
on discarding dominated and infeasible 
configurations, and since dominance does not often 
appear, a parameter  that limits the number of 
partial solutions is considered in each step of the 
heuristic. It is clear that this parameter has a great 
influence on final solution quality. A small value of 

 deteriorates noticeably solution quality. Our basic 
idea is to add a more powerful criterion to discard 
partial solutions. This is achieved by combining 
B&B algorithm to CPH heuristic. The enumeration 
is done in a more intelligent way allowing greater 
values of parameter , which lead to improve 
solution quality particularly when tackling large 
MMKP instances.  

We consider Pareto-algebra product operation as 
a kind of branching, and then an upper bound is 
computed for each configuration. Based on this 
upper bound, a configuration can be discarded even 
if it is feasible or not dominated. The basic 
algorithm is detailed in figure 3. 

 
Input: MMKP instance consisting of a vector of 
configuration sets  and a vector of resource capacity , 
and  maximum number of partial solutions maintained 
at each iteration 
Output:  best solution found  
// Keep only Pareto points in the configuration sets 
1. for all  do min(    
//Generate an initial Solution  
2.  = initialSol()              
3.  
//Sort vector  in order to consider groups with fewer 
items first 
4. sort( )                 
// Initialize the set of partial solutions  
5.    
// Combining groups one-by-one 
6. for all  do                   
// Combine partial solutions with configuration set   
// (Branching step) and discard from   any infeasible  
// or dominated configuration  
          = ProductSum-Min( , , ) 
         // Bounding step 
         for all configuration  do  
                  // Compute a bound value 
                  = computeBound(     
                  if   then 
                          // Discard partial solution due to ‘Bound’          
                           \ { }    
                 else 
                           = rcRound( ) 
                          // Update eventually  
                          if     then  
                                          
           // Apply best-first search strategy 
            selectBest(  
7.   = bestConfiguration( ) 
     if   then  
8. return          

Fig. 3. A B&B Pareto-algebraic heuristic 
 

As a first step, the algorithm tries to find Pareto 
points in each configuration set. Dominated 
configurations cannot contribute to an optimal 
solution of the MMKP instance. However, in the 
publicly available benchmarks used in 
experimentations, there is practically no dominated 
items, but in some real case instances, they can be 
more. In lines 2 and 3, we generate a feasible initial 
solution which is set to the actually best solution. 
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The quality of this solution has an influence on the 
efficiency of B&B. Line 4 concern irregular 
instances when groups have different numbers of 
items, in this case groups are sorted on their 
cardinality , in ascending order, because it is 
beneficial to consider groups with fewer items first. 
The fewer items the two configuration sets being 
combined have, the faster is the product operation 
and the more accurate is the result after reducing the 
set of partial solutions. Line 5 does the initialization 
for the Pareto-product operation. In each iteration, a 
configuration set  of partial solutions is 
maintained. This set is initialized with the first 
configuration set in vector , , which is 
subsequently removed from the vector of 
configurations. 

The for loop in line 6 implements the 
combination one-by-one of configuration sets. This 
combination can be considered as a kind of 
branching in a classical B&B algorithm; it iterates 
over the list of remaining configuration sets. In each 
iteration, it performs four actions. First the 
dominated and infeasible configurations are 
discarded by the ProductSum-Min procedure. 
Second, a nested for-loop implements the bound 
part of the algorithm. For each configuration, a 
bound value is computed by solving the 
correspondent relaxation LP. Although it may seem 
time consuming, but bounding process can discard 
more configurations than dominance and, using 
efficient solver like Cplex [25] which can solve very 
large LP in a reduced CPU time, gives in 
experimentations reasonable running time even for 
large MMKP instances. With this bound denoted 

, we can discard the current configuration if 
 is less than or equal to ; 

 denotes the objective function value of 
partial solution . Otherwise, the configuration 
remain in . The third action consists of 
improving eventually the value of . Since it is 
unusual to get an integer solution after solving the 
corresponding LP with Cplex, we designed a 
rounding procedure based on reduced costs (more 
details are given in section 4.4). This technique can 
generate high quality feasible solutions leading to an 
improvement of . The gradual improvement of 

 during the iterative process leads to discard a 
large number of partial solutions. Fourth, we apply 
the best-first search strategy by sorting the 
configuration on their bound value , in 
descending order. Then, at most  configurations 
are selected in the new . The experimentations 
show that in some cases the number of discarded 
partial solutions is so important that the number of 

remaining configurations is less than . In this case 
the solution is exact; otherwise the algorithm 
becomes a heuristic. 

At line 7,  contains feasible Pareto-optimal 
configurations that are all candidate solutions for the 
considered MMKP instance. Any maximal-value 
configuration among these candidates which is 
better than , is typically already a good or even 
optimal solution for the MMKP instance. Finally, 
the best solution found is returned in line 8. 
 
 
4.2 A starting solution 
The algorithm starts with an initial solution using 
greedy procedures. A constructive procedure (CP) 
and a complementary one (CCP), proposed in [10], 
are used to construct an initial solution by applying 
CP and improve it by applying CCP. The first 
procedure CP operates in a greedy way in order to 
produce a feasible solution without focalizing on the 
quality of the obtained solution. Procedure CCP is 
applied in order to improve the quality of the initial 
solution (See [10] for more details). In some cases, 
particularly when solving large MMKP instances, 
the procedure CP cannot always produce a feasible 
solution; we use as a substitute to CP, a simple 
descent procedure based on a swap neighborhood 
which leads in most cases to feasible solutions. One 
can also use Cplex MIP solver (for Mixed Integer 
Programming) in a reduced time to generate an 
acceptable feasible solution. In the worst case, when 
any feasible solution can be obtained we set  to 
-1. 
 
 
4.3 Best-first search strategy 
The best-first search strategy keeps the most 
relevant configurations in the set of partial solutions 

. This set is sorted on the bound value , in 
descending order. Of course, there is no guarantee 
that optimal solution will be obtained from this set, 
but when combined with the rounding procedure 
detailed in the next section, it leads to high quality 
feasible solutions, discarding thereby more partial 
solutions in the case of an improvement of . 
 
 
4.4 Rounding procedure 
Final configurations which correspond to feasible 
solutions to MMKP instance are obtained only at the 
end of the algorithm. This leads to a non efficient 
B&B algorithm; the best solution  is updated 
only at the end of the iterative process. In some 
cases, solutions of LP are integer, but this happens 
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rarely! To overcome this drawback, a rounding 
technique is introduced to generate feasible 
solutions during the search process, based on 
reduced or marginal costs denoted in simplex theory 
by . First consider the following LP which 
corresponds to ILP-MMKP continuous relaxation:  
 

 

 
Note by , the optimal non integer 

solution of LP-MMKP. As stated in linear 
programming theory, the vector consists of basic 
variables  and, free variables  which are all 
equal to zero. Because  is optimal, all reduced 
costs  of free variables are negative 
meaning that if a free variable is swapped with a 
basic variable, the objective function value will 
decrease. Since  is a non integer solution, we 
have: 

 

 
 
meaning that it exists at least one group with non 
integer basic variables. It’s clear that rounding non 
integer basic variables  would very likely lead to 
an infeasible solution. For this, we suggest to set to 
zero all non integer basic variables, and then select a 
free variable  to be set to 1, and in order to 
generate high quality feasible solution, the selected 
free variable  is that which has the smallest 
reduced cost in order to minimize the loss of 
objective function value. Formally, decision 
variables for group  are modified as follows: 
 

 

 
This process can be iterated until a feasible solution 
is generated or simply return the obtained solution 
even if it is infeasible. In any case, the generated 

solution by this procedure is of interest only if it is 
feasible and has value greater than the best solution 

. 
 
 
5 Computational results 
The purpose of this section is to experimentally 
investigate the various aspects of BPH on standard 
benchmarks. We evaluate the performance of BPH 
compared to the state-of-the-art best results. The 
obtained results are also compared to those obtained 
when running one hour Cplex Solver v12.2 on the 
same set of instances. Our algorithms were coded in 
C++ and all experiments were done on a PC with a 
2.8 GHz Intel i5 CPU and 3GB of memory. 
 
Table 1. Small to medium size test problem details 

Regular instances 
#Inst      Opt 
I01 5 5 5 25 173 
I02 10 5 5 50 364 
I03 15 10 10 150 1602 
I04 20 10 10 200 3597 
I05 25 10 10 250 3905,7 
I06 30 10 10 300 4799.3 

Irregular instances 
#Inst      Opt 
RTI07 10 5 5 23 564 
RTI08 20 10 10 109 6576 
RTI09 30 10 10 158 7806.2 
RTI10 30 20 10 235 7032 
RTI11 30 20 20 208 6880 
RTI12 40 10 10 241 11564 
RTI13 50 10 10 295 10561 

 
Table 2. Large size test problem details 

Regular instances 
#Inst      Upper b.  
I07 100 10 10 1000 24607.95 
I08 150 10 10 1500 36904.41 
I09 200 10 10 2000 49193.87 
I10 250 10 10 2500 61486.30 
I11 300 10 10 3000 73797.74 
I12 350 10 10 3500 86100.45 
I13 400 10 10 4000 98448.64 

Irregular instances 
      
INST21 100 10 10 565 44315 
INST22 100 10 20 538 42076 
INST23 100 10 30 541 42763 
INST24 100 10 40 584 42252 
INST25 100 20 10 871 44201 
INST26 100 20 20 842 45011 
INST27 200 10 10 1076 87650 
INST28 300 10 10 1643 134672 
INST29 400 10 10 2223 179245 
INST30 500 10 10 2704 214257 
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5.1 Problem details 
The problems we considered are summarized in 
Tables 1 and 2. We tested a total of 30 instances 
corresponding to two groups: (i) regular instances 
with groups containing the same number of items, 
that is  and (ii) irregular 
instances with heterogeneous groups; we denote by 

 the highest number of items in a group, that is 
. The instances I01 to 

I13 are the well studied regular benchmarks defined 
in [26], and the instances from RTI01 to INST30 are 
new instances described in [27]. 
 
 
5.2 Various aspects of BPH 
In this section, various aspects of BPH are 
experimented, especially the impact of B&B 
algorithm and its ability to discard partial solutions 
more than Pareto-dominance. It is why we compare 
in Tables 3 and 4 for each instance, the number of 
solutions discarded by Pareto-dominance and 
bounding process. The running time is also carefully 
examined to show the impact of solving a large 
number of LP during the Pareto-product process. 
Recall that we use Cplex 12.2 as LP solver and we 
set parameter  to 100 to maintain 100 partial 
solutions during each iteration. The final aspect of 
BPH we experiment is the rounding procedure and 
its ability to generate feasible solutions which can 
improve the bounding process. It is why we present 
in Tables 3 and 4 the value of the solution found in 
the first iterations of BPH. 
 

Table 3. Experimentation of discarding rate 
#Inst CONFIGURATION DISCARD 

Pareto  B&B  % 
I01 21 68 23/76 
I02 28 791 2/98 
I03 43 275 13/87 
I04 110 117 48/52 
I05 0 10 0/100 
I06 0 2174 0/100 
RTI07 2 18 10/90 
RTI08 98 244 29/71 
RTI09 7 1090 0.6/99.4 
RTI10 57 201 22/78 
RTI11 211 172 55/45 
RTI12 144 312 31/69 
RTI13 127 274 31/69 
I07 6 122 4/96 
I08 148 97 60/40 
I09 112 138 45/55 
I10 110 155 41/59 
I11 131 176 43/57 
I12 127 188 40/60 
I13 150 162 48/52 
INST21 80 298 21/79 
INST22 266 2182 11/89 
INST23 736 9025 8/92 

INST24 0 797 0/100 
INST25 241 181 57/43 
INST26 0 1941 0/100 
INST27 86 183 32/68 
INST28 133 269 33/67 
INST29 168 160 51/49 
INST30 39 1637 2/98 

AVERAGE  25/75 
 

Table 4. First and final solution given by BPH 
#Inst Initial  

solution 
First Sol. Final solution T(s) Value % Value % 

I01 161 169 2.3 173 0 0,25 
I02 341 355 2.4 364 0 1,15 
I03 1511 1546 3.5 1601 0.1 1,98 
I04 3397 3454 3.9 3557 1.1 3,5 
I05 3591.59 3905.7 0 3905.7 0 0.31 
I06 4567.9 4798.8 0.0 4798.8 0.0 5.68 
RTI07 564 564 0 564 0 0.3 
RTI08 - 6164 6.2 6536 0.6 2 
RTI09 7461.2 7748.2 0.7 7806.2 0 1.8 
RTI10 5519.4 6359.8 9.5 6979.4 0.7 4 
RTI11 - 6075 11 6779.4 1.4 5 
RTI12 - - - 11476 0.7 8 
RTI13 - 9793 7.2 10420 1.3 10 
I07 23753 24291 1.2 24584 0.0 85 
I08 35485 36681 0.6 36773 0.3 213 
I09 47685 48978 0.4 49060 0.2 425 
I10 59492 59492 3.2 61391 0.1 739 
I11 71378 73561 0.3 73645 0.2 1145 
I12 83293 85794 0.3 85996 0.1 1713 
I13 95141 98183 0.2 98368 0.0 2349 
INST21 - 43636 1.5 44070 0.5 57 
INST22 - - - 41734 0.8 587 
INST23 - - - 42172 1.3 2051 
INST24 - 41776 1.1 41776 1.1 460 
 

Experiments show the limits of Pareto-
dominance. In fact, table 3 shows that among all 
discarded solutions, only 25% of partial solutions 
have been discarded by Pareto-dominance. In 
addition, we include in this rate configurations 
which have been discarded due to infeasibility. In 
Contrast to Pareto-dominance, the bounding process 
led to the elimination of a large number of 
configurations. Furthermore, the running time 
remains reasonable despite solving a large number 
of LP. This is due to Cplex solver efficiency when 
dealing with LPs but also to the ability of bounding 
process to discard more configurations. The 
comparative study we present in the next section 
will also focus on running time. Moreover, the value 
of the solution obtained in the first iterations of BPH 
is presented to show the effectiveness of rounding 
procedure. In fact, Pareto-product based algorithms 
can find feasible solutions only in the final iteration, 
when the last group is combined with the set  of 
partial configurations. Due to rounding procedure, 
high quality feasible solutions have been generated  
throughout algorithm execution. In most cases, 
value of the solution found in the first iterations is 
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significantly better than the starting solution 
generated par CP and CCP algorithms, and in 
addition obtained in a negligible time. This is 
particularly useful in real-time applications when 
the running time is a crucial parameter. On the other 
hand, the progressive improvement of the best 
solution  by rounding procedure has 
contributed to improve the bounding process. 
 
 
5.3 Comparative study 
In the final set of experiments, we compare BPH 
with the state-of-the-art heuristics both for regular 

and irregular instances. We focus only on medium 
to large instances. We present in table 5 the main 
results obtained on the classical large regular 
benchmarks I07 to I13 since the early Moser’s Work 
on MMKP [3]. Therefore, we review results 
obtained in [9], [2], [16], [17], [1]. Medium to large 
irregular benchmarks results are summarized in 
table 6. These instances have been experimented for 
the first time in [1]. For both tables, we include 
results obtained by MIP solver Cplex 12.2 during 
one hour of running time and also results obtained 
by a classical genetic algorithm we applied on 
MMKP instances. 

 
Table 5. Results for large regular benchmarks 

#Inst Moser 
1997 

Khan 
2002 

Hifi 
2005 

Cherfi 
2009 

Crevits 
2012 

Shoj.20’ 
2013 

Cplex 
(1h) 

G.A. BPH Upper 
Bound Value T(s) Value T(s) 

I07 23556 23912 24587 24587 24592 24592 24589 24185 440 24584 85 24607.95* 
I08 35373 35979 36877 36894 36888 36886 36886 35826 553 36773 213 36904.41* 
I09 47205 47901 49167 49179 49179 49185 49176 47874 718 49060 425 49193.87* 
I10 58648 59818 61437 61464 61466 61465 61465 59680 577 61391 739 61486.30* 
I11 70532 71760 73773 73783 73779 73782 73788 72004 1213 73645 1145 73797.74* 
I12 82377 84141 86069 86080 86091 86084 86080 83815 1370 85996 1713 86100.45* 
I13 94166 96003 98429 98438 98433 98437 98437 95576 1488 98368 2349 98448.64* 

 
Table 6. Results for medium to large irregular benchmarks 

#Inst Shojaei 2013 Cplex 
(1h) G.A. B&B Pareto-algebraic Heuristic Opt/Upper 

Bound* Value T(s) First Sol. Final Sol. T(s) 
RTI10 6096 0.27 Opt 7003 6359.8 6979.4 4 7032 
RTI11 5449 0.45 Opt - 6075 6779.4 5 6880 
RTI12 10860 0.12 Opt - - 11476 8 11564 
RTI13 8636 0.20 Opt - 9793 10420 10 10561 
INST21 44270 3600 44262 43172 43636 44070 57 44315* 
INST22 41976 3600 41976 40302 - 41734 587 42076* 
INST23 42562 3600 42550 - - 42172 2051 42763* 
INST24 41918 3600 41918 - 41776 41776 460 42252* 
INST25 44156 3600 44146 40441 - 44001 71 44201* 
INST26 44869 3600 44835 - 44701 44790 638 45011* 
INST27 87616 3600 87600 84121 86752 87442 239 87650* 
INST28 134634 3600 134610 127960 134114 134288 655 134672* 
INST29 179206 3600 179202 172794 178660 178912 1346 179245* 
INST30 214198 3600 214198 208424 214178 214178 4225 214257* 

 
 
We can draw several conclusions from these results. 
First, tables 5 and 6 show that BPH results are 
competitive in terms of quality and running time 
especially those given in bold. Second, in columns 
reporting the pure Cplex results with a time budget 
of one hour, we may conclude that hybrid heuristics 
outperform pure Cplex when given equal time 
budgets. Third, the results we obtained with genetic 
algorithms are disappointing despite the use of 
several repair operators to deal with infeasible 
solutions generated by crossover operator. In fact, 
we are persuaded that in the case of MMKP, any 
purely heuristic approach is doomed to fail. 
Hybridization with exact methods is better suited. 
Finally, note that with BPH heuristic, we have only 

one parameter to adjust; the parameter  
representing the number of partial solutions 
maintained at each iteration, while in all the state-
of-the-art heuristics, there are several parameters to 
consider, and it is well known that when using 
approximate algorithms to solve optimization 
problems, different parameter settings lead to results 
of variable quality and the configuration of these 
parameters is a difficult task. 
 
 
5 Conclusion 
We have solved the multiple-choice multi-
dimensional knapsack problem using a hybrid 
algorithm: Branch and bound Pareto-algebraic 
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Heuristic. The algorithm is mainly based on Pareto-
product operation which combines one-by-one all 
groups of the MMKP instance at hand. Then, a large 
part of generated partial solutions is discarded either 
by Pareto-dominance or better by B&B method. A 
rounding procedure is used to generate high quality 
feasible solutions during BPH execution, improving 
the bounding process. Computational results show 
that BPH yields high quality solutions within a 
reasonable computing time, and can generate good 
solutions within a negligible run time due to 
rounding technique. 
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