

The first is: “It is possible to divide the work into
small value adding increments that can be
independently scheduled”. As said before, these
increments can be called features, user stories, work
items, or MMF. From now on, we will use the term
“feature”. This axiom is the same as in AMs, which
in turn are always features-driven.

The second Ladas' axiom is “It is possible to
develop any value-adding increment in a continuous
flow from requirement to deployment”. Following
this axiom, software development process can be
decomposed in a sequence of well defined activities,
to be performed one after the other by the members
of a feature [25], [26], [27], [28] team on the
specific features to be implemented. For instance, a
requirement analysis phase is followed by a design
phase, then by an implementation phase, by a testing
phase, by an integration phase and eventually by a
deployment phase. For the Kanban approach to
work, we need that all features are processed by the
same sequence of steps.

These axioms generally hold, except perhaps at
the beginning of the development of a software
system, when an up-front analysis and architectural
design phase is needed (as for instance explicitly
prescribed in FDD methodology). In the case of
addition of functionalities to an already developed
system, or of maintenance and bug-fixing activities,
these axioms clearly hold.

2.2 Kanban Overview

Kanban – meaning "signboard" – is a concept
related to lean and just in time (JIT) production.
According to Taiichi Ohno, Kanban is one of the
means through which JIT is achieved [29]. Kanban
is not an inventory control system, but it can be
considered as a system for visualizing work, making
it flow, reducing waste, and maximizing customer
value. It is a pull system, because it uses the rate of
demand to control the rate of production, passing
demand from the end customer up through the chain
of customer-store processes.

In practice, setting up a Kanban system, also in
the light of Ladas' axioms, typically includes the
following steps

1. Map the flow, finding the activities
2. Express the requirements through a set of

features
3. Depending on the activities and the team

composition, devise a maximum limit for
the features under work in each activity

4. Set-up the Kanban board, highlighting
the activities and how deal with specific
issues, for instance:

 Input queue, Slack buffers and
“Done” buffers.

 Task management within
activities.

 Multi-project management,
through lanes or other means.

 High-priority features, special
cause circumstances in which it
is allowed to break limits.

 Management of bugs, and of
features to rework before their
release.

5. Devise the policy to assign developers to
activities and tasks, and to deal with
issues related to flow (blocks, tuning of
limits, etc.);

6. Decide the format and typical scheduling
of meetings, for instance:

 Daily stand-up meeting.
 Meetings with customer and

product owner.
 Planning meetings.
 Review meetings, including

process improvement meetings.
7. Devise how releases of single features,

and of working versions of the system,
are delivered.

8. Devise the specific technical practices to
use (design, programming, testing, etc.).

9. Decide what tools, statistical methods
and diagrams to use to manage the
process.

As said before, there is no a standard, or at least a
commonly shared way, to perform these tasks. The
aim of the followings of this paper is to highlight the
specific Kanban issues, in particular those related to
the Kanban board management, and study how they
are addressed in practice, through a survey.

3 Method
Evidence-based software engineering (EBSE) aims

to apply an evidence-based approach to software
engineering research and practice. This research
follows Kitchenham’s methodological guide- lines
for systematic reviews [30]. The research questions
(RQs) of this review are the following:

Q1. What are the main characteristics of the
Kanban boards actually used?

Q2. What are the main activities defining the
software process, and what are their typical

limits to limit WIP (for a typical development
team)?

Q3. What is the information typically shown on
the cards representing the work units?

Q4. What diagrams/statistics are used for a
quantitative process management?

Q5. What automation tools are available for
Kanban board? And what are their main
characteristics?

A systematic literature review (SLR) is the main
method of synthesis for supporting EBSE. We
performed a qualitative survey, covering both the
literature and the main websites on the topic, with
the aim to answer the research questions. Usually,
surveys similar to the presented one are performed
through an SLR of scientific papers that appeared in
the literature on the subject [30]. The Kanban
approach in software development, however, is still
in its infancy, and there is almost no paper at present
published in the scientific literature. Moreover,
information about how a software development
approach is applied inside an organization is often
considered confidential, and it is not easy to obtain
such information through interviews. consequently,
our sources were the three books published on the
subject so far [21], [22] and [23], and the documents
available on the Web. In particular, we performed
the Web survey starting from:

 the Web sites of the well known
organizations working on Kanban (Limited
Wip Society [31], Lean Software and
Systems Consortium), and the links found
there;

 the results of Web searches in the main
search engines, with the keywords: “Lean”,
“Kanban”, “software development”.

We used as information sources the documents
and the presentations found on these Web sites and
the relevant Web pages. The survey was conducted
through the analysis of various Kanban Boards
reported in figures and photos, together with the
analysis of the related text. In the case of software
tools implementing a Kanban board, we used as
main reference the tool list present in the Limited
Wip Society Web site. In this case, when the tool
description found in its Web site was not enough,
we resorted also to mails sent to the tool developers,
that were answered in all cases but two. All data

obtained and analyzed are summarized in five
Tables, one for each RQ, that are reported and
discussed in section 4.

3.1 The issue studied

Despite its growing adoption, the Kanban system
approach is still in its childhood and, as said before,
there are no standard ways to address some key
issues. In our opinion, the information gathered in
our survey might be very useful to people
considering Kanban adoption, and to the whole
community of agile developers practicing Kanban
system approach.

In the following of this section, we briefly discuss
what are the issues we considered, and why. We will
focus on describing the visual aspect of the Kanban
board, its activities and the features. However, one
must keep in mind that such a visual aspect always
reflects the practices and the workflow organization
decided by the team.

The Kanban board. The board is the main tool
used to visualize and coordinate teamwork. Its
columns show a sequence of activities, where the
cards representing the features under work are put.
For each activity, there are limits to the number of
features, to obtain an overall limited WIP. The
activities can be represented by a single column, or
columns for in progress and done features can be
present. An activity can also be preceded or
followed by slack buffer columns, holding the
features to be pulled into the next activity. The
board may also have columns holding the features
not yet under work, to be pulled into the first
activity, and holding the features completed, or live.
Other variants of the Kanban board include boards
with horizontal lanes, representing different
projects, with an emergency lane for urgent features,
with zones holding cards representing bugs or open
issues. The developers are often represented on the
board, using their names or avatars, to highlight the
features they are currently working on.

Feature representation and management. On the
Kanban board, the features are typically represented
using cards. The color of the card may have a
meaning. The information written on the card is not
standard. It may include the starting date, the due
date, if present, the description of the feature, a
priority level, the developer currently working on it,
and other information.

When features represent a substantial amount of
work, they can be divided in tasks, in turn
represented by cards, usually smaller and/or of
different color and attached to a specific zone of the
column of the activity the feature is under work.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 4 Issue 1, Volume 10, January 2013

Also bugs, rework, acceptance tests related to a
feature can be represented with cards.

When a feature gets stuck in an activity for some
reason related to poor software quality, or undecided
requirements, the work flow can be badly affected.
The way this issue is resolved is often reflected in
the feature representation – for instance it can be
marked with two big red starts, meaning panic [23]
– or in a zone on the board holding these features.

Statistics and diagrams. The use of statistics and
diagrams to monitor the process is integral part of
the Kanban approach. The quantities computed and
monitored, however, may vary. They can be
lead/cycle time, development time, engineering
time, days blocked, number of bugs, throughput,
and so on. These data are usually shown in
diagrams, affixed to the walls of the workplace, or
in any case continuously updated and made public.
The most used diagram is the Cumulative Flow
Diagram (CFD), used to show WIP and average
lead time, and to highlight issues and bottlenecks.

Computer-aided tools. Unlike with original AMs,
whose proponents advised against the use of tools,
preferring face-to-face communication and tangible
artifact such as cards, the Kanban system
proponents explicitly suggest the use of automated
tools to help keeping track of the process, and
possibly to allow using the approach also in the case
of not co-located teams [21]. In fact, despite the fact
that Kanban is still in its early years of adoption,
there are already many tools available to support the
approach.

These tools can be open-source, proprietary and
available as add-ons for existing tools. They are
offered for local installation, and/or as-a-service on
the Web. They allow to track all phases of the
process, to organize the work using artificial
Kanban boards, to monitor activities and highlight
bottlenecks, and to automatically generate many
kinds of useful diagrams and reports.

4 Result and Discussion
The first RQ regards the layout of the Kanban
boards actually used by developers. We were able to
collect data on 14 different boards, which are
summarized in Table 1. The number of activities –
or value-adding increments as in the second Ladas'
axiom – ranges from one to six, with a median of 4
and an average of 3.7. So, the typical number of
activities we found is four. All boards but one divide
the columns of at least some activities in two areas –
“in progress”, where the features under work are
put, and “done”, where the features completed wait

to be pulled to the next activity. Most boards use
also “slack buffers” before some activities.

Regarding the queue of the features to be
implemented (Input queue), most boards have a
limit on it, ranging from 2 to 10. The names given to
this queue are very different, for each of the boards
analyzed. On the contrary, most boards have no
limit on the queue of features completed (Output
queue). Also in this case, the names of the queue are
very different from board to board, the most popular
being “Done”.

6 boards on 14 have an “express lane” where
urgent features are put, which can overcome the
limits on the activities. This figure may look low,
but remember that several of the studied boards are
simplified boards, intended for didactic purposes. 5
boards have “lanes”, highlighting features belonging
to different projects which are carried on
concurrently by the team. Only three boards
explicitly show activities divided in task. With this
analysis we have answered Q1: What are the main
characteristics of the Kanban boards actually used?

Let us now pass to Q2: What are the main
activities defining the software process, and what
are their typical limits to limit WIP (for a typical
development team)? First, let us note that it is patent
from the board analysis presented in Table 1 that the
same concepts are named differently in the various
boards. The same variability can be found in the
names of the activities. So, we tried to put together
the activities that look very similar, albeit having
different names – for instance: “Development”,
“Dev.”, “Code”, “Coding”. For each activity and for
each Kanban board studied, we report in Table 2 the
main characteristics (buffers and limit). From Table
2 it is also possible to deduce which activities are
included in which board.

Some activities might refer to the same activity
in different boards – for instance “Specification”
and “Analyze”, “Build” and “Development”.
However, there are boards where both activities are
included, so we did not merge them in the table.
Overall, there are the following broad categories of
activities:

Specification/Analysis: this is typically the
first activity. Its limits vary from 1 to 8, with an
average of 3.7, a median equal to 3, and a mode
equal to 2. Since the value 8 seems an outlier, the
preferred limits to this activity are 2 and 3.

Build/Development: this is the activity
referring to actually writing the code. Its limits vary
from 2 to 10. The mean, median and mode of these
limits are all equal to 4.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 5 Issue 1, Volume 10, January 2013

Table.1 Kanban Board characteristics

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 6 Issue 1, Volume 10, January 2013

Table.2 Analysis of Kanban boards activities

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 7 Issue 1, Volume 10, January 2013

Test/Acceptance: these activities refer to
writing and/or executing tests on the system. Their
limits vary from 2 to 8, with an average of 3.2, a
median equal to 3, and a mode equal to 2. Also in
this case, the median and the mode look the most
representative values.

Deploy/Release: this is the last typical activity
when a system is developed. Only in four cases
there are explicit limits, ranging from 4 to 6. The
lack of limits is due to the fact that in some
processes release is not really a full-scale activity,
but it refers to the acceptance of the released
features by the product owner, or other stakeholder.

Documentation: in two cases, this activity is
explicitly recorded on the Kanban board. In one of
these board, the limit is 2, while in the other it is
not specified.

We stress that some Kanban boards, like for
instance two described in the last rows of Tables 1
and 2, are in fact organized in multiple tiers, and
the sequence of activities is not linear, but activities
are part of higher-level tiers, in turn executed in
sequence, or in other ways. However, we believe
that Table 2 summarizes well how Kanban teams
divide development into activities, and give hints
on the possible choices of their limits. So, with
Table 2 and its discussion we believe we answered
Q2.

In Table 3 we report the result of the study

about how features are named and represented on
cards in the Kanban board. We were able to get
information only on five different boards, because
in the other boards we considered, the cards were
only sketched. All feature cards show a description
of the feature, the date the feature entered the
system, and are related with the developer in charge
of it – often represented with another card, or a
“stick avatar”. All examined boards make use of
cards of different colors to highlight the kind of
feature; some of them use also cards of different
size, typically to discriminate between the features
and the tasks obtained by decomposing the
features, bugs, issues and the like.

Some cards use smaller sticker cards on them,
to denote issues or their state., and some cards
allow to show specific states of the feature, such as
“high priority”, “late” or “blocked”. With this
analysis we answered Q3: What is the information
typically shown on the cards representing the work
units?

Let us now pass to Q4: What
diagrams/statistics are used for a quantitative
process management? For each Kanban
implementation studied we figured out what kind of
quantitative tools were used by the associated team.
This analysis is not simple, because in many
presentations the main goal was to describe the
Kanban approach and the board, with minimal or

Table 3 Analysis of Kanban cards

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 8 Issue 1, Volume 10, January 2013

Table 5 Comparative analysis of kanban tool

Name License and Pricing Product Information Integration Reporting Data Import / Export Ref.

AgileZen Yes No Yes [42]

Digaboard GNU GPL2. Unspecified Yes Unspecified No Yes Unspecified [43]

flow Yes No Yes [44]

Yes No Yes [45]

Hansoft Yes Yes [46]

Yes In progress. Yes [47]

Kanban Tool None Yes Yes Yes [48]

Kanbanery Yes No Yes Simple CSV import of data. [49]

Yes Yes Yes [50]

Yes No [51]

Qanban Apache V2. None Yes No Yes [52]

RadTrack MIT license. In progress Yes Unspecified. No Yes In progress. [53]

Yes No Yes [54]

GNU GPL2. Yes In progress. Yes Unspecified. [55]

Yes

No Yes [56]

MIT license. Unspecified No Unspecified. No No Unspecified [57]

SmartQ In progress.

No

In progress. No Yes In progress. [58]

Yes No Yes [59]

Trichord Yes No Yes Not supported. [60]

VersionOne Yes Yes Yes [61]

Visual WIP Yes Yes Yes [62]

Multi
team

Horizontal
lanes

Bug
Mngmt

Proprietary. Available
for a monthly cost.

Web application built with
ASP.NET MVC 2 and jQuery.
AgileZen has been acquired by
Rally Software (April 2010).

API under development, so
that customers can create
their own integrations.

Cycle time and lead time
metrics on the Performance
screen.

Data export using the API
in XML or JSON format.

Web based interactive tool. It
requires PHP and MySQL.

Proprietary. Available
for a monthly cost.

Lean project management
application based on Kanban.
PHP / MySQL for the backend
and JavaScript libraries for the
frontend.

Simple yet powerful REST
API that makes it easy to
integrate flow with other
applications. An interactive
testing console is included.

Custom reports: - tasks
assigned to a group or groups;
- tasks assigned to individual
users; - task types.

Data export and import
using the REST API.

FogBugz plus
Kanban plugin

Proprietary. Pricing
determined by user nr.
Available in-house or
SaS.

This plugin provides a Kanban
board for FogBugz (a web-
based project-management
tool). There are both PHP and
ASP versions. Data on MySQL,
MS Access or MS SQL Server.

Completely extensible with
plug-ins and an XML API; it
integrates with all major
version control systems.

The cases in any of existing
filters can be produced as
graphical reports.

Data export and import
using the REST API. Import
from Bugzilla and Trac.

Proprietary. Available
for a monthly fee based
on the nr. of users.

Requirements: for Hansoft
client, Win200 or later (also
runs under Wine on Linux and
MacOSX), for Hansoft server,
Win200 or later NT based
operating system.

Integrated with Hansoft
server; LDAP integration for
resources.

Dynamic report templates in
the find function.

Yes, as
configured

Project plans, schedules
and task lists can be easily
imported.

Jira 4.0 plus
Greenhopper
plugin

JIRA commercial /
academic license. Sw.
licenses entitle to
perpetual use.

JIRA is a system for issue
tracking and project
management. GreenHopper is a
pure Java application.

Developers interact with
JIRA directly from Eclipse
and IntelliJ IDEA and soon
MS Visual Studio. Third-party
integrations support
FlexBuilder, JDeveloper,
NetBeans and Zend Studio.

Ccustom statistics for a
project. Generate reports on
the fly using JIRA Query
Language (JQL).

Importing data from other
trackers is supported. Third-
party scripts are available
that support the importing of
data into JIRA.

Proprietary.
Still in beta phase
presently free of charge.

Web application written mostly
in Ruby (server-side) and
JavaScript (client-side).

Breakdown charts and
cumulative flow diagram.
Usage reports.

Details about tasks can be
exported to CSV file. Other
features in progress.

Proprietary. Pricing
plans: Freelance, Small
firm, Corporate.

Project board tool for Scrum
and Kanban teams or for
personal task management.
Built with Ruby-on-Rails.

API available for system
integration.

CFD filtered by dates and
process stepsTask history a,
arage lead time and cycle time
f statistics.

LeanKit
Kanban

Proprietary. Pricing
plans: Team-edition, On
site, Personal edition.

Online workflow and process
management system written in
Ruby.

API available for system
integration.

Tools to analyize (and extract)
the information about how work
is moving through the
processes.

Wizard available to export
and import Work Items from
external systems.

Pivotal
Tracker

Proprietary. At the
moment, online use is
free.acker@pivotallabs.
com)

Story-based project planning
tool. It is written in Ruby on
Rails and Javascript.

Integrated with JIRA,
Lighthouse, Satisfaction,
Zendesk. Integrated with
SCMS: Subversion, GitHub,
and Git. API available for
integration with other
systems.

Several built-in charts: release
burn-down, iteration burn-up,
story type breakdown,
historical velocity.

Stories
can be

categoriz
ed as
bugs.

Stories can be imported
from other tools, or
exported to a CSV file.

Web-based multiuser
application written in Grails. It
uses HSQLDB (HyperSQL
Database) for dats storage.

"Lead Time” statistics, but no
official release.

No pre-defined way to
import/export data.

radtrack™ is a Open Source
Electronic Kanban collaboration
system written in Ruby-on-
Rails.

Rally 2009.5
plus Kanban
Mashup

Proprietary. Pricing
plans: Community,
Enterprise and Unlimited
edition.

Web application cross-platform
and cross-database. Rally
provides versioned Web
Services APIs for REST,
SOAP and JSON.

IDE’s: Eclipse, JDeveloper,
Visual Studio Enterprise
Integrations for HP, IBM,
Microsoft & Salesforce.com.
Customizable Integration
API.

Custom reports with BI
capability. Reports generated in
PDF and JPG.

Import using CSV files.
Export capabilities CSV or
XML files.

Redmine plus
Kanban plugin

Redmine is a project
management web application,
written using Ruby on Rails.

Integrated with several
SCMS, including Subversion
and Git.

Redmine's report generation
capability.

Silver
Catalyst

Proprietary. Pricing
plans: Hosted and
Onsite edition.

Silver Catalyst uses many
different languages and
platforms, but the whole
software is based on an open
source stack.

API available for integration
withbug tracking tools
SCMS continuous integration
,LDAP directories .

Statistical Process Control
Charts are used to analyze
lead time, cycle time and
throughput.

Automatic import of tickets
from a ticket tracking
system.

Simple
Kanban

The application is just a HTML
file.

Proprietary.Available for
a monthly cost.

Web-based visual project board
for tracking tickets.
Technologies: PHP, jQuery,
MySQL, CentOS.

Target
Process

Proprietary. On-Site
licenses entitle
perpetual use. On-
Demand licenses are on
a monthly basis.

Software written in .NET. Can
be hosted locally or used as
SaS.

Built-in plugins framework
and Web Services API for
system integration. Available
plugins for Visual Studio
2010, Eclipse, Subversion,
JIRA, Bugzilla, Perforce,
Selenium, NUnit, JUnit,
TestTrackPro, Team
Foundation Server and Help
Desk.

A wide range of reporting
features.

Import/Export from/to CSV
format for bugs, features,
user stories and test cases.

Proprietary.
Pricing plans: User
license
(user-fixe, unlimited);
Timed license
(machine-fixed, limited
operation period.

Trichord is an Eclipse RCP
(Rich Client Platform)-based
software, and optionally works
with Trac (issue tracking
system). System requirements:
Windows XP, Windows 7.

Trichord has an ability to
integrate with Trac.

Charts with detailed information
of each project, and a
summary that indicates the
status of multiple projects.

Proprietary.
Pricing plans: Team,
Enterprise and Ultimate.

VersionOne is a project
management too, built on
Microsoft technology. The On-
Demand version is used as
SAS; the On-Site version
requires MS Windows Server
2003/2008 and IIS.

An extensible API and SDK
(.NET & Java).
Pre-built integration
connectors to the most
commonly used commercial
and Open Source sw.
development tools.

50+ pre-packaged agile metrics
and reports plus a new custom
analytics platform. A Data Mart
optimized for agile reporting &
analytics.

Import from MS Excel or
export to MS Excel or
Project.

Microsoft Public
License (Ms-PL)

A visualization tool of WIP data
from an underlying system
(currently Team Foundation
Server). Visual WIP is built on
the .NET Framework 4.0, and
requires Visual Studio Team
Explorer 2010.

Currently Team Foundation
Server is the only supported
underlying system.

Reporting functionality of the
underlying system.

Supported by the underlying
system

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 9 Issue 1, Volume 10, January 2013

no emphasis on these tools. Overall, we were able
to find information only in seven sources, on
overall 14 considered. Table 4 shows the diagrams
and the statistics used by the analyzed Kanban
implementations.

As you can see, all authors use the Cumulative
Flow Diagram, which is one of the distinctive
characteristics of the Kanban approach, and the
Lead time per feature statistics. Some authors use
the diagram showing the throughput of the
development process, that is the number of features
(weighted with the needed effort) completed per
week or per month). Other statistics are used, but
are less spread, as reported in the table. This
answers Q4.

The last part of our survey is about automated
tools supporting the Kanban board. Its results are
reported in Table 5. The first thing to note is that,
despite the short time Kanban have been around for
software development, we were able to find and
examine 22 tools supporting it. This may be due to
the fact that the approach looks sound and in strong
expansion, and may be that small firms bet on it,
trying to be first-movers in this new market.

The tools belong to two basic categories: tools
developed as stand-alone applications, and add-ons
for existing project management tools or IDEs
(about one-third of the total). Most tools have a
Web-based user interface, and can be bought also
as a Service on the Internet. Six tools are open-
source project, with GPL2, MIT, Apache or MS-PL
licenses. All tools, but a very simple one, support
Multi-team projects and explicit bug management;
only five tools on 22 support horizontal lanes.

Table 5 shows also the kinds of diagrams and
statistics provided by the various tools. Most tools
provide some sort of statistics, but only a small
subset of tools provide a wide choice of diagrams.
Surprisingly, the Cumulative Flow Diagram (CFD),
which is cited in almost every publication about the
Kanban approach, seems to be provided only by
very few tools. Also the capabilities of integration
with other tools, both though software interfaces
and data exchange, vary greatly. Most tools provide
simple forms of integration and data exchange,
through proprietary APIs and standard exchange
formats like Comma Separated Values. Only the
most sophisticated tool, or those built as add-ons of
already existing sophisticated tools, provide really
independent and modular ways to integrate them
with other tools, using Web services or a significant
number of interfaces to other popular tools.

With this analysis we answered Q5: What
automation tools are available for Kanban board?
And what are their main characteristics? We also
believe we shown the most comprehensive
comparison of Kanban tools available to date.

4 Conclusions
Agile development methodologies have gained
significant adop-tion in a variety of software
development domains. Nowadays, the fastest
growing AM is perhaps the Lean approach, using
the Kanban board for its practical implementation.
However, despite the strong increase of interest on
Lean-Kanban, there is no standard definition of
Kanban system for software development, and the

Diagram Nr. times
used

Reference

CFD 7 [20], [22], [24], [33], [35], [39]

Lead time /cycle time
per feature

7 [20], [22], [24], [33], [35], [39], [40]

Development time 1 [33]

Engineering time 1 [33]

Days blocked 2 [20], [33]

Nr. of bugs 2 [20], [33]

Throughput 4 [20], [24], [33], [39]

 Table 4. Analysis of Kanban diagrams

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 10 Issue 1, Volume 10, January 2013

specific practices of Kanban have not yet been
rigorously defined. To address this issue, in this
work, we presented a rigorous analysis of the
available information, through research questions
and answers, to show the state-of the-art about how
Lean-Kanban approach is presented and used. In
particular, we formulated and answered five
research questions related to the Kanban board
management, the use of diagrams and statistical
tools, and the availability and features of computer
aided tools for managing a “virtual” Kanban board.
We used the methods of Evidence-based software
engineering, performing a systematic review of the
available information.

We examined 14 different Kanban boards,
looking for similarities and differences in the board
layout, and in the activities used for decomposing
the software development work. We also analyzed
how work items, or features, are graphically
represented in cards on the boards, and which
graphical and statistical tools are typically used by
Lean-Kanban teams. Eventually, we studied and
compared 22 software tools for managing virtual
Kanban boards.
The results from this review can help both insiders’
and outsiders’ perception and understanding of how
the Lean-Kanban approach is actually
implemented. This information, derived from
literature and Web site analysis has the potential to
suggest possible directions for Lean development
standardization and improvement, and to be useful
to people considering Kanban adoption.

References:
[1] Manifesto for Agile Software Development,

www.agilemanifesto.org/
[2] An analysis of anti-micro-patterns effects on

fault-proneness in large Java systems
Destefanis, G., Tonelli, R ., Concas, G.,
Marchesi, M. , 2012 Proceedings of the ACM
Symposium on Applied Computing , pp. 1251-
1253.

[3] Refactoring and its relationship with fan-in
and fan-out: An empirical study Murgia, A.,
Tonelli, R., Marchesi, M., Concas, G.,
Counsell, S., McFall, J., Swift, S. 2012
Proceedings of the European Conference on
Software Maintenance and Reengineering,
CSMR , art. no. 6178854 , pp. 63-72

[4] Assessing traditional and new metrics for

object-oriented systems Concas, G., Marchesi,
M., Murgia, A., Pinna, S., Tonelli, R. 2010
Proceedings - International Conference on
Software Engineering , pp. 24-31

[5] Entropy of the degree distribution and object-
oriented software quality Turnu, I., Marchesi,
M., Tonelli, R. , 2012 3rd International
Workshop on Emerging Trends in Software
Metrics, WETSoM 2012 - Proceedings , art.
no. 6226997 , pp. 77-82

[6] On the distribution of bugs in the Eclipse
system Concas, G., Marchesi, M., Murgia, A.,
Tonelli, R., Turnu, I. 2011, IEEE Transactions
on Software Engineering 37 (6) , art. no.
5928349 , pp. 872-877

[7] Dyba T., Dingsøyr T.: Empirical studies of
agile software development: A systematic
review. Information and Software Technology,
vol. 50, nos. 9/10, pp. 833-859, 2008

[8] Abrahamsson P., Warsta J., Siponen M.T. And
Ronkainen J.: New Directions on Agile
Methods: A Comparative Analysis. In:
Proceedings of the International Conference
on Software Engineering, Portland, Oregon,
USA, 2003

[9] An empirical study of software metrics for
assessing the phases of an agile project
Concas, G., Marchesi, M., Destefanis, G.,
Tonelli, R. 2012, International Journal of
Software Engineering and Knowledge
Engineering 22 , pp. 525-548.

[10] Stapleton J.: DSDM: Business Focused
Development, second ed.Pearson Education,
2003

[11] Schwaber K., Beedle M.: Agile Software
Development with Scrum,.Prentice Hall,
Upper Saddle River, 2001

[12] Beck K.: Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2000

[13] Aoyama M.: Web-based agile software
development, IEEE Software 15 (6),1998

[14] Cockburn A.: Crystal Clear: A Human-
Powered Methodology for Small Teams.
Addison-Wesley, 2004

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 11 Issue 1, Volume 10, January 2013

[15] Palmer S.R, Felsing J.M.: A Practical Guide to
Feature-driven Development. Prentice Hall,
Upper Saddle River,2002

[16] Poppendieck M. and Poppendieck T.: Lean
software development: An agile toolkit.
Boston, Massachusetts, USA: Addison
Wesley, 2003

[17] .J. A. Highsmith III:Adaptive Software
Development, Dorset House, New York, NY,
1999

[18] .Beck K.: Extreme Programming Explained:
Embrace Change, second ed., Addison-
Wesley, 2004

[19] Hibbs C., Jewett S. and Sullivan M: The Art of
the software Development. Sebastopol, CA:
O'Reilly, 2009

[20] Jones D., Roos D.:The machine that Changed
the World, James Womack, Simon&Shuster,
1990

[21] Anderson D.J.: Kanban: Successful
Evolutionary Change for Your Technology
Business, Blue Hole Press, 2010

[22] Ladas C.: Scrumban. Seattle, WA, USA:
Modus Cooperandi Press, 2008

[23] Kniberg H. and Skarin M.: Kanban and Scrum
making the most of both, C4Media Inc, 2010

[24] A comparative study of scrum and kanban
approaches on a real case study using
simulation Anderson, D.J., Concas, G.,
Lunesu, M.I., Marchesi, M., Zhang, H. 2012
Lecture Notes in Business Information
Processing 111 LNBIP , pp. 123-137.

[25] Lean Software Engineering,
leansoftwareengineering.com

[26] Los Techies, www.lostechies.com/
[27] Agile consulting,

agileconsulting.blogspot.com/
[28] Get Agile With Crisp, www.crisp.se/
[29] Ohno T.: Just-In-Time for Today and

Tomorrow, Productivity Press, 1988
[30] Kitchenham, B., and Charters, S. (2007).

Guidelines for performing Systematic
Literature Reviews in Software Engineering.
Engineering 2, 2007–01. Available online at:

www.dur.ac.uk/ebse/resources/Systematic-
reviews-5-8.pdf

[31] Limited WIP Society,
www.limitedwipsociety.org

[32] Anderson D.: Kanban Primer, Better Software,
January/February 2009

[33] The Ninja Ferret, ninjaferret.co.uk/
[34] Systems Thinking, Lean and Kanban,

leanandkanban.wordpress.com/
[35] Software Project Management,

blog.brodzinski.com/
[36] Agile Product Design,

www.agileproductdesign.com/
[37] Sundén J., Hammarberg M., Achouiantz C.:

www.slideshare.net/marcusoftnet/kanbanboard
s

[38] Mattias Skarin's Blog,
blog.crisp.se/mattiasskarin/2010/12/03/129136
1993216.html

[39] Erik Willeke' Blog,
manicprogrammer.com/cs/blogs/willeke/

[40] Avail Agility, availagility.co.uk/
[41] The Art of AgileSM, jamesshore.com/
[42] AgileZen, www.agilezen.com/
[43] Digaboard, www.digaboard.net/
[44] flow, flow.io/
[45] Fog Creek Software, www.fogcreek.com/
[46] Hansoft, www.hansoft.se/
[47] Atlassian, www.atlassian.com/
[48] KanbanTool. kanbantool.com/
[49] Kanbanery, kanbanery.com/
[50] LeanKit Kanban, leankitkanban.com/
[51] Pivotal Tracker, www.pivotaltracker.com
[52] Qanban,

https://github.com/qbranchcode/Qanban
[53] radtrack, radtrack.com/
[54] Rally 2009.5 plus Kanban Mashup,

www.rallydev.com/agile_products/lifecycle_m
anagement/

[55] Redmine plus Kanban plugin,
https://projects.littlestreamsoftware.com/projec
ts/redmine-kanban

[56] Silver Catalyst, www.toolsforagile.com
[57] Simple Kanban, www.simple-kanban.com/

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 12 Issue 1, Volume 10, January 2013

[58] smartQ, www.getsmartq.com/
[59] TargetProcess, www.targetprocess.com/
[60] Trichord, trichord.change-vision.com/

[61] VersionOne, www.versionone.com/
[62] Visual WIP, visualwip.codeplex.com/

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Erika Corona, Filippo Eros Pani

E-ISSN: 2224-3402 13 Issue 1, Volume 10, January 2013

