
An Effective Visualization Method for Large-scale Terrain Dataset

HANG QIU1,2,3 LEI-TING CHEN1,3 GUO-PING QIU2 HAO YANG1,2,3

1 School of Computer Science & Engineering, University of Electronic Science and Technology of
China, Chengdu, CHINA

2 School of Computer Science, University of Nottingham, Nottingham, UNITED KINGDOM
3 Provincial Key Laboratory of Digital Media, Chengdu, CHINA

qiuhang@uestc.edu.cn

Abstract: -Visualization of very large digital elevation models plays an important role in many applications
ranging from computer games to professional Geographic Information System (GIS). However, the size of
terrain datasets is much larger than the capacity of main memory, which brings up serious challenges for the
interactive visualization of massive terrain. In this paper, an effective visualization method for large-scale
terrain is proposed. In preprecessing stage, the full resolution terrain dataset is divided into several uniform
blocks. For each block, a LOD hierarchy, which contains different resolution of elevation data, is constructed
based on quadtree-split. In order to save the external memory, a non-redundant storage method is put forward.
Different from the traditional pyramid model, we stored only the newly added vertices in each level. The data
quantity during real-time rendering decreased effectively due to the sight-line-dependent screen error
computation, view frustum culling and detailed culling scheme. To ensure the continuity of navigation, a pre-
loading scheme, which based on the view frustum extension, is presented and implemented. Experiments show
that compared with traditional methods, our method has reduced the external memory cost by 60% and
achieved good visual effect with high rendering speed.

Key-Words: - Levels of Detail (LOD), Model Error, Static Error, Multi-resolution model, Quadtree

1 Introduction
In recent years, with the development of remote
sensing, digital photography and other measuring
technologies, we can get digital elevation models
(DEMs) and the corresponding photo textures with
high resolution easily. These original datasets bear a
great application value in many domains, including
geological disaster assessment [1], flight simulation
[2], military simulation [3] and visualization of
complex environments [4]. However, due to the
ever-increasing size of the resolution of scanned
DEMs and the corresponding photo textures,
visualization of terrain is facing more and more
problems of dealing with large-scale datasets.
Massive data of terrain can easily exceed the
capacity of main memory. Thus, the efficiency of
terrain rendering is affected seriously due to the data
exchange between main memory and the external
memory, which is a common bottleneck of large-
scale data processing.

Extensive works made efforts to manage the
complexity of huge terrain model by using view-
dependent level-of-detail (LOD) rendering
algorithms [5]. LOD algorithms apply a hierarchy of
mesh refinement operations to adapt the surface
tessellation. Thus, it could reduce the complexity of
the terrain model and keep a nice visual result.

Lindstrom et al. [6] proposed a dynamic multi-
resolution terrain algorithm, which used regular grid
to describe a continuous level of detail model and
define the maximum error of projected image by a
variable threshold in screen space. Duchaineauy et
al. [7] presented ROAM (Real-time Optimal
Adaptive Meshes) algorithm, which adopted a
binary tree over the set of triangles and two queues
are maintained for splitting and merging operations.
Zhang et al. [8] put forward a novel terrain model
simplification method based on terrain features,
using the idea of discrete particle swarm algorithm.
Losasso et al. [9] introduced geometry clipmaps,
which is a multi-resolution, fixed memory size
scheme for efficient representation and rendering of
large terrains, and it provides good rendering
performance, but the representation does not lend
itself to editing or modification of the terrain. In
2009, Livny et al. [10] gave a new approach for
GPU-based terrain rendering. Some other LOD
algorithms and more specific surveys can be found
in [11]. The methods based on view-dependent LOD
are widely applied that one can represent less
important areas with fewer amounts of polygons.
They effectively reduce the total number of
primitives to be rendered while achieving good
visual quality of terrains.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 149 Issue 5, Volume 10, May 2013

Nevertheless, when the size of simplified model
also exceeds the capacity of main memory, and then
the out-of-core schemes must be considered. Many
researchers have concentrated on the data structures
and algorithms of out-of-core terrain visualization.
These strategies focused on the cache management
of data, which resolves the bottleneck that takes
much time when massive data is transferred from
the external memory to the main memory.
Lindstrom et al. [12, 13] proposed out-of-core
visualization of large-scale terrain relies on an
approach of view-dependent simplification. The
works in [14-18] adopted pyramid model, which
linearizes multi-resolution terrain data and stores
them into the external files. However, the above-
mentioned algorithms have numerous redundant
data in the terrain model of large regions and
increase the cost of the external memory.

In this paper, we proposed a visualization
method for large-scale terrain dataset. The major
contributions can be listed as follows.

(1) We present a method of non-redundant
storage that reduced the cost of the external memory.

(2) To improve the rendering speed, new
methods of error metric and dynamic construction
of continuous LOD model are achieved.

(3) A pre-loading scheme based on view frustum
extension is proposed, which implements the real-
time loading of datasets.

The rest of the paper is organized as follows.
Section 2 discusses the construction of out-ofcore
multi-resolution model. Section 3 gives the details
of real-time rendering of block-based multi-
resolution terrain. Section 4 proposes scheduling
and pre-loading scheme based on view frustum
extension. The experiments and conclusion of this
paper are given in Section 5 and Section 6
respectively.

2 Out-of-Core Multi-resolution Model

2.1 Terrain Segmentation
Obviously, it is impossible to pre-load all the
datasets of large-scale terrain into the main memory
for visualization. Thus, we divide the original
terrain data with the resolution of

)12()12(mn vertices into a set of uniform blocks

in preprocessing stage. As shown in Fig.1, each
block has)12()12(kk vertices, and the whole

terrain is divided into kmkn 22 blocks.

Fig. 1 Terrain Segmentation

We denote each of the block at row i, column j
by RowiColj. To facilitate the storage and the index
of data, based on the spatial location of each block
in the original terrain, a grid index file is built by
which all the blocks are effectively organized in the
external memory.

2.2 Multi-resolution Construction
For each block, a LOD hierarchy, which contains
different resolution of elevation data, is constructed
based on quadtree-split. Fig.2 shows the subdivision
of quadtree hierarchy.

Fig. 2 Quadtree subdivision of terrain blocks

The main idea is to start with a coarse terrain
dataset level-0, and it recursively constructs finer
level by splitting node into four child nodes from
top to bottom, until level i >L, where L is the
maximum of level. Each node is composed of
vertices.

In order to store the hierarchical multi-resolution
data, pyramid model [14-17] is the most used
approach. Each level of the pyramid corresponds to
a resolution of height map, which leads to numerous
redundant data. We assume that the current level is i,
i [1, L], then the number of redundant vertices
between adjacent levels are)12()12(11 ii .

Obviously, with the increase of the depth of
quadtree-split, the redundant data will dramatically
increase.

To deal with this problem, we adopt a different
storage strategy. The main idea of our method is to
store the newly added vertices in each level. As
shown in Fig.3, the lowest resolution data is taken
as level-0, which has four vertices (0~4). Quadtree
subdivision constructs level-1 based on level-0, five
vertices (4~8) are generated. In traditional pyramid
model, all the vertices in level-1 must be stored.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 150 Issue 5, Volume 10, May 2013

Therefore, more and more redundant vertices are
reproduced with the increase of levels. In contrast to
pyramid model, we store only the newly added
vertices in each level. Then a linear sequence is
constructed, e.g. in level-1 we just store five vertices
(4~8). Thus, there are no redundant data in block
and the cost of the external memory is reduced.

Fig. 3 Block non-redundant data storage method

We apply Equation (1) and Equation (2) to
calculate the start offset and the end offset of
elevation value in terrain files:

 1),12()12(

0,0
)(

11 n

n
nOffset

nnstart
(1)

() (2 1) (2 1) 1, 0n n
endOffset n n (2)

To access hierarchical data efficiently, level
index file and order index file are built, which are
list structure and reside in the main memory. Level
index file records the hierarchy number that vertices
belong to，and order index file records the location
offset of each vertex in a level.

In preprocessing stage, elevation values of
vertexes are constructed into a linear sequence by
adopting non-redundant storage method. Then the
level and the order number of each vertex are
calculated, and the values are written into the
corresponding index files. In real-time rendering
stage, following steps are performed:

Step 1. Get the coordinate value (X, Z) of current
vertex in block.

Step 2. Get level number of current vertex in
block by querying the level index file.

Step 3. Get order number of current vertex in the
corresponding level by querying the order index file.

Step 4. Get elevation value by calculating the
offset.

Let us take a 5×5 terrain block as an example. As
shown in Fig.4, for the vertex numbered 21, its
coordinate is (3, 3). Firstly, by querying the index
files, we know the corresponding level number of
vertex 21 is 2, and the order number is 12. Secondly,
using Equation (1) to calculate its start offset
(

startoffset)2(= 9). Thus, the location of the elevation

value in linear sequence is 21(
startoffset)2(+12).

Elevation values

02120

22222

12121

22222

02120

indexLevel

3154142

131211109

38271

65432

11000

indexOrder

Level
Level 1

Level 2

Fig. 4 Mapping relationship among vertex
coordinate, index file and elevation value

2.3 Static Error
Static error is the difference of elevation values, i.e.,
the vertical distance among corresponding vertices
in the original and the approximate mesh. It is
independent of the viewpoint. To obtain error metric
as fast as possible in rendering stage, in this paper,
we calculate static error in pre-processing.

The static error of parent nodes is not always
larger than their children’s, which leads to an
imprecise approximation of terrain surface. To
tackle with this problem, an error function

)(l
iStaticE , denoted as Equation (3), is applied to

ensure that the error of parent node is larger than its
child nodes.

max

]4,1[
],...1[

max

)}}({max,)(max{

)(

)(
max

llStaticEH

llH

StaticE l
i

i
lll

l
i

l
i

l
i

 (3)

where)(l
iH , defined in Equation (4), is the

static error of node i in level l. It is the maximal
value of six vertices error, including four midpoints
of node’s edges and two midpoints of diagonal lines.

)(max)(
6...1

n
n

l
iH

 (4)

1..6

() ()n n n
n

f v f v

 (5)

)(nvf is the original elevation value of vertices

nv ,)(nvf is the elevation value calculated by

linear operation.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 151 Issue 5, Volume 10, May 2013

3 Real-Time Rendering of Block-
based Multi-resolution Terrain

3.1 View Frustum Culling
In fact, due to the limitation of view field of
frustum, most of the elevation data are not involved
in rendering of the final terrain image. Therefore,
view frustum culling is an efficient way to increase
the rendering speed. Generally, view frustum culling
needs to test six planes of the view frustum. To
reduce the computational complexity, we adopt a
fast culling simplification algorithm based on
projection of view frustum.

As shown in Fig.5, we discard three of the six
planes by ignoring the near clipping plane, top
clipping plane, bottom plane and simply projecting
the view frustum to x-z plane.

Fig. 5 Simplification of frustum culling

The culling is implemented by intersection test
based on blocks of the terrain. The blocks, which
intersect with projection triangle, construct the
visual region. The rendering of the rest blocks is
unnecessary.

3.2 Error Metric
Error metric is measurement of how well the coarse
mesh approximates the full resolution mesh, and it
is a criterion for the selection of which level to be
rendered. Classical error metric has only considered
with the static error that related to the roughness of
surface and the distance from viewpoint to the
center of current terrain node, which may lead to
unnecessary splitting. We put forward a sight-line-
dependent method to calculate screen error. To
improve clarity in the following, we first introduce
some parameters.

As shown in Fig.6, is the vertical field angle of
the viewpoint. d is the distance from viewpoint to
screen. H stands for the width of screen.

represents the angle between the sight line and
terrain. D is the distance from viewpoint to the node.
 and represent static error and screen error

respectively. has been calculated in preprocessing

stage and is a dynamic value which is calculated

in the rendering stage.

d

H

Fig. 6 Error metric

Firstly, considering angle between sight line

and terrain, the larger the angle ，the smaller the
screen error of the node. Therefore, the equation of
screen error is as follows:

2
tan2

cos

D

H
 (6)

Secondly, the relationship between sight line and
node need to be considered. As shown in Fig. 7,

angle 2 is smaller than angle 1 , that is to say,

node 2 is closer to the direction of sight line than
node 1, and then it should have higher precision.

1

2

Fig. 7 Relationship between sight line and node

Thus, suppose that the angle between direction of
sight line and current node is , the final equation

for calculating the screen error can be expressed as:

)sin1(
2

tan2

cos

D

H
(7)

where is the threshold value, and the node
needs to be split when .

Our error metric method not only considers with
the roughness of terrain surface and viewpoint
distance, but also introduces sight line as an
important factor, so that the result is more
reasonable.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 152 Issue 5, Volume 10, May 2013

3.3 Dynamic Construction of Continuous
LOD Model
For the blocks in visual region, the continuous LOD
model needs to be constructed. In general, we could
adopt Equation (7) to calculate screen error .

Whether blocks will be split depends on the values
of and threshold . However, it is unnecessary

to construct continuous LOD model for the whole
region, because only the data in projection triangle
area need to be rendered. To improve efficiency and
reduce redundant triangles, we adopt bounding
circle to determine the visibility of quadtree nodes
and combine with error metric method to implement
the dynamic construction of continuous LOD
model. As shown in Fig.8, we present the algorithm
as follows:

Step 1. Split the current node that intersects with
view frustum by quadtree-split.

Step 2. Set the diagonal of child node as diameter,
and construct bounding circle of each child node.

Step 3. Test intersection between bounding circle
of each node and the projection triangle of view
frustum. Ignore the non-intersected nodes, and the
intersected nodes go to step 4.

Step 4. Use Equation (7) to calculate the
corresponding screen error . The nodes that satisfy

 > are split recursively. For each child node,

repeat above step 2 to step 4, until current node is
leaf node or < .

Fig. 8 Construction of continuous level of detail

4 Scheduling and Pre-loading Scheme
based on View Frustum Extension
For the massive terrain data, it is difficult to load all
the datasets in main memory. Thus, developing
effective scheme to decrease the time-consuming
data loading from the external memory becomes the
principal task for interactive large-scale terrain
visualization.

In terrain visualization systems, the viewpoint is
always navigating in the scene. If we can predict the
data that required in the following times and load
them in advance from the external memory, the time
for data exchange between the main memory and
the slower external memory in rendering stage will
be eliminated effectively. Based on this idea, we
propose a scheduling and pre-loading scheme for
terrain data, as shown in Fig.9.

Fig. 9 View frustum extension-based pre-loading
scheme

The terrain coverage is divided into view frustum
region, view frustum extension region, visual region,
scheduling region and pre-loading region. View
frustum region is defined by view frustum, and it
depicts the area user can see. Visual region consists
of terrain blocks that intersected with view frustum.
M is a set of blocks in visual region, which is used
to construct continuous LOD model. View frustum
extension and view frustum are two similar triangles.
The terrain data that must be loaded is dependent on
the size of view frustum extension. Scheduling
region consists of terrain blocks, which intersected
with view frustum extension. N is a set of blocks in
scheduling region, which need to be loaded in the
main memory. The set MN depicts terrain blocks
in pre-loading region, which is the predicted data of
next frame.

As shown in Fig.9. R is the length of two legs of
isosceles triangle of view frustum. The distance

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 153 Issue 5, Volume 10, May 2013

from vertex A to vertex B is L. With the increase of
L, the requirement of viewpoint for high-speed
rotation motion is more able to meet, but the cost of
scheduling is higher at the same time. Generally, we
define L has the same value as the length of a block
boundary. Distance from vertex A to the hypotenuse
is L+R+S. S is variable, which is determined by
motion speed and the direction of viewpoint. We
can use S to adjust the range of view frustum
extension dynamically.

As shown in Fig.10, for the translational motion
of viewpoint, when the angle between motion
direction and the direction of sight line in [0, /2),
S is proportional to the velocity component in sight
line direction. For the other translation and rotation,
S is 0. Assume that the current motion speed is Vi,
the angle between motion direction and direction of
sight line is , and the frame rate is f. Si can be
calculated as follows:

cos / [0,)
2

i
i

V f
S

others

，

0，
(8)

(a))2/,0[(b) 2/

(c) 2/ (d) Rotation

Fig. 10 The calculation method for S

We apply multi-threading mechanism to speed
up scheduling and rendering process.

The main functions of main thread include
calculation of view frustum and view frustum
extension, choosing terrain blocks for data loading
and unloading, updating linked list and rendering
terrain data. Main thread creates a sub-thread for
each terrain block that need to be fetched or
unloaded. The main functions of sub-thread are
calculation the levels of detail of current block,
loading or unloading terrain data level-by-level,
sending signal if a block need to be rendered.

The procedure of main thread is as follows:
Step 1. Get the position of current viewpoint,

calculate view frustum and view frustum extension
by the speed and direction of motion.

Step 2. Perform intersection tests between
projection view frustum and blocks. Construct
linked list for the blocks that intersected with view
frustum and set the value of n, which records the
number of blocks that need to be rendered.

Step 3. Create a sub-thread for each block in
linked list respectively to implement data scheduling.

Step 4. Check the value of n. If n=0, shutdown
all the sub-thread, and go to step 5. Otherwise,
determine whether there are signals from terrain
blocks. If no signal has arrived, then go on to wait.
Otherwise, scan linked list, render the terrain block
that sent signal, set n=n-1, and return to step 4.

Step 5. Finish.
The procedure of sub-thread is as follows:
Step 1. Test whether current level of detail is the

suitable one for the current terrain block. If it is true,
go to step 1.1. Otherwise, go to step 1.2.

Step 1.1 Test whether current block need to be
rendered. If it is true, go to step
1.1.1. Otherwise, go to step 1.1.2.

Step 1.1.1 Send signal, go to step 2.
Step 1.1.2 Go to step 2.

Step 1.2 Load or unload the data by one level,
and return to step 1.

Step 2. Finish

5 Experiments and Discussions
We use OpenGL on C++ platform to implement the
method presented in this paper, and carry out related
experiments on PC. The computer configuration
used for experiments is Windows XP operating
system, 2G memory, and NIVDIA 9800GT graphics
card.

Grand Canyon (Arizona, USA), Puget Sound
(Washington State, USA) and Southeast of China
are tested as the data sources. The size of Grand
Canyon dataset is about 16M with the resolution of
4097×2049, which covers a rectangle area with
width 112km and length 224km. The original size of
Puget Sound dataset is about 512M, with the
resolution of 16385×16385 grid of 16bit heights
covering a square region of length about 160km.
The original size of Southeast of China dataset is
about 2.01G, with the resolution of 36006×30006.

In preprocessing stage, we construct block-based
multi-resolution structure. The size of each block is
1025×1025. Mipmapping technique is applied to
construct the corresponding textures of the terrain.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 154 Issue 5, Volume 10, May 2013

The textures are compressed to DXT1 format. Table
1 shows the size of data before and after treatment.

Table 1. Experimental Data

Dataset
DEM data Texture data

Original
size

After
Processing

Original
size

After
Processing

Grand
Canyon

16.04M 17.3M 24M 5.33M

Puget
Sound

512M 555M 768M 170M

South-
east of
China

2.01G 2.18G 3.01G 685M

We have compared our external memory cost
with some pervious works. The Puget Sound dataset,
for example, in [12] and [16-17], the cost are 5G
and 1.5G. Our method has reduced the external
memory cost by 90% and 60%.

When thresholds is 2, the visualization results
of large-scale terrain by our method are shown in
Fig.11, which indicate that our method can render
large-scale terrain of the fine details and it has little
perceivable loss in image quality.

(a) Grand Canyon

(b) Puget Sound

(c) Southeast of China

Fig. 11 Visualization results of large-scale terrain

To testify the rendering efficiency of our method,
we rendered three terrain datasets to a 1024×768
view port respectively. The fly-through path is
predefined, and the rendering mode is terrain
geometry with texture. We recorded the frame rate
and triangles per frame with different thresholds of
screen error. The results are shown in Fig.12-Fig.14.

(a) Frame rate

(b) Triangles per frame

Fig. 12 Experiment of Grand Canyon with 10000
frames

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 155 Issue 5, Volume 10, May 2013

(a) Frame rate

(b) Triangles per frame

Fig. 13 Experiment of Puget Sound with 10000
frames

(a) Frame rate

(b) Triangles per frame

Fig. 14 Experiment of Southeast of China with
10000 frames

At the same time, we made statistical analysis of
the average frame rate, triangles per frame and main
memory cost while navigation. Table 2 shows the
results.

Table 2. Statistics on frame rates, rendering
complexity and peak value of memory cost while

navigating

Dataset

Average
Triangles

per
frame

Average
Frames per
second(fps)

Peak
value of
memory

cost
(M)

Grand
Canyon

1 77,350 48 61
2 24,390 110 54

Puget Sound
1 98,230 40 102
2 33,430 67 85

Southeast of
China

1 184,880 34 142
2 42,310 65 92

Southeast of China is large enough to show the
visualization efficiency of our method for massive
datasets. Puget Sound and Grand Canyon represent
medium and small datasets respectively. The
outcome of experiment indicates our method can
achieve a high frame rate, which can meet the basic
requirement of the interactive visualization.

We also carried out an experiment to testify the
efficiency of scheduling scheme. In this experiment,
threshold is set to 2. The results are as shown in
Table 3. Experimental results show that the I/O time
is relatively long in the first frame. This is because
all the needed data are loaded from external memory.
However, benefited from pre-loading scheme, in
following frames, the total quantity of real-time
loading data is reduced significantly and the
scheduling efficiency is increased.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 156 Issue 5, Volume 10, May 2013

Table 3. Results of loading data and scheduling time

Frame
series

number

Grand Canyon Puget Sound Southeast of China

Needed
data
(M)

Real-time
loading

data
(M)

I/O time
(ms)

Needed
data
(M)

Real-time
loading

data
(M)

I/O
time
(ms)

Needed
data
(M)

Real-time
loading

data
(M)

I/O
time
(ms)

1 1.193 1.193 20.2 1.307 1.307 21.3 1.425 1.425 30.9
162 1.578 0.376 3.88 1.975 0.032 0.59 0.390 0.012 0.24
388 1.297 0.094 1.18 2.445 0.034 0.97 1.975 0.032 0.90
4509 1.372 0.372 3.38 1.284 0.007 0.19 1.472 0.085 0.07
5330 1.446 0.024 0.67 1.719 0.007 0.16 1.769 0.125 1.10
7374 1.508 0.094 0.70 1.113 0.008 0.23 1.267 0.126 1.15
8208 1.384 0.366 3.31 2.267 0.024 0.30 0.272 0.024 0.46

10000 1.203 0.019 0.41 1.132 0.014 0.29 1.132 0.113 1.09

6 Conclusion
In this paper, we present an effective out-of-core
large-scale terrain visualization method. To realize
the multi-resolution storage, a non-redundant
storage method is adopted, which can effectively
reduce the cost of external memory. Moreover, in
order to increase the rendering speed, new error
metric and dynamic constructions of continuous
LOD models methods are introduced. At the same
time, to ensure the continuity of navigation, a
scheduling and pre-loading scheme based on view
frustum extension is presented. We analyzed the
performance of our method. The results showed that
our method could provide solution for interactive
rendering terrain scene with large dataset.

There also exists some limitations in our method.
We apply Mipmapping technique to deal with the
textures of terrain, which may increase extra
memory cost, although compression approach is
used. Furthermore, in our method, we assume the
terrain is non-spherical structure; therefore, our
work currently can deal with only planar terrain.

In the near future, we expect to improve our
method to visualize spherical terrains [19, 20].
Moreover, the challenging issue of large-scale
dynamic terrain [21, 22] is also one of our future
research topics.

Acknowledgement:
The authors wish to thank the anonymous reviewers
for their thorough review and highly appreciate the
comments and suggestions, which significantly
contributed to improving the quality of this paper.
Also, we would like to thank Dr. Yugang Liu who
spent time on reading the earlier drafts of this paper.

This work is supported by National High
Technology Research and Development Program of

China (No. 2012AA011503), Project on the
Integration of Industry, Education and Research of
Guangdong Province (No. 2012B090600008) and
pre-research project (No. 51306050102).

References:
[1] C. J. Yang, F. Q. Zhang, S. Wu, 3D

Geographic information system on Wenchuan
earthquake, Journal of Remote Sensing, Vol.12,
No.6, 2008, pp. 839-899. (in Chinese)

[2] H. Q. He, Y. Y. Xing, T. B. Wang, Real-time
rendering system of large-scale terrain in flight
simulation: design and implementation, In Proc.
CGIV’09, Tianjin, China, 2009, pp. 180-185.

[3] X. Y. Li, M. Li, W. Cai, The research of 3D
terrain generation and interactivity realization
techniques in virtual battlefield environment, In
Proc. ICIG’09, Xi’an, China, 2009, pp. 668-
671.

[4] H. Qiu, L. T. Chen, 3D Visualization of radar
coverage considering terrain effect, Journal of
Electronic Measurement and Instrument,
Vol.24, No. 6, 2010, pp. 528-535.(in Chinese)

[5] J. WU, Y. F. Yang, S. R. Gong, et al, A new
quadtree-based terrain LOD algorithm, Journal
of Software, Vol.5, No.7, 2010, pp.769-776.

[6] P. Lindstrom, D. Koller, W. Ribarsky, et al,
Real-time, continuous level of detail rendering
of height fields, In Proc. SIGGRAPH’96, New
Orleans, USA, 1996, pp. 109-118.

[7] M. Duchaineau, M. Wolinsky, D. Sigeti,
ROAMing terrain: real-time optimally adapting
meshes, In Proc. Visualization’97, Phoenix,
USA, 1997, pp. 81-88.

[8] H. J. Zhang, Y. H. Lv, S. H. Liu, A terrain
model simplification method based on adaptive
areas division, Journal of Computer Research

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 157 Issue 5, Volume 10, May 2013

and Development, Vol.47, No.1, 2010, pp. 53-
61.(in Chinese)

[9] F. Losasso, H. Hoppe, Geometry clipmaps:
terrain rendering using nested regular grids,
ACM Transactions on Graphics, Vol.23, No.3,
2004, pp. 769-776.

[10] Y. Livny, Z. Kogan, J. Elsana, Seamless
patches for GPU-based terrain rendering, The
Visual Computer, Vol.25, No.3, 2009, pp. 197-
208.

[11] R. Pajarola, E. Gobbetti, Survey on semi-
regular multiresolution models for interactive
terrain rendering, The Visual Computer, Vol.23,
No.8, 2007, pp. 583-605.

[12] P. Lindstrom, V. Pascucci, Visualization of
large terrains made easy, In Proc.
Visualization’01, San Diego, USA, 2001, pp.
363-370.

[13] P. Lindstrom, V. Pascucci, Terrain
simplification simplified: a general framework
for view-dependent out-of-core visualization,
IEEE Transactions on Visualization and
Computer Graphics, Vol.8, No.3, 2002, pp.
239-354.

[14] B. S. Deng, R. H. Yu, F. Y. Qin, et al, Research
on seamless rendering of large scale terrain,
Application Research of Computers, Vol.29,
No.1, 2012, pp. 369-372.(in Chinese)

[15] S. Zhao. Y.P. Lu, Multi-resolution quadtree
based algorithm for real-time visualization of
massive terrain dataset, In Proc. ICMT’2011,
Hangzhou, China, 2011, pp. 5934-5938.

[16] S. X. Shi, X. Z. Ye, S. Y. Zhang, Partition
based on real-time rendering method for large-
area terrain data, Journal of Zhejiang
University (Engineering Science), Vol.14,
No.12, 2007, pp.2002-2006.

[17] Y. Q. Lu, Study of the real-time rendering for
large-scale terrain dataset, PhD Thesis,
Zhejiang Univsersity, 2003.(in Chinese)

[18] X. H. Long, Y. P. Jin, Y. L. Song, Research on
realistic rendering technology for large-scale
terrain, Computer Engineering, Vol.38, No.7,
2012, pp. 260-262.(in Chinese)

[19] M. Clasen, H. C. Hege, Terrain rendering using
spherical clipmaps, Eurographics/ IEEE-VGTC
Symposium on Visualization’06, Lisbon,
Portugal, 2006, pp. 91-98.

[20] R. Westerteiger, A. Gerndt, B. Hamann,
Spherical terrain rendering using the
hierarchical HEALPix grid, In Proc. IRTG’11,
Kaiserslautern, Germany, 2011, pp. 13-23.

[21] V. R. Kamat, J. C. Martinez, Large-scale
dynamic terrain in three-dimensional
construction process visualizations, Journal of

Computing in Civil Engineering, Vol.19, No.2,
2005, pp. 160-171.

[22] D. Wang, Y. N. Zhang, P. Tian, et al, Real-time
GPU-based visualization of tile tracks in
dynamic terrain, In Proc. International
Conference on Computational Intelligence and
Software Engineering, Wuhan, China, 2009, pp.
1-4.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hang Qiu, Lei-Ting Chen, Guo-Ping Qiu, Hao Yang

E-ISSN: 2224-3402 158 Issue 5, Volume 10, May 2013

