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Abstract: - We present a method for partitioning the state-space based on the sum-of-digits in order to conduct 
parallel state-space exploration and hashing. The method has a configuration for storing the universe of the 
state-space using multiple hash tables generating a reduced number of address collisions. This paper presents 
the partitioning result, the number of address collisions generated with the proposed hashing method, the 
efficiency in reducing the number of address collisions, an estimation of the number of address collisions, and 
the probability of the unfitness of our estimation for the size of our arrangement of multiple hash tables with 
respect to the real sizes. 
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1 Introduction 
The full exploration of a state-space is the storing in 
memory of all possible succession of states existing 
in a dynamical system represented with an explicit 
directed graph. In computing terms, the exploration 
demands a large amount of memory and time to 
accomplish. These are usually ignored because the 
entire state-space is sometimes just an implicit 
representation using a mathematical model of 
computation, like state machines and Petri nets. 

Algorithms for parallel exploration of state-
spaces through a network of distributed-memory 
multiprocessors based on the message passing 
paradigm are becoming important in order to speed-
up the computing [1]. 

Graph partitioning algorithms [2-4] are used for 
distributing workloads of parallel computations, but 
usable only with explicit directed graphs. When the 
graph representing the state-space to explore is 
unknown, an approach is to suggest an a priori 
workload distribution based on a heuristically 
defined partition of the probable explicit graph. 

For the first problem targeted in this paper, the 
objective of partitioning is to evenly distribute the 
number of vertices in the directed graph with edges 
linking to other vertices belonging to different 
partitions, balancing with this the workload. 

In this paper, we propose using the function of 
sum-of-digits (SOD) of keys as our partitioning 
function. However, the domain of the partitioning 

function is not the unknown state-space but its 
deducible universe of keys. 

Keys are the numeric descriptors of all the 
vertices of a directed graph, and a partitioning 
function determines membership of a key in a 
partition. The sizes of the partitions of the universe 
generated by the function are certainly not uniform. 
The sizes of their distribution appear like a normal 
probability distribution (NPD) [5-8]. Then by the 
principle of centrality, in the progression of the 
state-space exploration, the edges may be linked to 
vertices having keys with SOD following a NPD. 

The previous contention may lead to a 
partitioning with a significant reduction of cross 
transitions [9]. For the parallel state-space 
exploration of any unknown explicit graph, this may 
be interpreted as an advantage for reducing network 
communication and hence reducing exploration time. 
Additionally, we show how to evenly assign 
workload to a number of parallel computing-
memory nodes in a network. 

For the second problem, the one of storing in the 
explored state-space in a reduced memory space, we 
present a set of hash functions where each function 
has as domain a partition of the universe of keys. 
The hash functions are based on the traditional 
modulo operation but applied in an unorthodox way, 
and an additional key conversion using the casting-
out-nines operation. With this conversion we can 
ignore the constrain of mapping as evenly as 
possible the output range, i.e. to get uniformly 
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distributed hash addresses, and still produce a 
reduced number of address collisions. 

We demonstrate its effectiveness in obtaining a 
reduced number of hash address collisions in 5 
universes of keys, by means of exhaustive analysis 
and estimation. 

Finally, we present the probability associated 
with the unfitness of our proposal of multiple hash 
tables with normal sizes. 

Chapter 2 includes the necessary and sufficient 
background regarding state-space. Chapter 3 is 
about partitioning of the universe of keys. Chapter 4 
covers storing with hashing and chapter 5 explains 
our scheme of multiple hash tables as a result of the 
partitioning. Chapter 6 contains the probability of 
unfitness and the increased number of address 
collisions. In the last section we provide a resume of 
the paper. 

 
 

2 Background 
In this section, first we describe the fundaments of 
the state-space and its implicit representation with 
Petri nets. For additional details about Petri nets the 
reader is addressed to [10-11]. 

 
 

2.1 Petri Nets 
The implicit directed graph representing a dynamic 
system is denoted by a Petri net (PN).  An ordinary 
PN is a tuple GPN=(P, T, A, B, Q), where P is a 
finite non-empty set of numbered and ordered i 
places, T is a finite non-empty set of numbered and 
ordered j transitions, A is the set of directed arcs 
connecting places to transitions, B the set of 
directed arcs connecting transitions to places, and Q 
is a capacity function for the places mapping P  
N={1, 2, ...}. 

Tokens are black dots that exist only in the places, 
and by putting tokens in places we describe states of 
a PN system, where s0 is the initial state. States are 
usually called markings. The function s is called a 
marking function, mapping P  N. A PN with 
initial marking is called a PN system. We say that a 
place p is marked when s(p) > 0. A marking s is 
represented with a vector s ∈ Ni. 

A PN is also mathematically represented with the 
pre and post-incident matrices A and B 
respectively having both i rows and j columns, with 
values of [A(pi, tj)] and [B(pi, tj)] respectively. 

To determine the succession of states, or 
markings, in a PN system with initial marking s0, is 
throughout complete exploration of every 
succession, or firing of enabled transition. Each 

marking can be generated with the state transition 
function sn = sc+(B−A)×σ. In the formula sc 
is the current marking, sn is the next marking and 
σ is a firing count vector representing the number 
of times every transition has fired. 

Occurrence of every single transition is carried 
out for complete exploration of the state-space of a 
PN system. Occurrence of solely concurrent 
transitions could lead to incomplete exploration of 
the state-space. 

The set of markings of a PN system is called the 
reachability space and usually denoted with R(s0) 
and its cardinality is expressed with |R(s0)|. 

 
 
2.1.1 Reachability graph 
All possible markings and all possible firings of a 
PN system are explicitly drawn in a way they 
represent a directed graph of R(s0). 

Given a PN system (GPN, s0), GR stands for the 
reachability graph of R(s0), defined as the 
succession of markings generated by the PN system, 
according to every single transition occurrence. The 
graph is the tuple GR=(V, E) where V is the set of 
vertices (markings) and E the set of edges (transition 
firing) connecting pair-wise vertices. Self-loops are 
not permitted. 

Now, vertices can be numerically represented by 
state descriptors called keys. It is common practice 
and more convenient to work with the set of keys, 
denoted with K, than directly with the markings of 
R(s0). 

Different methods exist to define keys. In the 
simplest injective method, a key is generated from 
the concatenation of markings in all places of a PN, 
where a marking in a place uses a number of digits 
according to its tokens capacity, with explicit left-
side zeros. In this paper, we present our solution for 
these sets of keys. 

 
 

3 Partitioning 
Here we present the first problem formulation 
towards achieving a parallel exploration of the state-
space. It is the partitioning of the state-space across 
multiple computing-memory nodes. 

A x-way partition of a reachability graph GR of 
R(s0) is the mapping of vertices into x subsets, i.e. V 
 [1, 2, ..., x], where 

zyandxxwithVx zy ≠=∩= ε
 . 

Given a reachability graph GR of R(s0), the graph 
partitioning problem seeks to find a x-way partition 
in which each subset contains roughly the same 
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number of vertices and the number of cut edges is 
minimized. 

A cut edge is a subset of E with endpoint vertices 
belonging to different partitions. These are the 
subsets of edges whose removal breaks the 
reachability graph into disjoint subsets of vertices. 

Each subset represents data to be assigned to a 
single computing-memory node (the workload) and 
cut edges represent the network communication 
among nodes required by the distribution. Thus, the 
solution to the problem attempts to find a 
distribution that balances the computation done by 
each node while minimizing the total inter-node 
communication. 

Now, the way how the number of edges per 
vertex might fluctuate in the reachability graph 
during the course of an exploration is unknown. 
Moreover, it is also unknown how any a priory 
partitioning of the graph might end up distributed. 
Therefore, since the size and structure of the state-
space is unknown, probably the best alternative may 
be to work with the deducible finite universe of 
states. 

 
 

3.1 Keys in Partitions 
We extend the problem of finding a partitioning for 
K as the problem of finding a partitioning for the 
universe of keys Ω, where K ⊆ Ω. 

We define for the universe of keys Ω, the 
minimum key kmin is 0 and the maximum key kmax is 
an integer with n 9’s, where n is decided by the 
analyst. E.g., for a state-space with a key kmax of 4 
digits, its keys are in a universe of keys from 0 to 
9999. The cardinality of |K| might be ignored, but 
the cardinality of |Ω| is kmax+1. 

All keys in a partition having the same SOD can 
be exhaustively constructed with the theory of 
partitions and compositions [12]. 

Let us enumerate the digits of a key as α1, α2, ...; 
e.g. for a key k=47293, α1=4, α2=7, α3=2, α4=9 and 
α5=3. The length of a key (number of digits) is the 
function d(k). 

A partition of an integer key is an n-length SOD 
α1+α2+...+αn such that the sum of α’s is SOD(k), and 
all α’s are ordered from largest to smallest; e.g. the 
partitions of 3 are 3, 21 and 111. 

A composition is similar to a partition except for 
the order of α’s does not matter. E.g., the 
compositions of 3 are 3, 12, 21 and 111. 

A weak composition is a composition allowing 
α’s in the sequence to be zero. Adding zeroes at the 
left side of the leftmost non-zero digit of a sequence 
is not considered to define a different composition. 

If the length of the composition is not bounded by a 
number n then it can be infinite. E.g., the weak 
compositions of 3 with n=4 are 3, 12, 21, 30, 102, 
111, 120, 201, 210, 300, 1002, 1011, 1020, 1101, 
1110, 1200, 2001, 2010, 2100 and 3000. 

Keys existing in a partition having the same SOD 
are obtained with the function 

sck += 9 .   (1) 
In (1), s is the SOD and c is a set of strictly 

monotonically increasing non-negative and non-
linearly separated integers. E.g., for the partition of 
s=2, the set of integers c = {0, 1, 2, 11, 12, 22} 
produces the ordered keys k = {2, 11, 20, 101, 110, 
200}. 

 
 

3.2 Partitioning Size 
Let us define the variable X of partitions with a and 
b the minimal and maximal partition values in X 
respectively. In this paper, the scheme how we want 
to put keys in partitions follows a probability 
density function f(x), i.e. for the variable X of 
partitions 

∫ ==≤≤
b

a

dxxfbXap 1)(][ . (2) 

In (2), f(x) is the probability density function and 
(a, b) represents the range of X. 

We implemented a partitioning scheme for the 
universe of keys Ω following the NPD generated 
from the SOD of the keys. We selected the SOD 
function because our intuition is that the way how 
events in a state-space modify the components in the 
state vector may obey the principle of centrality, i.e. 

)ˆ,ˆ(~ σµNX .  (3) 
In (3), if the variable X is the SOD(k) of all keys 

in Ω, its distribution appears like a NPD with 
estimated mean and sigma of kmax/2 and kmax/6 
respectively. 

 
 

3.3 Partitioning Function 
A partitioning function Pt determines membership 
in a partition. The partition function Pt is the 
mapping of keys in K to partitions in X, producing 
the distribution of keys to partitions according to 
f(x), i.e. 

XKPt →: .  (4) 
In (4), the keys kmin and kmax are mapped to the 

values of a and b respectively. 
Thus, we defined our partitioning function as the 

sum-of-digits of a key, i.e. 
)()( kSODkPt = .  (5) 
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3.4 Workload Distribution 
Traditionally, workload distribution assigns one 
processor-memory node to one partition for the 
exploration and hashing of only that partition. In our 
case it is different. 

The maximal number of partitions in the 
universe of keys may limit the maximal number of 
nodes to work with. But also, the maximal number 
of nodes in the network may limit the distribution of 
partitions among them. 

We assign a number of partitions to a processor-
memory node in a manner to distribute the same 
number of keys in the universe among all nodes. In 
this way, processor-memory nodes may explore and 
hash different number of partitions, but the 
partitions have a number of keys from the universe 
of keys as evenly as possible to the other nodes [9]. 

E.g., for an undefined state-space, for its 
universe of keys Ω where kmax is 9999, the partition 
corresponds to 37 groups of SOD, and the sizes of 
the 37 hash tables may follow a NPD. 

For a target computing architecture of 4 nodes, 
the figure 1 presents a proposed scheme for parallel 
computing. 

 

 
Fig. 1.  Distribution of partitions to nodes. 

 
The density each node holds is oriented to be as 

balanced as possible. In the example, it is around 
25%. 

Furthermore, the hash tables in the nodes, 
numerically identified along the number of 
partitions, may be assigned in contiguous order to 
the nodes to take advantage of the principle of 
centrality and reduce network communication as 
much as possible. 

 
 

4 Hashing 
One method to store the information of R(s0) is to 
use its set K to generate an index for a static array. 
This arrangement is called a hash table [13]. 

Usually, when the size of the array is smaller than 
the key kmax in K, or |K| is ignored, a non-injective 
hash function h is used to accommodate the 
information in the hash table. The function is a map 
of the set K to the number of slots in the tables, i.e. 

}1,...,2,1,0{: −→ mKh .  (6) 
In (6), m is the number of slots, also called the 

size of the space of hash addresses in the hash table. 
 
 

4.1 Hash Functions 
Hash functions are required to have the following 
properties [14]: 
- They must be easy to compute. 
- They must distribute the hash addresses 

uniformly. 
The second property is to distribute the addresses 

as evenly as possible and avoid a large number of 
hash address collisions, meaning the mapping of 2 
or more keys to the same address. 

The simplest hash function to generate uniformly 
distributed addresses is by arithmetic operation of 
division, where m is the number of slots in the table, 
k divides m and the residue is the respective address 
h(k). The address is also the result of the modulo 
operation in (7) when using a computer 
programming language. 

),mod()( kmkh = .         (7) 
It is relevant to mention that mod(m,0) is 0 and 

the case mod(0,k) is not considered due to there are 
no tables with size of 0. 
 

 
5 Multiple Hash Tables 
If we partition the universe of keys Ω according to 
Pt, then we can generate a number of hash tables 
according to X with sizes that might follow f(x). 
This scheme of multiple hash tables is suitable for a 
computing scenario of parallel exploration of the 
state-space. 

Now, each partition contains a subset of keys 
from Ω. In this paper, we already analysed the sets 
of keys based on the proposed partition scheme. 
Now we present our set of hash functions for each 
partition. 

 
 

5.1 Size of Multiple Hash Tables 
Given the maximal number of slots we can have, i.e. 
the size of the universe of keys or kmax, it is 
straightforward the allocation of slots to the tables 
by multiplying every integer value in the range (a, 
b) of X by the number of slots, and rounding the 
number up (or down) to the next higher integer, i.e. 
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  ),()ˆ,ˆ;( bainxxNm ∀× σµ .   (8) 
Focusing only in the direct space assigned for 

hashing, in a exploration scenario using shared-
memory, in theory our approach may be more 
memory efficient and flexible than a single hash 
table if tables are only created in real-time as they 
are required. In a distributed-memory setting, this is 
interpreted as a reduced number of nodes in the 
network engaged in the exploration and hashing of 
the state-space. Moreover, reducing the number of 
slots may result in a reduced number of hash 
addresses for certain scenarios described later in this 
paper. 

 
 

5.2 Set of Hash Functions 
We designed our hash functions based on the 
modulo operation, which is the simplest function. 
Here, we provide an explanation and justification 
for the functions presented next. 

Given that keys are in partitions according to 
their SOD, the evidence shows that within a 
partition with size m’ < m, there are 2 subsets of 
keys; the largest one usually has the keys with a 
numerical value greater than m’, while the smallest 
one has all the other keys. Thus, we decided to use 
the modulo operation in an unorthodox way. By 
inverting the values in the modulo operation we may 
avoid repeating many times the same result for the 
hash function, and produce less address collisions, 
i.e. 

)',mod()( mkkh = .         (9) 
For the universes of keys, those with keys of 3 to 

7 digits, for all the partitions and their respective 
hash tables with normally distributed sizes, we 
present evidence indicating that the number of 
address collisions generated with (9) may be in 
general less than with (7) for the same number of 
slots. Table 1 shows the total number of address 
collisions and figures 2 to 6 show the distribution of 
all address collisions according to the SOD. 

 
Table 1. Number of Address Collisions 

Digits (7) (9) 
3 931 588 
4 9585 5678 
5 96541 56298 
6 968534 712918 
7 9702283 6571856 

 
Furthermore, we also observed that an additional 

conversion of keys before hashing may reduce even 
more the number of address collisions. Given that 
keys are in partitions following the formula in (1), a 

casting-out-nines key conversion with the formula 
in (10) reduces the range of the sets of keys, making 
the sets more compact. 

9
)(' kSODkk −

= .      (10) 

Generating the hash address with the converted 
key produces additional improvements in the 
reduction of address collisions. The table 2 shows 
the number of address collisions, just for sets of 
keys with 3 to 7 digits. 

 
Table 2. Number of Address Collisions 

Digits (7)&(10) (9)&(10) 
3 635 212 
4 7096 2526 
5 73640 28406 
6 754966 268938 
7 7703678 2903740 

 
 

5.3 Lower Address Collisions 
In the previous section we analyzed the number of 
address collisions in multiple hash tables with a total 
number of slots equal to the size of the universe of 
keys. 

Now, for multiple hash tables still with 
normalized sizes, but a number of slots less than the 
size of the set, by common sense the lower the 
number of slots the higher the number of hash 
address collisions might be. 

However, we observed that tables with a size 
which is multiple of 3 is in most of the cases the 
best size for a hash table to obtain the lowest 
number of address collisions [7]. The table 3 shows 
the new number of address collisions, where the 
reduction exist only for the inverted modulo 
operation and converted keys. 

 
Table 3. Number of Address Collisions 

Digits (7)&(10) (9)&(10) 
3 637 204 
4 7100 2424 
5 73642 26976 
6 754972 271102 
7 7703683 2900222 

 
 

5.4 Derivation to the Approximation of the 
Number of Collisions  
We have not provided complete evidence to 
generalize the benefit of our proposal; rather, we 
presented limited results indicating a trend towards 
reducing in general the number of address collisions. 
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Fig. 2 to 6.  Number of collisions for 3 to 7 digits keys. 

 
In this section we offer additional evidence of the 

benefit of our proposal. Neither the previous results 

nor the following ones are conclusive, but we 
believe they reinforce our proofs at some degree. 

In the following, it will be useful to have a 
general construction of the maximum and minimum 
keys within a partition of keys with same SOD and 
fixed number of digits n. We will denote such set by 
xSOD,n. Notice that given a fixed n, in order for xSOD,n 
to be non-empty we must have that the condition 0 ≤ 
SOD ≤ 9n because 9n is the maximum SOD 
possible for n digits. 

The minimum and maximum keys in a set xSOD,n 
are obtained by 

∑
−

=

×+×=
1

0
min 10109

c
c

k

j

kj Rk .           (11) 

and 

∑
+−=

− ×+×=
n

knj

jkn

c

cRk
1

max 10910 .          (12) 

respectively, where R=(SOD mod 9) and kc=(SOD–
R)/9. 

Let us denote by m’ the number of keys in a set 
xSOD,n. We know that, by definition of the maximum 
and minimum keys, these m’ keys are distributed 
within the range [kmin, kmax]. Then it is obvious to see 
that the proportion of integer numbers within such 
range is 

minmax

'
kk

m
−

=ρ .                      (13) 

representing the density of keys in xSOD,n for a range 
[kmin, kmax]. Thus, given a random integer number 
within the range, the probability that it is a key of 
xSOD,n is ρ. 

Traditionally, we know that the modulo 
operation k mod m repeats its values for any domain 
greater than m, and that the values will repeat γ 
times if the domain over which it is applied is γ 
times the size of m. Since the number of blocks of 
size m in the range [kmin, kmax] is ρ-1, each value can 
be repeated at most ρ-1-1 times, as repetitions are 
only considered from a value above one. 

So it is that the number of keys of xSOD,n in a 
block of size m’ is ρm’, and the maximum number 
of collisions of addresses for all keys in xSOD,n is 

')1(')1( 1 mm ρρρ −=−−  

'.)'1(
minmax

m
kk

m
−

−=                     (14) 

This represents the maximum number of 
collisions of addresses in the hash table for the 
modulo operation as the hash function, denoted here 
by CSOD,n. 
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For the case of keys with the proposed casting-
out-nines conversion (CO9), the analysis is 
analogous. The range for these converted keys is 
defined with [k’min, k’max] and is order-preserving. 

Following the treatment in (14), the maximum 
number of repetitions for all converted keys is 

')'91('
minmax

, m
kk

mC nSOD −
−= .              (15) 

We observe that CSOD,n and C’SOD,n are upper-
bounds for the number of collisions to be expected 
in the respective hash tables, since we have 
neglected the effect of the non-homogeneous 
distribution of the keys (or converted keys) in the 
corresponding range. 

Now, with simple inequality rules we can show 
that CSOD,n > C’SOD,n, meaning that we can expect 
more address collisions without the CO9 key 
conversion. 

The inequality may hold true if we consider that 
the lack of homogeneity in the distribution of the 
keys in a group affects both parameters in the same 
proportion. 

The figures 7 to 11 show the estimations 
compared with the real number of collisions, 
including the adjustment from table 1 derived from 
the key conversion. 

 
 

6 Address Collisions and Unfitness 
We analyzed in the past section the number of 
address collisions under the conditions of using the 
modulo operation inversely, applying CO9 to the 
key, and a hash table with size equal to or less than 
the number of keys in the partition. 

In this final section we present the probability of 
having a larger number of hash address collision in 
terms of the unfitness of the arrangement of multiple 
hash tables with sizes following the (estimated) 
NPD with respect to the (real) number of keys. 

Considering a scenario of multiple hash tables 
with normally distributed sizes, for universes of 
keys, those with keys of 3 to 7 digits, and all the 
partitions according to their SOD, the figures 12 to 
16 show the real and estimated distribution of the 
hash tables and their sizes. 

 
 

 

 

 

 

 

 
Fig. 7 to 11.  Estimated number of collisions for 3 to 7 

digits keys. 
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Fig. 12 to 16.  Curve fitting of universe of keys for 3 to 7 

digits keys. 

6.1 Probability of More Collisions 
Our procedure to calculate the unfitness was, first 
fitting the real number of keys in each partition to a 
NPD, then obtaining the mean and standard 
deviation of the fitting, and finally calculating the 
difference of the accumulated probabilities for the 
case when the estimation of the size of hash tables is 
less than the fitting. Fig. 17 and 18 graphically 
explains this difference. 
 

 
Fig. 17.  Location of area 1 and 2 of accumulated 

probability 
 
For the universe of keys of 3 digits and all the 

partitions according to their SOD, the figure 17 
shows the area 1 and 2 of the difference of 
accumulated probability are located on the sides of 
the curve. However, for a universe of 4 digits or 
more, the accumulated probability is located at 
equidistant points from the middle of the curve. The 
figure 18 shows the area 3 of the difference of 
accumulated probability for the universe of keys of 
6 digits. 

 

 
Fig. 18.  Location of area 3 of accumulated 

probability 
 
The values obtained for the mean and standard 

deviation from fitting the real observations to the 
NPD are shown in table 4. 
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Table 4. Parameters of Real Data 
Digits µ Std. Err. σ Std. Err. 

3 13.5135 0.1570 4.9615 0.1111 
4 18.0018 0.0574 5.7423 0.0406 
5 22.5002 0.0203 6.4223 0.0144 
6 27.0000 0.0070 7.0356 0.0050 
7 31.5000 0.0024 7.5993 0.0017 

 
The values of the mean and standard deviation 

used for the estimation of the sizes of the hash tables 
are shown in table 5 for the case when corrections to 
the standard deviation as suggested in [8] are not 
considered. 

 
Table 5. Parameters of Estimated Data 

Digits SOD(kmax) µ σ 
3 27 13.5 2.3 
4 36 18.0 3.0 
5 45 22.5 3.8 
6 54 27.0 4.5 
7 63 31.5 5.3 

 
From our procedure to define the normalized size 

of the multiple hash tables, the probability of having 
a larger number of address collision in the 5 cases 
under analysis (universes of 3 to 7 digits keys) are 
shown in table 6. 
 

Table 6. Probability of Address Collision 
Digits Prob. (%) 

3 4.22 
4 2.09 
5 7.46 
6 11.69 
7 15.49 

 
For the final evaluation of our method, although 

this probability is not the only one related to the 
probability of no hash address collision, it is 
necessary for identifying the error in its calculation. 
 
 
7 Conclusion 
In this paper we presented strong evidence showing 
that, in the partitioning and exploration of state-
spaces, the hashing of the states using multiple 
tables with normalized size and special hash 
functions with inverted values in the modulo 
operation and CO9 key conversion, presents a 
reduced number of address collision, compared with 
the modulo operation alone. 

First, we demonstrated that partitioning the 
universe of keys in terms of the SOD of the keys, 

there may be a way to assign partitions to networked 
nodes such that each node may not hold in their 
local memory the same number of hash tables, but 
the number of key the nodes can hash with their 
tables may be uniform. 

Second, we exhibited the number of address 
collisions for universes of 3 to 7 digits keys, in 
multiple tables with normalized size, and total 
number of slots equal to or less than the size of the 
universe. The number of address collision for our 
proposal is less than, or in the worst case, equal to 
the number of collisions with the modulo operation 
alone. 

Next, we showed upper-bound estimators of the 
number of address collisions for the modulo 
operation hashing keys with and without CO9 
conversion. The number of address collisions, in 
universes of 3 to 7 digits keys, for our proposed 
CO9 key conversion is less than without it. 

Finally, we presented the probability associated 
with the unfitness of our proposal for the normalized 
sizes of multiple hash tables with respect to the real 
number of keys in each partition of the universe of 
keys. This probability is important for the further 
definition of the probability of no address collisions. 
Also, due to our arrangement of tables allows a 
reduction in the used memory when exploring state-
spaces of skewed sets of keys, understanding this 
unfitness may be also useful for a more exact 
evaluation of the required memory. 
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