
Partitioning of State-Space with the Sum-of-Digits and
Hashing with Reduced Number of Address Collision

ELEAZAR JIMENEZ SERRANO
Department of Automotive Science

Kyushu University
744 Motooka, Nishi-ku, Fukuoka

JAPAN
eleazar.jimenez.serrano@kyudai.jp

Abstract: - We present a method for partitioning the state-space based on the sum-of-digits in order to conduct
parallel state-space exploration and hashing. The method has a configuration for storing the universe of the
state-space using multiple hash tables generating a reduced number of address collisions. This paper presents
the partitioning result, the number of address collisions generated with the proposed hashing method, the
efficiency in reducing the number of address collisions, an estimation of the number of address collisions, and
the probability of the unfitness of our estimation for the size of our arrangement of multiple hash tables with
respect to the real sizes.

Key-Words: - Partition, Hash, State-space, Petri nets

1 Introduction
The full exploration of a state-space is the storing in
memory of all possible succession of states existing
in a dynamical system represented with an explicit
directed graph. In computing terms, the exploration
demands a large amount of memory and time to
accomplish. These are usually ignored because the
entire state-space is sometimes just an implicit
representation using a mathematical model of
computation, like state machines and Petri nets.

Algorithms for parallel exploration of state-
spaces through a network of distributed-memory
multiprocessors based on the message passing
paradigm are becoming important in order to speed-
up the computing [1].

Graph partitioning algorithms [2-4] are used for
distributing workloads of parallel computations, but
usable only with explicit directed graphs. When the
graph representing the state-space to explore is
unknown, an approach is to suggest an a priori
workload distribution based on a heuristically
defined partition of the probable explicit graph.

For the first problem targeted in this paper, the
objective of partitioning is to evenly distribute the
number of vertices in the directed graph with edges
linking to other vertices belonging to different
partitions, balancing with this the workload.

In this paper, we propose using the function of
sum-of-digits (SOD) of keys as our partitioning
function. However, the domain of the partitioning

function is not the unknown state-space but its
deducible universe of keys.

Keys are the numeric descriptors of all the
vertices of a directed graph, and a partitioning
function determines membership of a key in a
partition. The sizes of the partitions of the universe
generated by the function are certainly not uniform.
The sizes of their distribution appear like a normal
probability distribution (NPD) [5-8]. Then by the
principle of centrality, in the progression of the
state-space exploration, the edges may be linked to
vertices having keys with SOD following a NPD.

The previous contention may lead to a
partitioning with a significant reduction of cross
transitions [9]. For the parallel state-space
exploration of any unknown explicit graph, this may
be interpreted as an advantage for reducing network
communication and hence reducing exploration time.
Additionally, we show how to evenly assign
workload to a number of parallel computing-
memory nodes in a network.

For the second problem, the one of storing in the
explored state-space in a reduced memory space, we
present a set of hash functions where each function
has as domain a partition of the universe of keys.
The hash functions are based on the traditional
modulo operation but applied in an unorthodox way,
and an additional key conversion using the casting-
out-nines operation. With this conversion we can
ignore the constrain of mapping as evenly as
possible the output range, i.e. to get uniformly

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 128 Issue 4, Volume 10, April 2013

distributed hash addresses, and still produce a
reduced number of address collisions.

We demonstrate its effectiveness in obtaining a
reduced number of hash address collisions in 5
universes of keys, by means of exhaustive analysis
and estimation.

Finally, we present the probability associated
with the unfitness of our proposal of multiple hash
tables with normal sizes.

Chapter 2 includes the necessary and sufficient
background regarding state-space. Chapter 3 is
about partitioning of the universe of keys. Chapter 4
covers storing with hashing and chapter 5 explains
our scheme of multiple hash tables as a result of the
partitioning. Chapter 6 contains the probability of
unfitness and the increased number of address
collisions. In the last section we provide a resume of
the paper.

2 Background
In this section, first we describe the fundaments of
the state-space and its implicit representation with
Petri nets. For additional details about Petri nets the
reader is addressed to [10-11].

2.1 Petri Nets
The implicit directed graph representing a dynamic
system is denoted by a Petri net (PN). An ordinary
PN is a tuple GPN=(P, T, A, B, Q), where P is a
finite non-empty set of numbered and ordered i
places, T is a finite non-empty set of numbered and
ordered j transitions, A is the set of directed arcs
connecting places to transitions, B the set of
directed arcs connecting transitions to places, and Q
is a capacity function for the places mapping P 
N={1, 2, ...}.

Tokens are black dots that exist only in the places,
and by putting tokens in places we describe states of
a PN system, where s0 is the initial state. States are
usually called markings. The function s is called a
marking function, mapping P  N. A PN with
initial marking is called a PN system. We say that a
place p is marked when s(p) > 0. A marking s is
represented with a vector s ∈ Ni.

A PN is also mathematically represented with the
pre and post-incident matrices A and B
respectively having both i rows and j columns, with
values of [A(pi, tj)] and [B(pi, tj)] respectively.

To determine the succession of states, or
markings, in a PN system with initial marking s0, is
throughout complete exploration of every
succession, or firing of enabled transition. Each

marking can be generated with the state transition
function sn = sc+(B−A)×σ. In the formula sc
is the current marking, sn is the next marking and
σ is a firing count vector representing the number
of times every transition has fired.

Occurrence of every single transition is carried
out for complete exploration of the state-space of a
PN system. Occurrence of solely concurrent
transitions could lead to incomplete exploration of
the state-space.

The set of markings of a PN system is called the
reachability space and usually denoted with R(s0)
and its cardinality is expressed with |R(s0)|.

2.1.1 Reachability graph
All possible markings and all possible firings of a
PN system are explicitly drawn in a way they
represent a directed graph of R(s0).

Given a PN system (GPN, s0), GR stands for the
reachability graph of R(s0), defined as the
succession of markings generated by the PN system,
according to every single transition occurrence. The
graph is the tuple GR=(V, E) where V is the set of
vertices (markings) and E the set of edges (transition
firing) connecting pair-wise vertices. Self-loops are
not permitted.

Now, vertices can be numerically represented by
state descriptors called keys. It is common practice
and more convenient to work with the set of keys,
denoted with K, than directly with the markings of
R(s0).

Different methods exist to define keys. In the
simplest injective method, a key is generated from
the concatenation of markings in all places of a PN,
where a marking in a place uses a number of digits
according to its tokens capacity, with explicit left-
side zeros. In this paper, we present our solution for
these sets of keys.

3 Partitioning
Here we present the first problem formulation
towards achieving a parallel exploration of the state-
space. It is the partitioning of the state-space across
multiple computing-memory nodes.

A x-way partition of a reachability graph GR of
R(s0) is the mapping of vertices into x subsets, i.e. V
 [1, 2, ..., x], where

zyandxxwithVx zy ≠=∩= ε
 .

Given a reachability graph GR of R(s0), the graph
partitioning problem seeks to find a x-way partition
in which each subset contains roughly the same

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 129 Issue 4, Volume 10, April 2013

number of vertices and the number of cut edges is
minimized.

A cut edge is a subset of E with endpoint vertices
belonging to different partitions. These are the
subsets of edges whose removal breaks the
reachability graph into disjoint subsets of vertices.

Each subset represents data to be assigned to a
single computing-memory node (the workload) and
cut edges represent the network communication
among nodes required by the distribution. Thus, the
solution to the problem attempts to find a
distribution that balances the computation done by
each node while minimizing the total inter-node
communication.

Now, the way how the number of edges per
vertex might fluctuate in the reachability graph
during the course of an exploration is unknown.
Moreover, it is also unknown how any a priory
partitioning of the graph might end up distributed.
Therefore, since the size and structure of the state-
space is unknown, probably the best alternative may
be to work with the deducible finite universe of
states.

3.1 Keys in Partitions
We extend the problem of finding a partitioning for
K as the problem of finding a partitioning for the
universe of keys Ω, where K ⊆ Ω.

We define for the universe of keys Ω, the
minimum key kmin is 0 and the maximum key kmax is
an integer with n 9’s, where n is decided by the
analyst. E.g., for a state-space with a key kmax of 4
digits, its keys are in a universe of keys from 0 to
9999. The cardinality of |K| might be ignored, but
the cardinality of |Ω| is kmax+1.

All keys in a partition having the same SOD can
be exhaustively constructed with the theory of
partitions and compositions [12].

Let us enumerate the digits of a key as α1, α2, ...;
e.g. for a key k=47293, α1=4, α2=7, α3=2, α4=9 and
α5=3. The length of a key (number of digits) is the
function d(k).

A partition of an integer key is an n-length SOD
α1+α2+...+αn such that the sum of α’s is SOD(k), and
all α’s are ordered from largest to smallest; e.g. the
partitions of 3 are 3, 21 and 111.

A composition is similar to a partition except for
the order of α’s does not matter. E.g., the
compositions of 3 are 3, 12, 21 and 111.

A weak composition is a composition allowing
α’s in the sequence to be zero. Adding zeroes at the
left side of the leftmost non-zero digit of a sequence
is not considered to define a different composition.

If the length of the composition is not bounded by a
number n then it can be infinite. E.g., the weak
compositions of 3 with n=4 are 3, 12, 21, 30, 102,
111, 120, 201, 210, 300, 1002, 1011, 1020, 1101,
1110, 1200, 2001, 2010, 2100 and 3000.

Keys existing in a partition having the same SOD
are obtained with the function

sck += 9 . (1)
In (1), s is the SOD and c is a set of strictly

monotonically increasing non-negative and non-
linearly separated integers. E.g., for the partition of
s=2, the set of integers c = {0, 1, 2, 11, 12, 22}
produces the ordered keys k = {2, 11, 20, 101, 110,
200}.

3.2 Partitioning Size
Let us define the variable X of partitions with a and
b the minimal and maximal partition values in X
respectively. In this paper, the scheme how we want
to put keys in partitions follows a probability
density function f(x), i.e. for the variable X of
partitions

∫ ==≤≤
b

a

dxxfbXap 1)(][. (2)

In (2), f(x) is the probability density function and
(a, b) represents the range of X.

We implemented a partitioning scheme for the
universe of keys Ω following the NPD generated
from the SOD of the keys. We selected the SOD
function because our intuition is that the way how
events in a state-space modify the components in the
state vector may obey the principle of centrality, i.e.

)ˆ,ˆ(~ σµNX . (3)
In (3), if the variable X is the SOD(k) of all keys

in Ω, its distribution appears like a NPD with
estimated mean and sigma of kmax/2 and kmax/6
respectively.

3.3 Partitioning Function
A partitioning function Pt determines membership
in a partition. The partition function Pt is the
mapping of keys in K to partitions in X, producing
the distribution of keys to partitions according to
f(x), i.e.

XKPt →: . (4)
In (4), the keys kmin and kmax are mapped to the

values of a and b respectively.
Thus, we defined our partitioning function as the

sum-of-digits of a key, i.e.
)()(kSODkPt = . (5)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 130 Issue 4, Volume 10, April 2013

3.4 Workload Distribution
Traditionally, workload distribution assigns one
processor-memory node to one partition for the
exploration and hashing of only that partition. In our
case it is different.

The maximal number of partitions in the
universe of keys may limit the maximal number of
nodes to work with. But also, the maximal number
of nodes in the network may limit the distribution of
partitions among them.

We assign a number of partitions to a processor-
memory node in a manner to distribute the same
number of keys in the universe among all nodes. In
this way, processor-memory nodes may explore and
hash different number of partitions, but the
partitions have a number of keys from the universe
of keys as evenly as possible to the other nodes [9].

E.g., for an undefined state-space, for its
universe of keys Ω where kmax is 9999, the partition
corresponds to 37 groups of SOD, and the sizes of
the 37 hash tables may follow a NPD.

For a target computing architecture of 4 nodes,
the figure 1 presents a proposed scheme for parallel
computing.

Fig. 1. Distribution of partitions to nodes.

The density each node holds is oriented to be as

balanced as possible. In the example, it is around
25%.

Furthermore, the hash tables in the nodes,
numerically identified along the number of
partitions, may be assigned in contiguous order to
the nodes to take advantage of the principle of
centrality and reduce network communication as
much as possible.

4 Hashing
One method to store the information of R(s0) is to
use its set K to generate an index for a static array.
This arrangement is called a hash table [13].

Usually, when the size of the array is smaller than
the key kmax in K, or |K| is ignored, a non-injective
hash function h is used to accommodate the
information in the hash table. The function is a map
of the set K to the number of slots in the tables, i.e.

}1,...,2,1,0{: −→ mKh . (6)
In (6), m is the number of slots, also called the

size of the space of hash addresses in the hash table.

4.1 Hash Functions
Hash functions are required to have the following
properties [14]:
- They must be easy to compute.
- They must distribute the hash addresses

uniformly.
The second property is to distribute the addresses

as evenly as possible and avoid a large number of
hash address collisions, meaning the mapping of 2
or more keys to the same address.

The simplest hash function to generate uniformly
distributed addresses is by arithmetic operation of
division, where m is the number of slots in the table,
k divides m and the residue is the respective address
h(k). The address is also the result of the modulo
operation in (7) when using a computer
programming language.

),mod()(kmkh = . (7)
It is relevant to mention that mod(m,0) is 0 and

the case mod(0,k) is not considered due to there are
no tables with size of 0.

5 Multiple Hash Tables
If we partition the universe of keys Ω according to
Pt, then we can generate a number of hash tables
according to X with sizes that might follow f(x).
This scheme of multiple hash tables is suitable for a
computing scenario of parallel exploration of the
state-space.

Now, each partition contains a subset of keys
from Ω. In this paper, we already analysed the sets
of keys based on the proposed partition scheme.
Now we present our set of hash functions for each
partition.

5.1 Size of Multiple Hash Tables
Given the maximal number of slots we can have, i.e.
the size of the universe of keys or kmax, it is
straightforward the allocation of slots to the tables
by multiplying every integer value in the range (a,
b) of X by the number of slots, and rounding the
number up (or down) to the next higher integer, i.e.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 131 Issue 4, Volume 10, April 2013

 ),()ˆ,ˆ;(bainxxNm ∀× σµ . (8)
Focusing only in the direct space assigned for

hashing, in a exploration scenario using shared-
memory, in theory our approach may be more
memory efficient and flexible than a single hash
table if tables are only created in real-time as they
are required. In a distributed-memory setting, this is
interpreted as a reduced number of nodes in the
network engaged in the exploration and hashing of
the state-space. Moreover, reducing the number of
slots may result in a reduced number of hash
addresses for certain scenarios described later in this
paper.

5.2 Set of Hash Functions
We designed our hash functions based on the
modulo operation, which is the simplest function.
Here, we provide an explanation and justification
for the functions presented next.

Given that keys are in partitions according to
their SOD, the evidence shows that within a
partition with size m’ < m, there are 2 subsets of
keys; the largest one usually has the keys with a
numerical value greater than m’, while the smallest
one has all the other keys. Thus, we decided to use
the modulo operation in an unorthodox way. By
inverting the values in the modulo operation we may
avoid repeating many times the same result for the
hash function, and produce less address collisions,
i.e.

)',mod()(mkkh = . (9)
For the universes of keys, those with keys of 3 to

7 digits, for all the partitions and their respective
hash tables with normally distributed sizes, we
present evidence indicating that the number of
address collisions generated with (9) may be in
general less than with (7) for the same number of
slots. Table 1 shows the total number of address
collisions and figures 2 to 6 show the distribution of
all address collisions according to the SOD.

Table 1. Number of Address Collisions

Digits (7) (9)
3 931 588
4 9585 5678
5 96541 56298
6 968534 712918
7 9702283 6571856

Furthermore, we also observed that an additional

conversion of keys before hashing may reduce even
more the number of address collisions. Given that
keys are in partitions following the formula in (1), a

casting-out-nines key conversion with the formula
in (10) reduces the range of the sets of keys, making
the sets more compact.

9
)(' kSODkk −

= . (10)

Generating the hash address with the converted
key produces additional improvements in the
reduction of address collisions. The table 2 shows
the number of address collisions, just for sets of
keys with 3 to 7 digits.

Table 2. Number of Address Collisions

Digits (7)&(10) (9)&(10)
3 635 212
4 7096 2526
5 73640 28406
6 754966 268938
7 7703678 2903740

5.3 Lower Address Collisions
In the previous section we analyzed the number of
address collisions in multiple hash tables with a total
number of slots equal to the size of the universe of
keys.

Now, for multiple hash tables still with
normalized sizes, but a number of slots less than the
size of the set, by common sense the lower the
number of slots the higher the number of hash
address collisions might be.

However, we observed that tables with a size
which is multiple of 3 is in most of the cases the
best size for a hash table to obtain the lowest
number of address collisions [7]. The table 3 shows
the new number of address collisions, where the
reduction exist only for the inverted modulo
operation and converted keys.

Table 3. Number of Address Collisions

Digits (7)&(10) (9)&(10)
3 637 204
4 7100 2424
5 73642 26976
6 754972 271102
7 7703683 2900222

5.4 Derivation to the Approximation of the
Number of Collisions
We have not provided complete evidence to
generalize the benefit of our proposal; rather, we
presented limited results indicating a trend towards
reducing in general the number of address collisions.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 132 Issue 4, Volume 10, April 2013

Fig. 2 to 6. Number of collisions for 3 to 7 digits keys.

In this section we offer additional evidence of the

benefit of our proposal. Neither the previous results

nor the following ones are conclusive, but we
believe they reinforce our proofs at some degree.

In the following, it will be useful to have a
general construction of the maximum and minimum
keys within a partition of keys with same SOD and
fixed number of digits n. We will denote such set by
xSOD,n. Notice that given a fixed n, in order for xSOD,n
to be non-empty we must have that the condition 0 ≤
SOD ≤ 9n because 9n is the maximum SOD
possible for n digits.

The minimum and maximum keys in a set xSOD,n
are obtained by

∑
−

=

×+×=
1

0
min 10109

c
c

k

j

kj Rk . (11)

and

∑
+−=

− ×+×=
n

knj

jkn

c

cRk
1

max 10910 . (12)

respectively, where R=(SOD mod 9) and kc=(SOD–
R)/9.

Let us denote by m’ the number of keys in a set
xSOD,n. We know that, by definition of the maximum
and minimum keys, these m’ keys are distributed
within the range [kmin, kmax]. Then it is obvious to see
that the proportion of integer numbers within such
range is

minmax

'
kk

m
−

=ρ . (13)

representing the density of keys in xSOD,n for a range
[kmin, kmax]. Thus, given a random integer number
within the range, the probability that it is a key of
xSOD,n is ρ.

Traditionally, we know that the modulo
operation k mod m repeats its values for any domain
greater than m, and that the values will repeat γ
times if the domain over which it is applied is γ
times the size of m. Since the number of blocks of
size m in the range [kmin, kmax] is ρ-1, each value can
be repeated at most ρ-1-1 times, as repetitions are
only considered from a value above one.

So it is that the number of keys of xSOD,n in a
block of size m’ is ρm’, and the maximum number
of collisions of addresses for all keys in xSOD,n is

')1(')1(1 mm ρρρ −=−−

'.)'1(
minmax

m
kk

m
−

−= (14)

This represents the maximum number of
collisions of addresses in the hash table for the
modulo operation as the hash function, denoted here
by CSOD,n.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 133 Issue 4, Volume 10, April 2013

For the case of keys with the proposed casting-
out-nines conversion (CO9), the analysis is
analogous. The range for these converted keys is
defined with [k’min, k’max] and is order-preserving.

Following the treatment in (14), the maximum
number of repetitions for all converted keys is

')'91('
minmax

, m
kk

mC nSOD −
−= . (15)

We observe that CSOD,n and C’SOD,n are upper-
bounds for the number of collisions to be expected
in the respective hash tables, since we have
neglected the effect of the non-homogeneous
distribution of the keys (or converted keys) in the
corresponding range.

Now, with simple inequality rules we can show
that CSOD,n > C’SOD,n, meaning that we can expect
more address collisions without the CO9 key
conversion.

The inequality may hold true if we consider that
the lack of homogeneity in the distribution of the
keys in a group affects both parameters in the same
proportion.

The figures 7 to 11 show the estimations
compared with the real number of collisions,
including the adjustment from table 1 derived from
the key conversion.

6 Address Collisions and Unfitness
We analyzed in the past section the number of
address collisions under the conditions of using the
modulo operation inversely, applying CO9 to the
key, and a hash table with size equal to or less than
the number of keys in the partition.

In this final section we present the probability of
having a larger number of hash address collision in
terms of the unfitness of the arrangement of multiple
hash tables with sizes following the (estimated)
NPD with respect to the (real) number of keys.

Considering a scenario of multiple hash tables
with normally distributed sizes, for universes of
keys, those with keys of 3 to 7 digits, and all the
partitions according to their SOD, the figures 12 to
16 show the real and estimated distribution of the
hash tables and their sizes.

Fig. 7 to 11. Estimated number of collisions for 3 to 7

digits keys.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 134 Issue 4, Volume 10, April 2013

Fig. 12 to 16. Curve fitting of universe of keys for 3 to 7

digits keys.

6.1 Probability of More Collisions
Our procedure to calculate the unfitness was, first
fitting the real number of keys in each partition to a
NPD, then obtaining the mean and standard
deviation of the fitting, and finally calculating the
difference of the accumulated probabilities for the
case when the estimation of the size of hash tables is
less than the fitting. Fig. 17 and 18 graphically
explains this difference.

Fig. 17. Location of area 1 and 2 of accumulated

probability

For the universe of keys of 3 digits and all the

partitions according to their SOD, the figure 17
shows the area 1 and 2 of the difference of
accumulated probability are located on the sides of
the curve. However, for a universe of 4 digits or
more, the accumulated probability is located at
equidistant points from the middle of the curve. The
figure 18 shows the area 3 of the difference of
accumulated probability for the universe of keys of
6 digits.

Fig. 18. Location of area 3 of accumulated

probability

The values obtained for the mean and standard

deviation from fitting the real observations to the
NPD are shown in table 4.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 135 Issue 4, Volume 10, April 2013

Table 4. Parameters of Real Data
Digits µ Std. Err. σ Std. Err.

3 13.5135 0.1570 4.9615 0.1111
4 18.0018 0.0574 5.7423 0.0406
5 22.5002 0.0203 6.4223 0.0144
6 27.0000 0.0070 7.0356 0.0050
7 31.5000 0.0024 7.5993 0.0017

The values of the mean and standard deviation

used for the estimation of the sizes of the hash tables
are shown in table 5 for the case when corrections to
the standard deviation as suggested in [8] are not
considered.

Table 5. Parameters of Estimated Data

Digits SOD(kmax) µ σ
3 27 13.5 2.3
4 36 18.0 3.0
5 45 22.5 3.8
6 54 27.0 4.5
7 63 31.5 5.3

From our procedure to define the normalized size

of the multiple hash tables, the probability of having
a larger number of address collision in the 5 cases
under analysis (universes of 3 to 7 digits keys) are
shown in table 6.

Table 6. Probability of Address Collision
Digits Prob. (%)

3 4.22
4 2.09
5 7.46
6 11.69
7 15.49

For the final evaluation of our method, although

this probability is not the only one related to the
probability of no hash address collision, it is
necessary for identifying the error in its calculation.

7 Conclusion
In this paper we presented strong evidence showing
that, in the partitioning and exploration of state-
spaces, the hashing of the states using multiple
tables with normalized size and special hash
functions with inverted values in the modulo
operation and CO9 key conversion, presents a
reduced number of address collision, compared with
the modulo operation alone.

First, we demonstrated that partitioning the
universe of keys in terms of the SOD of the keys,

there may be a way to assign partitions to networked
nodes such that each node may not hold in their
local memory the same number of hash tables, but
the number of key the nodes can hash with their
tables may be uniform.

Second, we exhibited the number of address
collisions for universes of 3 to 7 digits keys, in
multiple tables with normalized size, and total
number of slots equal to or less than the size of the
universe. The number of address collision for our
proposal is less than, or in the worst case, equal to
the number of collisions with the modulo operation
alone.

Next, we showed upper-bound estimators of the
number of address collisions for the modulo
operation hashing keys with and without CO9
conversion. The number of address collisions, in
universes of 3 to 7 digits keys, for our proposed
CO9 key conversion is less than without it.

Finally, we presented the probability associated
with the unfitness of our proposal for the normalized
sizes of multiple hash tables with respect to the real
number of keys in each partition of the universe of
keys. This probability is important for the further
definition of the probability of no address collisions.
Also, due to our arrangement of tables allows a
reduction in the used memory when exploring state-
spaces of skewed sets of keys, understanding this
unfitness may be also useful for a more exact
evaluation of the required memory.

References:
[1] Ulrich Stern and David L. Dill, Parallelizing

the murϕ verifier, Computer Aided
Verification, Springer-Heidelberg, LNCS vol.
1254, 1997, pp. 256-267.

[2] Horst D. Simon, Partitioning of unstructured
problems for parallel processing, Computing
Systems in Engineering, vol. 2, issue 2-3, 1991,
pp. 135-148.

[3] V. Venkatakrishnan, Horst D. Simon and
Timothy J. Barth, A MIMD Implementation of
a Parallel Euler Solver for Unstructured Grids,
The Journal of Supercomputing, vol. 6, 1992,
pp. 117-137.

[4] Bradford L. Chamberlain, Graph partitioning
algorithms for distributing workloads of
parallel computations, University of
Washington, Computer Science & Engineering,
1998.

[5] Eleazar Jiménez Serrano, Multiple hash tables
for skewed sets of integer keys, Proc. of the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 136 Issue 4, Volume 10, April 2013

12th WSEAS Int. Conf. on Applied Informatics
and Communications, Istanbul, Turkey, 2012,
pp. 241-246.

[6] V.s., On the design of special hash functions
for multiple hash tables, Proc. of the 9th IEEE
Int. Conf. on Electrical Engineering,
Computing Science and Automatic Control,
Mexico city, Mexico, 2012, pp. 252-256.

[7] Eleazar Jiménez Serrano and Fermin Franco
Medrano, On the Collision Rate of Key
Conversion prior Modulo for Multiple Hash
Tables of Any Size, Proc. of the 12th WSEAS
Int. Conf. on Applications of Computer
Engineering, Cambridge, MA, USA, 2013,
pp.61-68.

[8] Eleazar Jiménez Serrano, Partial exploration of
state spaces and hypothesis test for
unsuccessful search, Electrical Engineering
and Intelligent Systems, Springer, LNEE 130,
chapter 1, 2013, pp. 1-13.

[9] Eleazar Jiménez Serrano, Parallel exploration
of state-space with reduced cross transitions
partitioning, Proc. of the 10th IEEE Int. Conf.
on Electrical Engineering, Computing Science
and Automatic Control, Mexico city, Mexico,
(submitted for publication).

[10] T. Murata, Petri nets: Properties, Analysis and
Applications. Proceedings of the IEEE, Vol.77,
1989, pp. 541-580.

[11] J. L. Peterson, Petri Net Theory and the
Modelling of Systems, Prentice-Hall, 1981.

[12] Percy A. MacMahon, Collected Papers Volume
1 – Combinatorics, The MIT press, USA, 1978.

[13] D. E. Knuth, The Art of Computer
Programming: Sorting and Searching, 2nd ed.,
vol. 3. Addison-Wesley Longman, 1998.

[14] Matthias Kuntz and Kai Lampka, Probabilistic
methods in state space analysis, Validation of
Stochastic Systems, Springer-Verlag, Germany,
LNCS vol. 2925, 2004, pp. 339-383.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eleazar Jimenez Serrano

E-ISSN: 2224-3402 137 Issue 4, Volume 10, April 2013

