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Abstract: Despite their attractive properties of invariance, robustness and reliability, fuzzy directional features
are not hitherto paid the attention they deserve in the activity recognition literature. In this paper, we propose to
adopt an innovative approach for activity recognition in real-world scenes, where a new fuzzy motion descriptor
is developed to model activities as time series of fuzzy directional features. A set of one-vs.-all SVM classifiers
is trained on these features for activity classification. When evaluated on our dataset (i.e., IESK action dataset)
incorporating a large and diverse collection of realistic video data, the proposed approach yields encouraging
results that compare very favorably with those reported in the literature, while maintaining real-time performance.
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1 Introduction

Recognizing human activities in unconstrained set-
tings is a longstanding and extremely challenging
problem in computer vision and many of its related
applications, due to a variety of challenging real-
world conditions, including partial occlusion, sub-
stantial background clutter, drastic illumination vari-
ation, large intra-class variability within each class,
extreme pose variation, and changes in scale, view-
point, and appearance [1]. Specifically, in this work,
we propose to focus on the recognition of human ac-
tivities in real-world scenarios which is an important
but challenging problem with prosperous applicability
into human-computer interactions and security indus-
try. Real-world datasets for the evaluation of human
action recognition systems generally consist of a large
collection of real-world video streams (or video clips)
about the actions of interest. Each video stream in-
cludes an individual (i.e. action subject) performing
a single action or a series of successive actions. All
videos belonging to the same action category can be
annotated with a categorical label describing the type
of action performed within them. It is clear that devel-
oping good algorithms for solving the problem of the
recognition of human activities in real-world scenes
would yield huge potential for a large number of po-
tential real-life applications, e.g., human-computer in-
teraction, video surveillance, gesture recognition, and
robot learning and control, etc. In fact, the non-rigid

nature of human body and clothes in video sequences,
resulting from drastic illumination changes, changing
in pose, and erratic motion patterns presents the grand
challenge to human detection and action recognition.
In addition, while the real-time performance is a major
concern in computer vision, especially for embedded
computer vision systems, the majority of state-of-the-
art action recognition systems often employ sophisti-
cated feature extraction and learning techniques, cre-
ating a barrier to the real-time performance of these
systems. The automatic recognition of human actions
is still an underdeveloped area due to the lack of a gen-
eral purpose model and most approaches proposed in
the literature remain limited in their ability. For this,
much research still needs to be undertaken to address
the ongoing challenges. The remainder of this paper is
organized as follows. Section 2 reviews related work
in the literature. The proposed framework for activ-
ity recognition is presented and explained in details
in Section 3, whereas Section 4 outlines the details of
our evaluation procedure. Finally, in Section 5, we
summarize our results and draw conclusions.

2 Related literature

Over the course of the last couple of decades or so,
a great deal of work has been done (and still being
done) on the recognition of human activities from
both still images and video sequences. Despite these
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years of work, the problem is still open and pro-
vides a big challenge to the researchers and more
rigorous research is needed to come around it. Hu-
man action can generally be recognized using vari-
ous visual cues such as motion [2–4] and shape [5,6].
Scanning the literature, one notices that a significant
body of work in action recognition focuses on us-
ing spatial-temporal keypoints and local feature de-
scriptors [7–9]. The local features are extracted from
the region around each keypoint detected by the key-
point detection process. These features are then quan-
tized to provide a discrete set of visual words before
they are fed into the classification module. Another
thread of research is concerned with analyzing pat-
terns of motion to recognize human actions. For in-
stance, in [3], periodic motions are detected and clas-
sified to recognize actions. In [2] the authors ana-
lyze the periodic structure of optical flow patterns for
gait recognition. Alternatively, some researchers have
opted to use both motion and shape cues. For exam-
ple, in [10], Bobick and Davis use temporal templates,
including motion-energy images and motion-history
images to recognize human movement. In [11] the au-
thors detect the similarity between video segments us-
ing a space-time correlation model. While in [12], Ro-
driguez et al. present a template-based approach us-
ing a Maximum Average Correlation Height (MACH)
filter to capture intra-class variabilities. Jhuang et al.
[13] perform actions recognition by building a neu-
robiological model using spatio-temporal gradient. In
[14], actions are recognized by training different SVM
classifiers on the local features of shape and optical
flow. In parallel, a significant amount of work is tar-
geted at modelling and understanding human motions
by constructing elaborated temporal dynamic mod-
els [15–18]. Finally, there is also an attractive area of
research that concentrates on using generative topic
models for visual recognition based on the so-called
Bag-of-Words (BoW) model. The underlying con-
cept of a BoW is that the video sequences are rep-
resented by counting the number of occurrences of
descriptor prototypes, so-called visual words. Topic
models are built and then applied to the BoW rep-
resentation. Three of the most popularly used topic
models are Latent Dirichlet Allocation (LDA) [19],
Correlated Topic Models (CTM) [20] and probabilis-
tic Latent Semantic Analysis (pLSA) [21].

3 Proposed Methodology

In this section, we present a new approach for action
recognition in real-world video sequences, based on a
modified fuzzy version of HOF (Histogram of Optical

Flow), so-called fuzzy histogram of optical flow as a
new motion descriptor to model action in a real-world
scene as a time-series of fuzzy directional features. A
set of one-vs.-all SVM classifiers are trained on these
features for the action classification. We evaluate the
approach on IESK dataset which incorporates a col-
lection of real-world video data.

3.1 Motion estimation

To detect moving objects (i.e., action subjects), we use
an algorithm that works based on the same principles
as the two-frame motion estimation algorithm in [22].
The key idea of the algorithm is to approximate a pixel
neighborhood in a frame by a quadratic polynomial:

f(x) ∼ p(x) = x>Ax + b>x + c (1)

where A,b, and c are the expansion coefficients
that are determined using a Gaussian-weighted least-
squares fitting of the signal f by the polynomial p.
Hence, the new frame can be derived from the last
one by a global translation d:

f̃(x) ∼ p(x− d)

= (x− d)>A(x− d) + b>(x− d) + c

= x>Ãx + b̃>x + c̃ (2)

It is easy to see that these two sets of expansion coef-
ficients are related by

Ã = A,

b̃ = b− 2Ad,

c̃ = c+ d>Ad− b>d. (3)

Looking at Eq. (3), one realizes that a solution for the
translation d exists only if

d =
1

2
A−1(b̃− b) (4)

For practical considerations, the global polynomial
in (4) are replaced with local polynomial approxima-
tions. Thus, giving two sets of expansion coefficients
{A1(x),b1(x), c1(x)} and {A2(x),b2(x), c2(x)}
for the first and second image frames respectively, it is
possible to do a polynomial expansion of both frames.
Ideally, this yields A1 = A2, however, in practice one
is forced to settle for the approximation:

A(x) =
A1(x) + A2(x)

2
(5)

and further the following assumption

∆b(x) = −1

2
(b2(x) + b1(x)) (6)
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is made, which leads to the primary constraint

A(x)d(x) = ∆b(x) (7)

where d(x) implies that the global displacement in (2)
is replaced with a spatially varying displacement field.
Under the assumption that the displacement field is
only slowly varying, information over a neighborhood
Ω of each pixel can be integrated. Consequently, d(x)
satisfying (7) and minimizing∑
∆x∈Ω

w(∆x)‖A(x+∆x)d(x)−∆b(x+∆x)‖2 (8)

can be found, where w(∆x) is a Gaussian weight
function. Therefore, the minimum value is given by

e(x) =
(∑

w∆b>∆b
)
− d(x)>

∑
w∆A>∆b,

which is obtained for

d(x) =
(∑

w∆A>∆A
)−1∑

wA>∆b (9)

It was shown, in [22] that in many cases it might
be advantageous to introduce a certainty weight
c(x + ∆x) to Eq. (8) that can be most conveniently
achieved by scaling A and ∆b. To detect moving
objects, particularly people (i.e., action subjects), the
displacement field should be parameterized accord-
ing to some motion model (e.g., affine motion model
or eight-parameter model). For the eight-parameter
model in 2D, the motion field can be expressed as,

d = Sp (10)

where,

S =

(
1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
,

p = ( a1 a2 a3 a4 a5 a6 a7 a8 )> (11)

Substituting from (10) into (8) yields the weighted
least squares problem:∑

i

wi‖AiSi −∆bi‖2 (12)

which in turn has the solution

p =

(∑
i

wiS
>
i A>i AiSi

)−1∑
i

wiS
>
i A>i ∆bi

(13)
The actual solution involves the accumulation of the
coefficients of the 8× 8 system of equations (13) over

Figure 1: Sample pruning results for a setup with λ =
0.25`; the vectors labeled in yellow are accepted as
valid flow components, while the vectors labeled in
green are considered as noisy flow components and
thus filtered out.

all points and then solving for the parameters. To im-
prove the chances for a better displacement estimate
in the algorithm, it is crucial to exploit some a pri-
ori knowledge about the displacement field that allow
comparing the polynomial at x in the first signal to the
polynomial at x + d̃(x) in the second signal, where
d̃(x) is the a priori displacement field. In this case,
A(x) and ∆b(x) introduced in Eq. (5) and Eq. (6)
are substituted by

A(x) =
A1(x) + A2(x̃)

2
,

∆b(x) = −1

2
(b2(x̃) + b1(x)) + A(x)d̃(x)

where x̃ = x + d̃(x).

3.2 Flow Pattern pruning

It has to be admitted that despite over two decades of
intensive research, most existing methods for the ex-
traction of optical flow still lack robustness, and op-
tical flow estimates are relatively inaccurate, particu-
larly with respect to flow magnitude. This might be at-
tributed to the large residual error in solving the equa-
tions for optical flow. Therefore, pruning of computed
flow values appears to be a clue to accurate flow fields
which in turn allows for better motion estimation. To
tackle this problem, we introduce a particular kind of
filter that straightens up noisy vectors in the flow field,
while maintaining significant ones.

In our work, we perform this type of pruning step-
wise. In other words, it involves two passes, each
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based on the magnitude (Euclidean length) of opti-
cal flow vectors to separate relevant from irrelevant
flow vectors. In the first pass, we attempt to remove
all flow vectors whose magnitudes are either relatively
very small or very large. For this purpose, two prede-
fined thresholds (i.e., minimum and maximum thresh-
olds) are used that control the filtering of flow vec-
tors in this step. Formally speaking, given two thresh-
olds ρ1 and ρ2, a flow vector ~υ = [x, y]> is only
accepted as valid if it satisfies the validity constraint:
ρ1 < ‖~υ‖ < ρ2, where ‖ · ‖ denotes the magnitude of
the flow vector with respect to the Euclidean metric;
otherwise it is assumed to be a noisy flow component
and thus removed. In our experiments, when ρ1 and
ρ2 are given 5 and 20 respectively, satisfactory results
can be achieved. We go then with a second pass of our
pruning based on the Euclidean distance between the
centroid of flow field and the flow points. Therefore,
in this pass a vector ~v is treated as a valid flow com-
ponent if the Euclidean distance between the center of
flow and the vector being analyzed does not exceed a
specific threshold λ. Formally, this is expressed as:

‖~v − ~c‖ < λ (14)

where ~c is the motion region’s centroid. In experi-
ments, we found that setting the value of λ to one-
fourth of the average of the image’s width and height
(i.e., (w + h)/8) yields a good pruning performance
(see Figure 1 for visual examples).

3.3 Directional feature extraction

In the literature, several existing theoretical ap-
proaches to action recognition tend to put much more
emphasis on providing practical methods which are
consistently applicable only to various joint angles ac-
quired from motion capture data. However, when ap-
plying these approaches to video data, we are regu-
larly faced with the complex problem of segmenting
and tracking of human joints. This problem is con-
siderably more challenging and error-prone, particu-
larly in dynamically complex environments where the
tracking objects frequently undergo large changes in
pose, scale, and lighting conditions.

Motivated by the potential benefits in performance
of histogram of features (e.g. HOG [23]) for object
recognition, in this work, we propose to compute a
new motion-related descriptor based on optical flow
analysis. However, most optical flow computations
turn out to be most sensitive to background noise, and
changes in scale and/or directionality of motion. Fur-
thermore, the number of moving pixels is subject to
change with time. Due to these restrictions, raw val-
ues of optical flow would likely be less suitable or un-

Figure 2: Flow estimation results for a video sequence
showing a single person performing various actions,
i.e. walking, jogging, boxing, waving, and clapping
from left to right and top to bottom, respectively.

suitable as features for motion analysis. In order to
overcome these difficulties, we can here use the char-
acteristics of distribution of optical flow as features to
describe motion. As a matter of fact, one can see that
the motion activity of an individual moving in a scene
with a static background can be characterized fully by
its own self-induced optical flow profile. In Figure 2,
sample flow patterns for a video sequence showing a
person performing several actions are shown.

The main thrust of our work is to develop a new
descriptor based on improved optical flow measure-
ments over a spatiotemporal volume centered on a hu-
man figure to represent actions, and SVM classifiers
are then used to classify these descriptors. To generate
a robust and discriminative motion descriptor invari-
ant to pose variation and directionality of motion, two
aspects should be kept in mind, one referring to the de-
pendency of the observed flow profile on the scale of
motion activity, the other relating to the dependency
of the orientation of optical flow on the directional-
ity of motion. Moving from these considerations and
requirements, we propose here the FHOF (Fuzzy His-
togram of Optical Flow). A formal definition and im-
plementation scheme of this new descriptor are as fol-
lows. Given an estimate for optical flow field at each
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Figure 3: An example for orientation histogram with
four bins (K = 4).

frame of the action sequence, the magnitude and the
orientation of each flow vector ~v = [x, y]> are spe-
cially defined as follows,

ρ =
√
x2 + y2

ϕ = atan2(y, |x|) (15)

where | · | denotes the ordinary absolute value, and
−π
2 < ϕ ≤ π

2 that gives the smallest angle between
the x-axis and ~v axis, as shown in Figure 3. It should
be noted that the orientation angle ϕ in (15) has been
defined so as to allow our histogram representation to
be independent of the directionality of movement. A
histogram can be derived at each frame by binning the
flow vectors into a fixed number of bins based on their
primary angles and their magnitudes. More formally,
the directional histogram is created where each flow
vector ~v with direction ϕ in the range:

− π

2
+ π

k − 1

K
≤ ϕ < −π

2
+ π

k

K
(16)

gives a contribution proportional to ρ to its corre-
sponding bin k, 1 ≤ k ≤ K where K is the number
of bins. As seen in Figure 3, the resulting histogram
representation is invariant to direction of motion. To
achieve invariance to scale changes, the histogram is
normalized by the overall magnitude of flow vectors,
so that the bins integrate to unity. Moreover, as flow
vectors contribute to the histogram proportionally to
their magnitudes, the resulting descriptor would be
more robust to noisy flow measurements. A visualiza-
tion of the descriptor for the applied features is given
in Figure 4. From a close inspective look at the plots
in the figure, one can see that there is a remarkable
similarity in feature structure (leading to similar color
values in the Figure) among sequences of walk, jog,
and run actions, and between sequences of wave and
clap actions. Intuitively, this is due to the high close-
ness of similar types of actions.

3.4 Fuzzy feature selection

In this section, we describe our method for feature
selection based on temporally adaptive decomposi-
tion of action sequences into a finite number of time
slices in a fuzzy way, which is targeted at the removal
of irrelevance and redundancy in the features set, so
that not only does the reduced set of features speed
up the action classification process by removing class
irrelevant features, but it also provides at least the
same quality of action classification as the original
one. Eventually, this enables the proposed approach to
achieve better feature reduction ratios without losses
in recognition accuracy. As discussed in the previous
section, a normalized histogram based on the HOG
features can be derived at time instant t:

ht = (ht;1, ht;2, . . . , ht;K)> (17)

where K (the number of histogram bins) is a parame-
ter of choice, which has a direct influence on the per-
formance of the recognition system. Since the fea-
tures in (17) can be computed at a time instant of a
given sequence (i.e., action snippet), the action snip-
pet can be represented as a time series of these fea-
tures: A = {ht}τ−1

t=0 which provides us a rigorous
approach to classify and recognize actions.

To obtain the final feature vector for each action
snippet, we temporally partition each action snippet
into several time-slices defined by linguistic inter-
vals [24]. A Gaussian fuzzy membership function is
used to describe each of these intervals. The general
forms of these functions is given as follows

Gj(t;α, β, γ) = e
−
∣∣∣ t−αβ ∣∣∣γ (18)

where α, β, andγ are three scalar parameters of the
fuzzy function; i.e., the center, width, and the fuzzi-
fication factor which is a weighting exponent on each
fuzzy membership, respectively. Therefore, a feature
vector for a time-slice can be generated by calculat-
ing the weighted average feature vector of all frames
within the time-slice. More formally, the directional
feature vector for time-slice j is given by,

Hj =
1

∆t

∑
t∈slicej

Gj(t)ht, j = 1, 2, . . . ,m (19)

where Gj(t) is the Gaussian membership function rep-
resenting the j-th time slice, ∆t is the duration of the
time slice in frames, andm is the total number of time
slices into which the action snippet is divided. Ac-
cordingly, the full feature vector for an action snippet
can be straightforwardly derived by concatenating all
m feature vectors of its time slices as follows,

A = H1 ⊕H2 ⊕ · · · ⊕ Hm (20)
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Figure 4: Visualization of the proposed descriptor (with K = 32) for HOF features extracted from sample se-
quences of walk, jog, run, box, wave, and clap actions.

where ⊕ is the concatenation operator. From the
above mentioned, it follows that the process of slicing
action snippets into a finite number of temporal steps
would achieve the primary goal of effective feature di-
mensionality reduction and de-correlation by remov-
ing probable redundancy in the features set, while re-
taining the information essential for effective recog-
nition of actions. For this purpose, each action se-
quence is treated as a time series composed of low-
dimensional feature vectors corresponding to decom-
position of the sequence into several time slices. More
specifically, we keep onlymmultidimensional feature
vectors corresponding to the m time slices, instead of
taking all the feature vectors of all the frames in the
video sequence. These m vectors form the feature
space for action representation and classification.

It bears mentioning thatm is a parameter of choice,
wherem� n, n is the number of frames in the action
sequence. To investigate whether and how the over-
all recognition results are affected by different values
for m, in our experiments, different values of the pa-
rameter m were tried, each lies in the range of 1 to
5. The value that generates the highest average recog-
nition accuracy over all runs would be selected. As
a final note here it should also to be mentioned that
the directional features are efficiently computed using
fuzzy histograms that enables real-time implementa-
tion of the proposed action recognition method.

3.5 SVM based action classification

In this section, our goal is to classify actions according
to the fuzzy descriptors mentioned previously. Hu-
man action recognition can be modeled as a multi-
dimensional classification problem having one class
for each action, and the goal is to assign a class la-
bel to a given action. For this purpose, we use one-
vs.-rest SVMs (Support Vector Machines) with RBF
(Radial Basis Function) kernels. For SVMs, the one-
vs.-rest approach is widely adopted for handling the

multi-class problem by constructing the decision rule
based on multiple binary classification tasks.

Generally speaking, there are various supervised
learning algorithms by which an action recognizer can
be trained to recognize patterns of motion over time.
In this work, we propose to employ SVMs in our
framework due to their outstanding generalization ca-
pability and reputation of a highly accurate paradigm.
SVMs [25] are based on the Structure Risk Minimiza-
tion principle from computational theory, and are a
solution to data overfitting in neural networks. Orig-
inally, SVMs were designed to handle dichotomic
classes in a higher dimensional space where a max-
imal separating hyperplane is created. On each side
of this hyperplane, two parallel hyperplanes are con-
ducted. Then SVM attempts to find the separating hy-
perplane that maximizes the distance between the two
parallel hyperplanes (see Figure 5). Intuitively, a good
separation is achieved by the hyperplane having the
largest distance. Hence the larger the margin the lower
the generalization error of the classifier. More for-
mally, let D = {(xi, yi) |xi ∈ Rd, yi ∈ {−1,+1}}
be a training set, Coretes and Vapnik [25] have argued
that this problem is best approached by allowing some
examples to violate the margin constraints . These po-
tential violations can be formulated using some posi-
tive slack variables ξi and a penalty parameter C ≥ 0
that penalize the margin violations. Thus the opti-
mal separating hyperplane is determined by solving
the following QP problem:

min
β,β0

1

2
‖β‖2 + C

∑
i

ξi (21)

subject to
(yi(〈xi,β〉+ β0) ≥ 1− ξi ∀i) ∧ (ξi ≥ 0 ∀i).

Geometrically, β ∈ Rd is a vector going through the
origin point and perpendicular to the separating hyper-
plane. The offset parameter β0 is introduced to allow
the margin to increase and to not force the hyperplane
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Figure 5: Generalized optimal separating hyperplane.

to pass through the origin that restricts the solution.
For computational purposes, it is more convenient to
solve SVM in dual space. To do this, we form the
Lagrangian and then optimize over the Lagrange mul-
tiplier α. The resulting decision function has a weight
vector: β =

∑
i αixiyi, 0 ≤ αi ≤ C. The instances

xi with αi > 0 are termed support vectors, as they
uniquely define the maximum hyperplane.

For this approach, several classes of actions are de-
fined and hence several one-vs.-all SVM classifiers
are trained on the fuzzy directional features extracted
from the action sequences in the training dataset. The
feature vectors of the training set are fed into SVM
classifiers in order to learn the differences among the
features of each action class. In this work, we used
one of the most popular and successful kernels, the
RBF (or exponential) kernel, defined as

κ(x,y) = exp(‖x− y‖2/(2σ2)) (22)

where σ is the kernel width which can be regarded as a
tuning parameter. It is noteworthy to mention here that
the SVMs with RBF have evolved as a flexible and
powerful tool which is potentially able to create mod-
els that handle non-linearly separable data by mapping
original features of the training data to a higher di-
mensional feature space to enable linear separation for
classification. In this higher dimensional space, linear
functions (or separators) can be constructed, which
is potentially able to produce non-linear boundaries
(see Figure 6) when mapped back to the original input
space. Another important point to underscore here is
that, for RBF kernel, there is a set of parameters (e.g,
c and γ) for which several tests were carried out in
order to establish their optimum values.

4 Experiments and discussion

In this section, we commence our discussion with a
description of the action dataset on which the exper-

Figure 6: An example for nonlinear RBF kernel.

iments are conducted. Thereafter, in the forthcom-
ing sections, we present detailed descriptions of how
the experiments were carried out and what their re-
sults show. To evaluate the performance of the pro-
posed approach for action recognition in real world
scenarios, we decided to create our own realistic ac-
tion recognition dataset (hereinafter called as IESK
action dataset) which is going to be publicly avail-
able free of restrictions on use for action recognition
research on the Web very soon. Analogous to the
KTH [26] action dataset, a total of six action cate-
gories are contained in the IESK action dataset; three
“leg actions” (i.e., walking, jogging, and running) and
three “arm actions” (i.e., boxing, hand-waving, and
hand-clapping). The video sequences were typically
acquired by a Canon IXUS 65 digital camera and
stored in a resolution of 640× 480 pixels represented
in 256 grayscale levels. We believe that this resolu-
tion will likely be sufficient to reduce the high im-
pact of the camera artifacts on the recognition results,
since the data are internally stored in a lossy MPEG-
format by the camera. Contrary to the KTH dataset,
the sequences in IESK dataset were taken over var-
ious non-homogeneous backgrounds at 30 fps frame
rate. Within the sequences, actions are performed by
nine subjects, each subject was asked to wear a dif-
ferent clothing item. This is expected to make recog-
nizing actions slightly more challenging. Each action
sequence was then segmented into shorter video clips
of about 53sec duration which we term ‘action snip-
pets’. Figure 7 shows example frames from action se-
quences of different categories in the IESK dataset.

The reported results here are based on our feature
extraction technique described in detail in Section 3.3
and 3.4 (i.e., fuzzy HOF-based features) and obtained
with the IESK action recognition dataset that we cre-
ated for the purpose of recognizing human actions in
realistic scenarios. In this study, first of all, the ex-
periments have been conducted to gauge the poten-
tial recognition capabilities of the proposed recogni-
tion system. This section shows also the results of a
series of experiments performed to quantify the effect
on recognition performance of altering the feature de-
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Figure 7: Sample frames from the action sequences in
IESK action dataset.

scription parameters (i.e., K and m) in order to estab-
lish the optimum recognition rate.

As there was no control over the video capturing
process, the action sequences in the dataset that we
used in these experiments exhibit some degree of vari-
ation in the actors, scale, pose, camera views, appear-
ance inside the same action category, coupled with
cluttered background and different illumination con-
ditions. Considering that most previous research ex-
periments were conducted in controlled or partially
controlled environments (e.g., KTH and Weizmann
datasets), we intuitively expect that the experimental
results using this dataset will be more realistic. As
mentioned before, this dataset contains a total of six
categories, namely walking, jogging, running, box-
ing, hand waving and hand clapping, performed sev-
eral times by nine subjects. The test data consists of a
total of 300 action snippets derived from the video se-
quences recorded in the dataset. These streams were
saved in AVI format with a resolution of 640 × 480-
pixel frame dimensions with 24-bit color depth at 30
fps frame rate. An additional total of 480 streams are
used to train the six-action SVM model.

A series of experiments with different feature de-
scription parameters (K and m) was run to assess
the effectiveness of the proposed technique for action
recognition in realistic settings. We extracted about
360 directional features (for the case K = 18) from
each action video, and then applied our fuzzy ap-
proach for feature selection described in Section 3.4
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Figure 8: An example of visualization of the proposed
descriptor for directional features extracted from dif-
ferent action categories at five temporal steps m = 5.

to reduce the dimension of the fuzzy feature descriptor
to 90. Figure 8 shows an example of visualization of
the proposed fuzzy descriptor for the directional fea-
tures extracted from different action categories. By
inspecting the figure, one can observe that the de-
scriptor reflects the actual similarity/dissimilarity be-
tween different categories of actions at each tempo-
ral step. Thus, to quantify the degree of similarity or
dissimilarity between two actions, a measure of sim-
ilarity can be reliably computed based on a distance
(e.g. Euclidean distance) between these descriptors.
One more interesting observation is that the descriptor
remains constant or slightly changes with time; this
suggests that a relatively few number of time slices
will suffice to construct such a descriptor. With the
eventual goal of developing a high performance ac-
tion recognition system, we investigate the recogni-
tion performance of the proposed recognition frame-
work under the values of the feature description pa-
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Figure 9: Fuzzy Gaussian membership functions used
to represent temporal steps.

rameters (K and m) varying. Towards this goal, we
compute such descriptors a total of 20 times for all
samples in training set (i.e., the number of all possi-
ble combinations of values of the parameters m and
K, where m ∈ {1, 2, 3, 4, 5} and K ∈ {4, 8, 12, 18}).
Therefore, m fuzzy membership functions should be
defined to represent different time slices of a given ac-
tion sequence, as shown in Figure 9. Note that for the
sake of visualization, each fuzzy membership function
in the Figure is plotted in a unique color.

In order to evaluate qualitatively and quantitatively
the system’s performance, we performed the previous
experiments for all possible combinations of values
of the feature parameters. To facilitate the visualiza-
tion of the system’s performance, the confusion ma-
trices that tabulate the correct and incorrect classifi-
cations are calculated through majority voting. The
performance of the system can be presented directly
in the form of confusion tables. Instead, for the sake
of clarity, we graphically represent these confusion ta-
bles through a series of 3D bar plots, presented in Fig-

ure 10. In this figure, we see a series of 3D plots vi-
sualizing the confusion in recognition results for each
action category, each corresponding to a combination
of feature representation parameters. By inspecting
all plots shown in the figure, it is explicitly observed,
as expected, that the feature representation parame-
ters K and m are both significant and directly affect
the results of the recognition.

Furthermore, the overall accuracy (or correct recog-
nition rate) metric is employed to gauge the holistic
performance of the proposed recognition scheme. The
dependency of the overall recognition rate on the fea-
ture parameters has a shape similar to shown in Fig-
ure 11. Having a closer look at the figure, one can see
that in terms of recognition rate, the larger values of
both parameters provide the greatest improvement in
performance, and generally are the most important. In
other words, the larger the values of feature parame-
ters are, the better the holistic performance is. For the
sake of brevity, as a final remark in this section, we
only mention that in our computational experiments,
all the routines considered in this study were coded
in Visual Studio 2008 and executed on a PC equipped
with an Intel Core 2 processor operating at 2.8 GHz
with 8 MB of cache and 4 GB of SDRAM.

Action Localization:

In this subsection, we describe the results of a final
simple experiment conducted with the purpose of lo-
calizing the moving objects as motion regions of in-
terest (ROI) identified by motion information. The
analysis of the spatial location distribution of the flow
features generated by our proposed fuzzy framework
can efficiently contribute to a fast and accurate estima-
tion of the 2D position of the centroid of these features
based on the average of the coordinates of all feature
points in motion ROI. More formally, the centroid of
an action, at each time instant, is calculated according
to the following expression:

µx =
1

n

n∑
i=1

xi, µy =
1

n

n∑
i=1

yi (23)

where (µx, µy) denote 2D coordinates of the centroid
of the features. This centroid coincides with the esti-
mated center of mass of the moving ROI (i.e. action
actor here). In a similar vein, the dimensions of the
moving object are estimated by

σx = 2
√

3ηxx, σy = 2
√

3ηyy (24)

where ηxx and ηyy are the central moments of the cor-
responding centroid. In practice, this approach has
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Figure 10: 3D bar plots visualizing the confusion in
the action recognition results, each corresponding to
different values of the feature parameters K and m.

proved to be significantly more efficient for scenes
with a relatively stable background, even with very
high levels of noise. In Figure 12, some results of ac-
tion localization are depicted following this approach.

5 Summary and Conclusion

In this paper, we have presented an innovative ap-
proach for action recognition. On the basis of the
proposed approach towards action recognition in re-
alistic scenarios, a new fuzzy framework for repre-
senting and recognizing human actions in real-world
video sequences has been presented. In this work, a
compact and computationally-efficient descriptor; the
fuzzy motion descriptor is constructed based on di-
rectional features of optical flow and fuzzy temporal
slicing. The one-vs.-rest SVM classifiers have been
trained automatically in the feature space for activity
classification. The simplicity and computational effi-
ciency of the employed features allow this approach
to be more amenable for real-time implementation.
It is noteworthy to point out here that the presented
experiments conducted so far have demonstrated two
points of considerable interest. First, the feature rep-
resentation parameters K and m are both significant
and directly affect the recognition results. Secondly,
in terms of holistic performance, the larger values of
both parameters provide the greatest improvement in
overall recognition rate, and generally are the most
important. In other words, the larger the values of the
feature parameters are, the better the overall recogni-
tion performance is. Finally, for the sake of brevity
here, we only affirm that the best overall recognition
accuracy (corresponding to K = 18 and m = 5)
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Figure 11: Overall action recognition performance of
the proposed framework as a two-dimensional func-
tion of the feature parameters K and m.

achieved by the proposed approach is 96.3 % which
can be regarded as ”encouraging“, and confirm the ba-
sic correctness of the approach, considering the real-
istic working environments. However, some further
investigations on larger realistic datasets may be nec-
essary to discuss the substantive correctness, robust-
ness, and large-scale feasibility of the approach.
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recognition in our dataset.
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