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Abstract: Linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction
(DR) techniques used in computer vision, machine learning, and pattern classification. However, LDA only
captures global geometrical structure information of the data and ignores the geometrical variation of local data
points of the same class. In this paper, a new supervised DR algorithm called local intraclass geometrical
variation preserving LDA (LIPLDA) is proposed. More specifically, LIPLDA first casts LDA as a least squares
problem, and then explicitly incorporates the local intraclass geometrical variation into the least squares
formulation via regularization technique. We also show that the proposed algorithm can be extended to non-
linear DR scenarios by applying the kernel trick. Experimental results on four image databases demonstrate the
effectiveness of our algorithm.
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two decades. It is well known that the dimension of

information is encoded, it is generally believed that
LDA is superior to PCA [2]. However, when
applying LDA to real-world applications, there are
two problems needed to be carefully considered: 1)
the singularity of within-class scatter matrix; and 2)

an image is usually very high. For example, an the local geometrical variations.
image with a resolution of 100100 can be viewed In the past, many LDA extensions have been
as a 10000-dimensional vector. High dimensionality developed to deal with the singularity of within-
of feature vector has become a critical problem in class scatter matrix, among which the most
practical applications. The data in the high- representative methods are Fisherface [3], enhanced
dimensional space is usually redundant and may Fisher linear discriminant models (EFM) [4], regul-
degrade the performance of classifiers when the arized discriminant analysis (RDA) [5], LDA/QR
number of training samples is much smaller than the [6], maximum margin criterion (MMC) [7] and two-
dimensionality of the image data. A common way to dimensional  discriminant  analysis(2DLDA) [8].
resolve this problem is to use either supervised or Although these methods have been shown to be
unsupervised DR techniques. Principal component effective in experiments, their —generalization
analysis (PCA) is a popular unsupervised DR cap_ablllty on te_stlng data cannot be guaranteed. The
algorithm, which performs DR by projecting the main reason is that they only capture global
original m-dimensional data onto the I-dimensional geometrical structure information of the data via
(I<<m) linear subspace spanned by the leading equally minimizing the dlsta_nce among dqta points
eigenvectors of the data’s covariance matrix. LDA from the same class and ignore local intraclass
searches the projection axes on which the data geometr!cal variations. It is just the Ipcal .|ntraclass
points of different classes are far from each other geometrical variation that characterizes important

while requiring data points of the same class to be modes of variability of data and helps to alleviate or

1 Introduction

Appearance-based image recognition has attracted
considerable interest in computer vision, machine
learning, and pattern classification [1-4] in the past
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improve the generalization ability of the algorithms
[9-11].

Recently, a number of graph-based DR methods,
which are also called manifold learning based
discriminant approaches, have been successfully
applied and became important methodologies in
computer vision, machine learning and pattern
classification. Some well known graph-based
algorithms are locally linear embedding (LLE) [12],
Isomap [13], Laplacian eigenmap [14], graph
embedding [15], and locality preserving projection
(LPP) [16]. All these algorithms were developed
based on the assumption that the data lie on a
manifold which can be modeled by a nearest-
neighbor graph that preserves the local geometrical
structure of the input space. Different from LLE,
Isomap and Laplacian eigenmap, LPP is a linear
algorithm which is quite simple and easy to realize,
thus has received much attention in the research
community [17-26]. As to the problem of local
geometrical variations when applying LDA,
however, there are only a few articles about using
LPP to deal with it have been published so far, such
as local LDA (LocLDA) [19], local Fisher
discriminant analysis (LFDA) [25], and Graph-
based Fisher analysis (GbFA) [26]. Though
LocLDA integrates LDA and LPP in an unified
framework, it disregards label information in the
LPP formulation, which is in contradiction to the
supervised nature of LDA. LFDA is still a LDA
technique with the redesigned LPP-based local

within-class and local between-class scatter matrices.

GbFA applies Fisher criteria to the intrinsic graph
and penalty graph, i.e., finds projection axes on
which the intrinsic graph is minimized while the
penalty graph is maximized. Different from generic
LDA, both LFDA and GbFA focus only on the local
structure and disregard the global structure of the
data.

Motivated by the ideas in Refs.[10,16,19,25,26],
in this paper, we will develop a new supervised DR
algorithm, called local intraclass geometrical
variation preserving LDA (LIPLDA), to integrate
both global geometrical structure information and
local intraclass geometrical variations of the data.
More specifically, we cast LDA as a least squares
problem based on spectral regression and use a
modified locality preserving projection as a
regularization term to model the local intraclass
geometrical variations. The wuse of locality
preserving projection as regularization term has
been studied in [27, 28] in the context of regression
and SVM. In [28], a tuning parameter was
introduced to balance the tradeoff between global
and local structures.
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The rest of the paper is organized as follows. In
Section 2, we give a brief review of LDA. Section 3
introduces spectral regression discriminant analysis,
and our LIPLDA algorithm is presented in Section 4.
Section 5 extends LIPLDA to non-linear DR
scenarios using kernel tricks. Extensive experiments
for object recognition are conducted in Section 6 to
verify the efficiency of our methods. Conclusion
and discussion are presented in Section 7.

2 A Brief Review of LDA

In classification problems, given a set of n d-
dimensional samples Xi, X,,...... X, belonging to C
known pattern classes, LDA seeks direction v on
which the data points of different classes are far
from each other while requiring data points of the
same class to be close to each other [29], i.e., LDA
maximizes the objective function J(v) (also known
as the Fisher’s criterion ) as follows

3(v) = e @
C
Sg =2 m, (n —p)(u“ —p)’
k=1
C my
Sw =2 (6 — )X ~r)")
k=1 i=1

where pis the total sample mean vector, p*is the
centroid of the k-th class, my is the number of
samples in k-th class, and X is the i-th sample in

the k-th class. The matrices Sy and S, are often

called the between-class scatter matrix and within-
class scatter matrix, respectively.

By defining the total scatter matrix S; =
Zin:l(xi —m)(x, —p)" , it is easy to verify that
S; =S; +S,, . The objective function (1) is then
equivalent to

T
V'S,V

J(v)=—=8 (2

V' S;v

Maximizing the above function is equivalent to

finding the eigenvectors of the following
generalized  eigen-problem  associated  with
maximum eigenvalues

Sgv=A4AS;v (3)

Since the rank of S; is bounded by C-1, there

are at most C-1 eigenvectors corresponding to non-
zero eigenvalues [29].

The solution of EQ.(3) can be obtained by
applying an eigen-decomposition on the matrix
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S{'S, , given that S. is nonsingular. However,
when the number of features is larger than the
number of samples, S; is singular and S;* doesn’t

exist. In the past few decades, various approaches
have been proposed to solve this singularity
problem and all of them can be divided into two
categories: 1) applying eigen-value decomposition
or singular value decomposition to the data matrix,
which is computationally expensive in both time
and memory; and 2) casting LDA as a least squares
problem based on spectral regression [30], which
can be efficiently solved by various iterative
algorithms (e.g., LSQR [31], [32]). By casting LDA
as a least squares problem, we can also generalize
LDA by incorporating various additional
information, e.g., local intraclass geometrical
variation, into the framework of least squares
problem as regularization terms.

3 Spectral

Analysis

In this section, we use graph embedding to
reformulate LDA and show how LDA is connected
to least squares problem. We start from analyzing

the between-class scatter matrix Sy .

Regression Discriminant

Let X, =x,—p and X*=[x{,x},...xk ]
denote the centered data sample and the centered

data matrix of the k-th class, respectively. We see
that

Se =Z_:mk(uk - (pf-p)’

My

S L3knlf 230w w

k i=l
C— —T
XEwk Xk

k=1

equal to 1/m, . If we define X = [%, ...... ,F] as
the centered sample matrix and a matrix W as

w 0 - 0
0 W? ... 0
W=\ | . ) ®)
0 0 w¢
we have
S, = XWX’ ©)
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Similarly, the total scatter matrix and within-
class scatter matrix can be rewritten as

n =T
Sy :Zizl(xi —m)(x; —w)" = XX
Vv il
Sy =S; =Sz =XX —XWX
= =T =, =T
=X(I-W)X =XLX

If we take W as the edge weight matrix of a
graph G, its entry Wj; is the weight of edge joining
vertices i and j. Wj =0 indicates there is no edge
between vertices i and j. Thus L = I — W is called
graph Laplacian.

By substituting Eq.(6) and Eq.(7) into Eq.(3), we
obtain the following generalized eigen-problem
XWX v=AXX'v ®)

In [30],[33], Cai et al. developed an efficient
two-stage approach to solve the generalized eigen-
problem (8), which is based on the following
theorem.

Theorem 1. Let y be the eigenvector of eigen-
problem

Wy = 1y

(7)

9)
with eigenvalue 4 . If YTV:y_/, then v is the

eigenvector of eigen-problem XWX v =AXX"v
with the same eigenvalue A .

Theorem 1 shows that instead of solving the
eigen-problem (8) directly, the LDA basis functions
can be obtained through the following two steps:

1) Solve the eigen-problem in (9) to get )_/

2) Find v which satisfies X v =y.
In reality, such v may not exist. A possible way

_T p—
is to find a Vv that fits X v =y n the least squares

Sense:
2

v = arg min HYTV —y (10)

For the cases that the number of samples is
smaller than the number of features, the above
minimization problem is ill-posed. The most
popular way to deal with the ill-posed problem is to
impose a penalty on the norm of v, we have

A (=t -2 5
v =arg mvln{HX v—yH + v }

Since W is a block-diagonal matrix with C
blocks, and the rank of each block is 1, so there are

exactly C eigenvectors, )_/l, )_/2,---§/C , Tor the eigen-

(11)

problem W&:,& . As a result, there are C
optimization problems like Eqg.(11) needed to be
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solved. For simplicity, all these optimization
problems can be written in a single matrix form as

A . T 12
V =arg m\}n{ HX V-Y i +<9||V||2F }

Where V=[V11V2!--'VC] ’ v=[§/1’§/2"”§C] '

(12)

and |- ||F is the Frobenius norm of a matrix.

4 Local Intraclass Geometrical Varia-

tion Preserving LDA

By casting LDA as a least squares problem,
additional information of data sets can be
incorporated into LDA as regularization terms. In
this section, we show how to build a regularization
term for the local intraclass geometrical variation
and how to solve the final optimization problem.
We start from modeling local intraclass geometrical
variation.

4.1 Local Intraclass Variation Modeling
LDA aims to capture global geometrical structure
information and ignores the geometrical variation of
local data points of the same class. However, in
many real-world applications, the local intraclass
geometrical variation is more important. In this
paper, we use a modified LPP to model the local
intraclass geometrical variation. The complete
derivation and theoretical justifications of LPP can
be traced back to [16]. LPP seeks to preserve local
structure and intrinsic geometry of the data. The
objective function of LPP is as follows

1 .
Eman(yi - yj)ZSij
ij

where y; is the one-dimensional projection of sample
x; and the matrix S is a similarity matrix whose
element S; representing the similarity between
samples x; and x;. A possible way of defining S is

S _ eXD(—Hxi —xjH2 /t), Hxi —xjH2 <S5
"o, otherwise

where ¢ is sufficiently small , and 6 > 0. Here ¢
defines the radius of the local neighborhood. Or
exp(-fx, —x;| 11, %, € N, (x;)

- 15
Si orx; e N, (x;) (15)

0, otherwise

(13)

(14)

where x; € N, (X;) implies that X; is among the k

nearest neighbors of x; or vice versa [14], [17]. With
the similarity matrix S defined in Eq.(14) or Eq.(15),
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the objective function (13) incurs a heavy penalty if
neighboring points are mapped far apart in the one-
dimensional output space.

From the definition of similarity matrix S, we
see that neither Eq.(14) nor Eq.(15) takes sample
label into consideration, i.e., the samples in the local
neighborhood are considered to be within the same
class, while the samples in the nonlocal region are
considered to be in different classes. In reality,
however, as illustrated in Fig.1, such assumption
does not certainly hold. In the figure, the top left
circle and the down right circle do not belong to the
classes of their local neighbors. If the task at hand is
classification, the desired projection axes should be
the ones on which the circles are far from their
nearest neighbors. However, with the similarity
matrix S defined in Eg. (14) or Eg. (15), the
objective function of LPP, i.e., Eq.(13), tends to
push the circles closer to their nearest neighbors.

A

A

A O

A

Fig.1 lllustration of local intraclass geometrical
variation

In order to model the local intraclass
geometrical variation more effectively, we redefine
the similarity matrix S whose element is given by

exp(-x; —xszlt), X, —xsz <5
S — (16)
i andC, =C,
0, otherwise
or
2
exp (—|x; —xjH 1), X, eN(x,)
S — an
i orx; e N,(x;)and C; =C;
0, otherwise

where C;andC; denote the class label of X; and X,
respectively. Formulas (16) and (17) indicate that,
even if two points X; and X from different classes

are close to each other, the objective function
doesn’t incur a heavy penalty if they are mapped far
apart in the one-dimensional output space because

the corresponding S;; is zero.
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Supposing there are C one-dimensional
projections of the form y:viTX,i =1...C, by

substituting y = v/ X into Eq.(13) and combining all

these functions together into a single matrix form,
following some simple algebraic steps, we see that

1 2
EZHVTXi —VijH S,
L (18)
ZEZU{VT (Xi _Xj)sij (Xi _XJ)TV}
i

where V =[v,,V,,...V.]. Since the operation of
trace is linear and S;; is a scalar, Eq. (18) can be
easily simplified as

%Ztl’{\/T (Xi _Xj)sij(xi _Xj)TV}
= %tr{VT [Z(xi —X;)S; (x; =x;)" ]V}
= %tr{VT {22Xi5iniT 2> x;S;x, ]V} (19)

=trfV" (XDXT = XSX" )V}

— tr{VTXLX TV}

where D = diag(Dy,, -+, D) » Dy =D S (i =
1,---,n)and L = D—Sis the Laplacian matrix.

4.2 The LIPLDA algorithm

The local intraclass geometrical variation can be
incorporated into the least squares formulation of
LDA as a regularization term defined in Eq.(19).

Given a matrix Y = [91,y2,---yc], whose column
vector y_I is the eigenvector with eigenvalue A, for

the eigen-problem W37=/137 , our LIPLDA

algorithm calculates an optimal projection matrix V
from the following optimization problem:

A

V =arg m\jn{ HXTV -Y

2 2
(L= trVIXIX TV - ]V }
F

(20)
where ¢ €(0,1) is a tuning parameter that controls
the tradeoff between global geometrical structure
and local intraclass geometrical variation.

By differentiating the right part of Eq.(20) with
respect to V, setting the derivative equal to zero,
after some manipulation, we get

XXV +(@1-e)XLX V+&V=XY 1)

E-ISSN: 2224-3402

105

Di Zhang, Yun Zhao, Minghui Du

vl = ST

Because matrix XX +(1—-&)XLX +¢lis
nonsingular, the optimal projection matrix V can be
computed as

A . - 1
V= (xxT +(L-e)XLX +e J XY (22)
Algorithm: LIPLDA

Summarizing the previous sections, the LIPLDA
algorithm is as follows
Training:
1) Construct similarity matrix S using either
Eq.(16) or Eq.(17).
Solve the eigen-problem Eq.(9) to get Y .
Use Eq.(22) to compute V.
Obtain a feature matrix Z of the training data by
Z=V'X.
Test:
1) For a test sample x, center it by X=X—p,
where pis the centroid of training data.
2) Obtain a feature vector of the test sample by

7=V'"x.

2)
3)
4)

5 Kernel LIPLDA for non-linear DR
The first kernel-based DR method, kernel principal
component analysis (KPCA) was originally
developed by Scholkopf et al. in 1998 [34], and
kernel Fisher discriminant analysis (KDA) was
introduced by Mika et al. in 1999 [35]. Subsequent
research saw the development of a series of KDA
algorithms (see Baudat and Anouar [36], Lu et al.
[37], Yang et al. [38], Cortes et al. [39], and Lin et
al. [40]). Because of its ability to extract the most
discriminatory nonlinear features, KDA has been
found to be very effective in many real-world
applications. Compared to other methods for non-
linear feature extraction, kernel-based DR methods
have the advantage that they do not require non-
linear optimization. Here we show how LIPLDA
can be extended to non-linear DR scenarios.

5.1 A Brief Review of KDA

The idea of KDA is to extend LDA to a nonlinear
version by using the so-called kernel trick [36].
Assume that we have a nonlinear mapping ¢(-) that
maps a point in a d-dimensional input space into a r-
dimensional feature space, i.e.,

#:R* 5> R" (23)
Here, the dimension of the feature space r can
either be finite or infinite. Let u; =

Um)YTH0) =W 4(x) and
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P(x;) = #(x;) —p,, denote the centroid of the k-th

class, the global centroid and the centered data
sample, respectively, in the feature space. For the
new between-class scatter matrix in the feature
space, following some simple algebraic steps, we
see that

C
St => m (uf—p,)(ns—p,)T
k=1

mk(nfi(ﬂxr)—w)j[nfk§(¢<xr)—u¢)jT

=1 k i=1

=300 2 = AKX
¢(X") = [¢(xf), ...... ,¢(xﬁ1k )] is  the
centered data matrix of the k-th class in the feature
space. If we define @(X) =[#(X"),......,p(X)] as

the centered sample matrix in the feature space, we
have

— o7
St = p(X)Wg(X) (24)
Similarly, the new total scatter matrix and

within-class scatter matrix in the feature space can
be rewritten as

St = 2, (00) —m)$(x) ~m,)'
— $(0P(X)’
S¢ =S¢ -3¢ = HX)P) ~ FOOWH(X)'

— — T
= ¢(X)(1 - W)g(X)
By replacing S and S in Eq.(2) with S% and

where

(25)

S? , respectively, we obtain the corresponding
objective function in the feature space as follows

TQé

I(v) = VTSEV
v Sfv

However, direct calculation of v by solving the
corresponding GED problem of Eq.(26) is difficult
because the dimension of v is not known and
furthermore it could be infinite. To resolve this
problem, instead of mapping the data explicitly, an
alternative way is using dot-products of the training
samples to reformulate the objective function
[35,36].

Clearly, the optimal projection vector v is a
linear combination of the centered training samples
in the feature space, i.e.,

(26)

V=2 ¢(x) = ¢(X)a (27)
i=1

forsome a=[a,,,,...a,]' €R".
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Considering that the projection of a centered

sample @(x;) onto the vector v in the feature space

is obtained by the inner product of v and the
centered sample itself, the projection of the entire
training data is obtained by

VI H(X) =a" (X)) g(X) ="K (28)
where R:MTM is a centered symmetric

kernel matrix whose (i,j) element is K(X;,X;)=

¢(Xi)T $(x;) . Then, for the objective function (26),
following some simple algebraic steps, we see that
VStV VT g(X)Wg(X) v o' KWKa
VISIV VT4 4(X) v a' KKa,
The optimal a’s can be obtained by solving the
following GED problem:
KWKa = A1KKa (29)
By generalizing the idea of Theorem 1 to KDA,
we have the following theorem

Theorem 2. Let 3_/ be the eigenvector of eigen-

J(v)=

problem Wy_/ :M_/ with eigenvalue A . If Ruzy_/,
then a is the eigenvector of eigen-problem in
Eq.(29) with the same eigenvalue A .

Proof: With Ka = 9 and W)_/ = )& , following

some algebraic steps, the left side of Eqg.(29) can be
rewritten as

KWKa = KWy = K1y = AKy = AKKa

Thus, a is the eigenvector of eigen-problem in
Eq.(29) with the same eigenvalue A .

O

Following the same two-stage approach as
mentioned in Section 3, the KDA solution a can be
obtained by solving the following regularized least
squares problem

a = arg min {HRa - 37”2 + &ol } (30)

Again, since there are total C optimization
problems like Eq.(30) needed to be solved, we can

combine them into a single matrix fogm as
A A — —12
A =arg min {HKA - YHF + ‘9||A||2F f (31)

where A =[a,,0,,...0.].

5.2 Kernel Local Intraclass Geometrical
Variation Modeling
Since the projection of a centered sample

#(x;) onto the vector v in the feature space is
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obtained by the inner product of v and the centered
sample itself, we can similarly define an objective
function of LPP in the feature space as follows

~min Y|V gx) - v 96 )| 'S,

where §; is the same as defined in Eq.(16) or

Eq.(17). Following similar procedure described in
section 4.1, we have

%;HVTXi -Vix['s,

(32)

, (33)
- tr{vT MLMTV}

where V =[v,,V,,...v.] , D=diag(D,, -,

D,.), D, =Z?:lsij(i =1---,n)and L=D-S.

Substituting VT ¢(X) = ATK into Eq.(33), we
have the final form of the objective function of LPP
in the kernel space

min tr{AT RLRA} (34)

5.3 Kernel LIPLDA
Given a matrix Y =[Y,,Y,, --Y-], whose column

vector y_I is the eigenvector with eigenvalue A, for

the eigen-problem W)_/:i)_/, our kernel LIPLDA

(LIPKDA) algorithm calculates the matrix A, whose
entries are the expansion coefficients of the optimal
transformation matrix V, from the following
optimization problem:

A= arg min {HRA - VHZF +(1- g)tr{AT RLRA}Jr e|A: }
(35)
where ¢ € (0,1) is a tuning parameter that controls

the tradeoff between global geometrical structure
and local intraclass geometrical variation in the
feature space.

By differentiating the right part of Eq.(35) with
respect to A, setting the derivative equal to zero,
after some manipulation, we get

KA+ (- e)KLKA+sA=KY (36)
To solve EQg.(36), we need the following
theorem

Theorem 3. Matrix K + (1-&)KLK +¢lis
nonsingular.

Proof: Let F=K  + (1-£)KLK . By the
definition of Laplacian matrix L, it is easy to verify

that L is a symmetric positive semi-definite matrix.
With Schur decomposition, we get

E-ISSN: 2224-3402

107

Di Zhang, Yun Zhao, Minghui Du

L=QAQ’ (37)
where A =diag( 4, 4,,---4,)is a diagonal matrix.

Let P=QAY?, we have L = PP". Thus F can be
rewritten as

F=K +(1-¢)KPPTK

—2 — (=Y
—K’ +(1-£)KP(KP)
It follows that F is symmetric positive definite.

By Cholesky decomposition, F can further be
simplified as

(38)

F=GG' (39)
Let G=UXV' be the singular value
decomposition of G, we have
F+el=GG™ +g1=UX*U" +¢l
(40)

=UE?+e U’
Thus
‘Rz +(1-e)KLK + ¢ |‘ —jUE +eUT|= [ 4 e |

which is nonsingular because & > 0.
O
With Theorem 3, the optimal solution can be
computed as

A A - 1
A:(K2+(1—g)KLK+gI> KY (41)
Algorithm: LIPKDA
Summarizing the previous
LIPKDA algorithm is as follows
Training:

1) Generate a centered  kernel matrix

K= ¢(X)T @¢(X) from the training samples.

Solve the eigen-problem Eq.(9) to get Y .

Use Eq.(41) to compute A.

Obtain a nonlinear feature matrix Z of the
training databy Z=A"TK .

Test:

1) For a test sampr)le X, generate a centered kernel

vector K(x)=|K(x,X), k(% X,),....k(x.x,) |

sections, the

2)
3)
4)

where k(X, X;) = p(x) o(X.).

Obtain a nonlinear feature vector of the test
sample by z = ATK(X).

In LIPKDA, the kernel function K(-,-) plays an

important role and the essential property of the
kernel function is that it should be decomposed into
an inner product of a mapping ¢(-) to itself, i.e.,

2)

K(X;,X;) = @(x;)" @(x;). However, it is obvious-

sly that not all the functions meet this property. To
be a proper kernel function, a function should meet
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the so-called Mercer’s condition [41] and the two
most popular kernels are the polynomial kernel

K(x;,X;)=(X;'X; +¢)" and the Gaussian RBF

kernel K(X;,X;) = exp(—”xi —xjH2 / ) in which c,

d, and o are the kernel parameters.

In the training of LIPKDA algorithm, the most
time consuming part is Step 3 where the matrix
inverse problem should be solved. Because the

matrices K and L in Eq.(41) are R™™", the comput-
ational complexity of Step 3 is normally O(n).
Nevertheless, it is unnecessary to compute the
matrix inverse involved in Eq.(41) directly. The
detailed efficient procedure is discussed as follows.

since A=[a,,a,,...ac], Y =[y,, ¥Vl let

H=K +(1-&KLK+eland P=[p,p,,...
pP.1=[Xy,, Xy,,...Xy.], Eq.(41) can be decom-
posed into the following C linear equations:
Ha, =p,;,i=12,...C (42)
There are many efficient iterative algorithms
have been proposed to solve Eq.(42). In this paper,
we use LSQR algorithm, an iterative algorithm
designed to solve large scale sparse linear equations
and lest squares problems [31]. In each iteration,
LSQR needs to compute two matrix-vector products
[32]. The computational complexity of LSQR for
solving Eq.(42) is normally O(n®+n). If the sample
number is large and parallel computation is
applicable, using LSQR algorithm will be more
efficient than performing matrix inverse directly.

6 Experimental results
In this section, two experiments are designed to

evaluate the performance of the proposed algorithms.

The first experiment is on face recognition and the
second is on artificial object recognition. Face
recognition is performed on three face databases
(vale, ORL, and PIE) and artificial object
recognition is performed on COIL20 image database
[42]. In all the experiments, we use Euclidean
metric and nearest neighbor classifier for
classification due to the simplicity. In order to get a
fair result, for all experiments, we adopt a two-phase
scheme: 1) perform model selection, i.e., to
determine the proper parameters for all the involved
algorithms; and 2) reevaluate all the methods with
the parameters got in the phase of model selection.
Both the two phases are carried on the same data
sets but under different partitions. The
implementation environment is the personal
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computer with Intel(R) Core(TM)2 Duo CPU P8700
@ 2.53GHz, 4 GB memory.

Eight DR algorithms, namely, LDA, LPP [16],
LocLDA [19], KPCA [43], KDA [43], complete

kernel Fisher discriminant analysis (CKFD) [38],
the proposed LIPLDA and LIPKDA are tested and
compared. To perform a fair comparison, we split
these eight methods into two groups: linear group
(including LDA, LPP, LocLDA, and LIPLDA) and
non-linear group (including KPCA, KDA, CKFD,
and LIPKDA). For non-linear DR methods, in this
paper, the Gaussian RBF kernel Kk(X,y)=

exp(—{x— y||2 / &) is used.

6.1 Experiment on Face Recognition

The Yale face database [44] contains 165 grayscale
images of 15 individuals. There are 11 images per
subject, one per different facial expressions or
lighting conditions. The images demonstrate
variations in lighting conditions (left-light, center-
light, right-light), facial expressions (normal, happy,
sad, sleep, surprised, and wink), and with/without
glasses.

The ORL face database [45] has a total number
of 400 images of 40 people. There are ten different
images per subject. For some subjects, the images
were taken at different times, varying the lighting,
facial expressions (open / closed eyes, smiling / not
smiling) and facial details (glasses / no glasses). All
the images were taken with a tolerance for some
tilting and rotation.

The CMU PIE database [46] contains 68
subjects with 41,368 face images as a whole. The
face images were captured by 13 synchronized
cameras and 21 flashes, under varying pose,
illumination and expression. We choose the five
near frontal poses (C05, C07, C09, C27, C29) and
use all the 11,544 images under different
illuminations and expressions where each person
has 170 images except a few bad images.

In our experiments, all the images are manually
aligned, cropped and resized to have a resolution of
32 x 32 pixels. Fig.2 shows some examples where
three sample images of one subject are randomly
chosen from each database. For each database, we
randomly partition the images into a training set (n
images per subject for training) and a test set (the
remaining images are used for testing). The detailed
description of partition for the phases of model
selection and performance evaluation is listed in
Table 1. The partition procedure is repeated 20
times and we obtain 20 different training and testing
sample sets. The first 10 are used for the phase of
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model selection and the others for the phase of
performance evaluation.

D=
RN
bk

(e}
Fig.2 Samples from (a) Yale, (b) ORL, (c) PIE

In the phase of model selection, our goal is to
determine proper kernel parameters (i.e., the width
o of the Gaussian RBF kernel), the dimension of
the projection subspace for each method, the fusion
coefficient that determines the weight ratio between
regular and irregular discriminant information for
CKFD [38], and the tuning parameter & that
controls the tradeoff between global geometrical
structure and local intraclass geometrical variation
in our proposed algorithms. Since it is very difficult
to determine these parameters at the same time, a
stepwise selection strategy is more feasible and thus
is adopted here [37,38]. Specifically, we fix the
subspace dimension and the tuning parameter & or
the fusion coefficient (for LIPKDA or CKFD) in
advance and try to find the optimal kernel parameter
for the Gaussian RBF kernel function. To get the
proper kernel parameter, we use the global-to-local
search strategy [47]. Then, based on the chosen
kernel parameter, we can choose the optimal
subspace dimension for each method. Finally, the
tuning parameter £ or the fusion coefficient is
determined with respect to the other chosen
parameters.

The error rates of the random 10 different splits
on three face databases with all the tested DR
algorithms are presented in Fig.3. The training size
used in Fig.3 is 5, 5, and 30 per subject for Yale,
ORL, and PIE, respectively. From Fig.3, we can see
some obvious conclusions as follows:

1. KPCA has the lowest performance among all
the tested methods. This is because unlike other
methods, KPCA vyields projection directions
which have minimal reconstruction error by
describing as much variance of the data as
possible, thus the yielded directions are meant
for reconstruction, not for classification.

2. Except for KPCA, Kkernel-based methods
always achieve lower error rates than their
corresponding linear counterparts, which
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demonstrates that non-linear features play an
important role in face recognition.

3. For either linear or non-linear group, our
proposed LIPLDA and LIPKDA outperform
other DR methods. This demonstrates that
either global geometrical structure or local

intraclass geometrical variation contains
important  discriminant  information  for
classification, the fusion of these two kinds of
information can achieve better results.
Moreover, further improvement can be
achieved if class label is taken into
consideration ~ when  constructing  local

discriminant information.

4. LPP is slightly better than LDA on Yale
database, while LDA outperforms LPP on ORL
and PIE database. This implies that the relative
importance of local and global structures in
object recognition depends on specific data sets.
For example, the local structure may contain
less effective discriminative information in
ORL and PIE database than in Yale database.

We then provide detailed performance
comparison of the eight methods in Tables 2-4,
where the mean error rates and standard deviations
of the 10 different partitions on each data set with
different training numbers are reported. Except for
the case that the training data size n is 2 when
dealing with Yale database, it is clear that the
proposed LIPLDA and LIPKDA achieves the best
performance in linear and non-linear groups,
respectively. From Table 2, we can observe that the
error rates of LocLDA, LIPLDA and LIPKDA are
almost the same and are higher than that of LPP
when the training data size n is 2. This implies that
for some applications, when the number of training
sample per subject is extremely low, it is difficult
for the joint global and local information based
methods to capture more useful discriminant
information, thus fusing both local and global
discriminant information does not help. For the
results on PIE database listed in Table 4, it is
interesting to note that the methods in the same
group (except for KPCA in the non-linear group) all
achieve comparably low error rates when the
training data size is large, e.g., n=120. Considering
the large variance of images in PIE database, this
may be due to the fact that in some cases when the
training data size and data variance is large, the
useful discriminant information of local intraclass
geometrical variation is corrupted by the densely
and randomly distributed sample points, causing

LPP-based techniques to capture no more new

discriminant information other than global

geometrical structure information, hence integrating
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both local and global information makes little help in improving performance.
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Fig.3 Comparison of eight DR methods in error rates on three face databases.
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Table 1 Random partition on three databases for the phases of model selection and performance evaluation

Table 2 The average error rates (%) across 10 tests and their standard deviations (std) on Yale database

Di Zhang, Yun Zhao, Minghui Du

Database Classes Different numbers for training { # per subject)
(C Model selection Performance evaluation
Yale 40 3 2/3/3/6
OFL 3 2/3/3/6
PIE 68 60 30/60/90/120

Training/ Testing numbers 2/ 3/8 3/6 6/3
LDA 3001 +£319  3051=+£303 2743200 2282=+201
Linear LPP 4430 +268 3330+268 2340=189 2041217
methods LocLDA 45092+2350 3240+£232 2069+168 1832203
LIPLDA 4594 +2.61 31.78+2.94 17.82:x251 16.77+21.38
EPCA 63.72+426 3010404 39535+380 3644325
Non-linear EDA 3561+£315  3751+£295 2493300 2183+260
methods CEFD 3031 +268 3310277 2192236 1822+233
LIPEDA 4532 +2.81 31.12+315 1649270 1590+2.41

Table 3 The average error rates (%) across 10 tests and their standard deviations (std) on ORL database

Training Testing numbers 2/8 37 35 6/4
LDA 2751 £240  1377+261 603102 480188
Linear LFFP 2633+£295  1680=2384 030199 752204
methods LoclDA 1744 =231 028152 3.35£1.05 280146
LIPLDA 17.42£216 9.08+1.43 2,58 £1.08 243121
KEPCA 4003 +305 29005+288 2260+235 2194=+257
Non-linear EDA 2061222 1220204 6.35=1.76 442178
methods CEFD 1780270 11.12+£215 434137 3182+103
LIPEDA 1613190  7.20+1.44 2,35 £0.87 2,11 £1.00

Table 4 The average error rates (%) across 10 tests and their standard deviations (std) on PIE database

Training Testing numbers 30/140 60/110 00/80 120/50

LDA 11.12 £ 0.47 543087 423081 370079

Linear LFP 1477 £0.78 6.71 =0.69 4.10+0.55 3126=0.54

methods LocLDA 10.07 £ 0.43 5.22+083 415078 3.61 =038

LIPLDA 0,78 +£0.33 5.00 £0.93 3.00+£1.23 3.57+0.84

KEPCA 2749 £0.98 23.8=0.88 2230088 22050469

Non-linear EDA 10,09 =1.01 5.50+=1.05 302083 3220091

methods CKFD 0.08 £0.93 5.04 003 331082 200078

LIPEDA 7.81 £1.11 4.42 £1.02 3.16 = 0.90 2.85+£0.83
The COIL20 image database [42] contains 1440
6.2 Experiment on  Artificial Object images of 20 objects (72 images per subject). The
Recognition images of each subject were taken every 5 degree
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apart as the object was rotated on a turntable. Each
image is of size 128x128 . Fig.4 shows some
examples from the database.

BEIBI

Fig.4 Sample images from COIL20 database

In our experiments, each image is resized to
have a resolution of 64 x64 and 36 samples are
randomly chosen from each class for training, while
the remaining 36 samples are used for testing. In
this way, we run the system 20 times and obtain 10
different training and testing sample sets for both
the phases of model selection and performance

Di Zhang, Yun Zhao, Minghui Du

evaluation. The same methods described in Section
6.1 are used here for parameter selection.

The error rates of the random 10 different splits
on COIL20 database with the tested eight methods
are presented in Fig.5. The mean error rates and
standard deviations of the 10 different partitions are
reported in Table 5. From Fig.5 and Table 5, it can
be seen that 1) KPCA has the lowest performance
among all the tested methods and our proposed
LIPLDA and LIPKDA algorithms consistently
outperform other methods in linear and non-linear
group, respectively. 2) Both the global and local
geometrical information are effective for class
classification, and fusing both of them can further
improve recognition accuracy. Moreover, the results

in Table 5 also prove that local intraclass
geometrical variation contains more useful
discriminant  information  than  pure local

geometrical information.

Table 5 The average error rates (%) across 10 tests and their standard deviations (std) on COIL20 database

Linear methods

MNon-linear methods

LDA LPP LoclDA LIPIDA  KPCA KDA CKFD LIPKDA
Error 2.06 2.07 6.00 5.12 25.63 7.85 586 4.32
rates  =1.41 +2.00 +1.65 £1.10 £222 =180 =163  +1.64
15 i 3t|[ i : i .
> LDA
14 5 LPP | \B’/p
13 o —+ LocLDA |4 25 1
A LIPLDA

errar rates (%)

ol i L i

2 4 B 8
Ten different splittings (COIL20 database)

10

2 4 B g
Ten different splittings (COIL20 database)

Fig.5 Comparison of eight DR methods in error rates on COIL20 database.

7 Conclusion, Discussion and Future
Work
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In this paper, we have proposed a new DR algorithm,
called local intraclass geometrical variation
preserving LDA, which integrates both global
geometrical  structure and local intraclass
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geometrical variation for feature extraction and
classification. We also show that the proposed
algorithm can be extended to non-linear DR
scenarios by applying the kernel trick. The new
algorithm first casts LDA as a least squares problem
and then uses a modified locality preserving
projection as a regularization term to model the
local intraclass geometrical variation. Extensive
experimental results on Yale, ORL, PIE, and
COIL20 image databases demonstrate the
effectiveness of our approach.

Considering the results listed in Table 4 which
show that in some cases when the training data size
and data variance is large, the useful local structure
information for class classification is corrupted by
the densely and randomly distributed sample points,
it is interesting to think about the possibility of the
existence of “support” samples by which useful
local structure information for class classification
can be fully determined (hereinafter we call these
samples the local-structure-supported vectors, or
simply LSS vectors ) and how to locate them. If
LSS vectors exist, then by finding them in the
training stage, two benefits can be expected: 1)
LPP-related operation can be efficiently executed
since only the LSS vectors are involved in the
calculation and most of the “noisy” samples are
neglected; 2) only using the useful local structure
information for classification and disregarding the
noisy information, the system performance can be
further improved.

One of the tested methods, the CKFD algorithm,
also achieves relatively good performance in our
tests. Since CKFD makes full use of two kinds of
discriminant information (regular and irregular,
which extracted from the range space and null space
of the within-class scatter matrix, respectively)
while LDA and KDA only use regular discriminant
information, it is also worth to explore the
possibility of improving system performance by
combing the idea of CKFD and local intraclass
variation preserving.
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