
High Precision Cohesion Metric

N. KAYARVIZHY1, S. KANMANI2, R.V. UTHARIARAJ3
1Assistant Professor, Department of Computer Science and Engineering

AMC Engineering College
12th K.M., Bannerghatta Road, Bangalore – 560083
2Professor, Department of Information Technology

Pondicherry Engineering College
Puducherry – 605014

3Professor and Director, Ramanujam Computing Centre,
Anna University, Chennai – 25, Tamil Nadu

INDIA
1kayarvizhy@gmail.com, 2kanmani@pec.edu, 3rhymend@annauniv.edu

Abstract: - Metrics have been used to measure many attributes of software. For object oriented software,
cohesion indicates the level of binding of the class elements. A class with high cohesion is one of the desirable
properties of a good object oriented design. A highly cohesive class is less prone to faults and is easy to
develop and maintain. Several object oriented cohesion metrics have been proposed in the literature. These
metrics have provided a lot of valuable insight into the mechanism of cohesion and how best to capture it.
However they do suffer from certain criticisms. In this paper, we propose a new cohesion metric named as High
Precision Cohesion Metric (HPCM). HPCM addresses the drawbacks present in the existing cohesion metrics.
We introduce two novel concepts - link strength and average attributes used in a class and apply them to arrive
at the proposed metric. The metric is presented using the unified cohesion framework to avoid ambiguity. The
metric is validated using theoretical approach suggested in the unified framework for cohesion metrics.
Empirical validation is also carried out on this metric using data from open source Java projects. The newly
proposed High Precision Cohesion Metric overcomes the shortfalls of the earlier proposed cohesion metrics.

Key-Words: - Object Oriented Metrics, Cohesion, High Precision, Link Strength

1 Introduction
Object oriented design and development continues
to be the most widely used methodology for
designing high quality software. Ensuring the
quality of such systems is of prime interest. This is
done through various approaches at different phases
in the life cycle in software development.
Eliminating the defects that affect quality in early
stages of software development life cycle, like
design, saves cost and effort. Object oriented
design-level metrics and their associated quality
prediction techniques attempt to ensure quality
during the design and early coding phase. This has
been a prime area of research.

Cohesion metrics indicate how well the class
elements bind with each other. Since a class consists
of two basic sets of elements, attributes and
methods, all of the cohesion metrics revolve around
the usage of these. A high cohesion value indicates
that the class is well structured and provides the
stated functionality with the help of well knit

attributes and methods [1]. Conversely a low
cohesive value indicates a class that may need to be
split or redesigned. A non-cohesive class is a
maintenance nightmare and is prone to faults [2] [3].
Mens [4] has stated that the cohesion metrics are too
coarse and need to be complemented with finer
grained factors. After analyzing existing cohesion
metrics, we found that the metrics do not capture
precise information which can be used to
discriminate classes based on their cohesion values.
Preventive actions on classes which are tagged as
non cohesive are costly and hence there is a need to
group classes based on a highly precise cohesion
value. We propose a new cohesion metric that has
high precision and hence capable of distinguishing
classes with similar but not identical cohesiveness.
This property sets it apart from the earlier proposed
metrics and manages to provide a wider range of
values to fit the classes.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 79 Issue 3, Volume 10, March 2013

mailto:kayarvizhy@gmail.com�
mailto:kanmani@pec.edu�
mailto:rhymend@annauniv.edu�

This paper is organized as follows. Section 2
describes in short the significant cohesion metrics
that have been proposed in the literature. This is
followed by Section 3 that describes the drawbacks
of the existing cohesion metrics and hence the
motivation behind the new cohesion metric. Section
4 introduces the proposed metric and presents it in
the unified framework proposed by Briand et al.
developed for cohesion metrics. Section 5 highlights
the applicability criteria of the new metric. Section 6
deals with mathematical evaluation of the proposed
metric. This is followed by an empirical validation
in Section 7 with open source object oriented
programs in Java. Section 8 summarizes the
conclusions derived from this study

2 Related Work
Several cohesion measures have been proposed in
the literature. Chidamber and Kemerer in 1991 [5]
proposed the first cohesion metric. They presented
an inverse metric, thus measuring the lack of
cohesion (LCOM1). This metric simply measures
the number of pairs of methods that do not have any
common attribute.
 Chidamber and Kemerer revised their metric in
1994 and came up with an altered version LCOM2
[6], which found the difference between the number
of pairs of methods not sharing any attribute and
those sharing at least one attribute. Li and Henry in
1995 [7] proposed their version of lack of cohesion,
LCOM3 as the number of connected components in
a graph with methods as node and edges between
each pairs of methods with at least one common
attribute. Hitz and Montazeri in 1996 [8] enhanced
the LCOM3 to include edges for method to method
invocations as well and named it LCOM4.
Henderson-Sellers [9] came up with LCOM5 which
included the number of distinct attributes accessed
by each method. The first direct cohesion metric,
Connectivity (Co) was introduced by Hitz and
Montazeri [10]. Briand et al in 1998 proposed Coh
[18] which uses the concept of number of attributes
used by each method. Bieman and Kang in 1995
[11] introduced TCC (Tight class cohesion) and
LCC (Loose class cohesion) which captured the
methods connected through attributes directly and
indirectly. Badri in 2004 introduced variations on
TCC and LCC naming them DCD and DCI [12]
which includes method invocations also, directly or
in the call trace respectively. The metrics that were
proposed further were based on the similarity
between methods based on the number of common
attributes used between them. Bonja and
Kidanmariam in 2006 defined Class Cohesion (CC)

based on this similarity of methods [13]. The
concept was further enhanced by Fernandez and
Pena in 2006 [14] in their metric Sensitive Class
Cohesion Metric (SCOM). Bansiya et al. [15] in
1999 defined Cohesion among Methods in a class
(CAMC) as a modified version of Co. Counsell et al
in 2006 introduced Normalized Hamming Distance
(NHD) and Scaled Normalized Hamming Distance
(SNHD) [16] based on how many attributes each
method accesses. Al Dallal and Briand in 2009
came up with Low-level design Similarity based
Class Cohesion (LSCC) [17] which finds out how
many methods access each attribute.

Fig. 1 Example of a Class with methods and attributes

3 Motivation
While the existing metrics capture cohesion and are
used widely they have their drawbacks as well. In
each case we explain the method to compute the
metric and provide an example that highlights the
drawbacks of that metric. A method attribute
interaction diagram is provided in Fig. 1. The
methods are represented as circular nodes and the
attributes are represented as square nodes. A line
between a method and an attribute indicates that the
method accesses that attribute. In the sample class in
Fig. 1 we have 2 methods and 4 attributes. Method
m1 uses attributes a1 and a2 while method m2 uses
attributes a2, a3 and a4. This gives the connection
patterns of a class.

3.1 LCOM1 and LCOM2
LCOM1 measures the number of pairs of methods
that do not share any common attribute. LCOM2 is
computed as the number of pairs of methods that do
not share any common attribute minus the number
of method pairs that share at least one attribute. For
all method pairs Ii and Ij in a class, we have.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 80 Issue 3, Volume 10, March 2013

 Since LCOM1 and LCOM2 were the first
cohesion metrics proposed, they fall short on many
accounts. The first and foremost is the lack of a
normalized form, as the values can grow
exponentially and are directly proportional to the
number of methods in a class.
 This makes it very difficult to compare the
cohesion between a pair of classes. Consider the two
classes in Fig. 2. We can see that the class 2 has a
lot more methods compared to the class 1. Though it
seems that both the classes have relatively similar
cohesion, the values are skewed due to the number
of methods in the two classes. We have

and .

Fig. 2 LCOM1 and LCOM2 examples

3.2 LCOM3 and LCOM4
To compute LCOM3 a graph is constructed with
methods as nodes and edges between methods
sharing at least one attribute. LCOM3 is given as the
number of connected components in the graph.
LCOM4 is also computed similarly except that
during the construction of the graph, edges are also

added if one method calls another method. In
LCOM3 and LCOM4 the drawback related to range
of values has been improved. This is because both
these metrics count the connected components.
This restricts their range of values compared to
LCOM1 and LCOM2 which measured the method
pairs. However the problem of totally different
values for classes with similar cohesion still exists.
For the example shown in Fig. 2 we
have and

. This is
not very intuitive. But a better example to highlight
the drawback of LCOM3 and LCOM4 is given in
Fig. 3. The class 3 contains 7 attributes and 6
methods. Each method accesses a unique attribute
along with one common attribute a4. In essence
there is almost no cohesion between the methods
and each of them behaves like an isolated island.
The common attribute could be a debug variable or
a static counter variable. But we get

 which is
the best possible cohesion value for these metrics.

Fig. 3 Example for LCOM3 and LCOM4

3.3 TCC, LCC, DCD, DCI
TCC and LCC provide another way to measure the
cohesion of a class by looking at relations between
methods. Two methods ‘a’ and ‘b’ are related if they
both access the same class level variable or if the
call trees starting at ‘a’ and ‘b’ access the same class
level variable. Once the graph is drawn with edges
depicting relations, two methods are said to be
directly connected if they have an edge between
them. If they are connected through other methods
then they are indirectly connected. If there are N
methods, NDC represents number of direct
connections; NIC represents the number of indirect
connections, then

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 81 Issue 3, Volume 10, March 2013

For DCD, DCI we consider an additional relationship
of method invocation. So methods ‘a’ and ‘b’ are
said to be connected if the two methods directly or
indirectly invoke a third method. If NTC represents
the number of transitive connections, then

 The value for TCC, LCC, DCD and DCI is 1 for
the example in Fig. 3. The reason behind the same
value is that all these metrics provide highest
cohesion between the sharing methods of the class
even if just one attribute is shared across them.

3.4 CC and SCOM
CC and SCOM are different from the earlier
cohesion metrics. They do not consider just a single
common attribute sufficient for providing highest
cohesion value between pairs of methods. Instead
they consider the level of similarity between the pair
of methods. Similarity between methods is
calculated using the number of common attributes
used between the pairs of methods. CC and SCOM
differ in the denominator used to divide the common
attributes. CC uses the distinct attributes between
the methods whereas SCOM uses the minimum
number of attributes used in the two methods. If N
is the number of methods in a class, Ii and Ij refer to
the method pairs, CC and SCOM are given by

 Though both CC and SCOM deliver a far better
measure for cohesion compared to the earlier
metrics, they still fall short on a few parameters.
When there are many method pairs that access very
few attributes of the class, but have sufficient
commonality, they tend to bloat the cohesion value.
See class 4 in Fig. 4. The class has 5 attributes and 5
methods. Attribute a1 is accessed by 4 methods

while the other attributes are accessed by method
m5 alone. Careful observation would tell us that the
class has a poor cohesion since the majority of the
attributes are not shared across the methods but both
CC and SCOM give better than average value. We
have (1 is max
cohesion possible). So the actual reality of
cohesiveness in the class is not fully captured by the
metrics.

Fig. 4 Example for SCOM and CC

 All the above reasons contributed to the
motivation behind the need to explore a better
metric, which would suit all cases and capture
cohesion realistically

4 High Precision Cohesion Metric
We use Briand et al.’s Unified Framework for
Cohesion (UFC) in 1998 [18] to present the new
cohesion metric. First we propose two new concepts
that will form the basic building blocks for the new
cohesion metric.

4.1 Average Attribute Usage
The Average Attribute Usage (AAU) is a separate
metric which computes the average number of
attributes used by each method of the class. We
consider only public, non-inherited methods of a
class. As per UFC, the total of such methods are
arrived at using the following approach. Let ’c’ be
the class in consideration. Then is the set of
non-inherited, overriding or newly implemented
methods of c. Further is the set of public
methods of c. Public non-inherited or overridden
methods are given by .
The total number of methods in our case is the
cardinality of such a set. It is given by

. The attributes referenced by a method is
given by where m is the method. Hence total
attributes referenced is given by , for each
‘m’ in the set . Hence the AAU is
given as

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 82 Issue 3, Volume 10, March 2013

The AAU for class 4 in Fig. 4 is 1.6.

4.2 Link Strength
The Link Strength (LS) is based on the AAU. Link
Strength for a pair of methods m1 and m2 is given
by

LCOM4 considers the methods as nodes of a graph.
Two nodes are connected with an edge if the
underlying methods have at least one attribute in
common. Consider the example of class 5 in Fig. 5.
The class consists of 6 attributes and 3 methods. A
LCOM4 graph is drawn to depict the same in Fig. 6

Fig. 5 Example for Link Strength

Fig. 6 LCOM4 Graph for Class 5

As expected the graph shows a single connected
component giving an LCOM4 value of 1. On
observing the class we find that method m1 and
method m2 share a single attribute a2. Method m2
and Method m3 share two attributes a3 and a4.
Method pairs m1 and m3 share three attributes a1,
a5, a6. So the linkage between m1 and m2 is not the
same as that of m2 and m3 which in turn is different

from the link between m1 and m3. The Link
Strength metric is specifically meant to capture this
difference in the strength of the links between
methods. The graph for LCOM4 metric has been
modified to include link strength in Fig. 7. It is clear
that though all three methods are linked, the level or
strength of their links is different and this is
captured in LS

Fig. 7 Link Strength for Class 5

4.3 Definition of HPCM
The new cohesion metric has been named High
Precision Cohesion Metric (HPCM) to denote its
capability to distinguish and assign precise cohesion
values for a wide variety of classes with various
method-attribute interactions. It depends on the
earlier proposed metrics AAU and LS. The formula
for HPCM is given

HPCM is an average of LS of all method pairs in the
class. To find the average we first find the total of
all LS in the numerator which is done by .
Here all public non inherited, overridden and newly
implemented methods are considered, similar to
AAU and their link strengths are summed up. The
denominator denotes the total available method
pairs and is given by a simple formula of n * (n -
1)/2 where ‘n’ is the total number of methods.
 In our case the total number of methods is given
by and hence results in the
denominator of

. The final division by 2 gets back to
the numerator. Below is an example showing the
calculation of HPCM for the class 5 given in Fig. 5.
The first step would be to decide how many
methods are to be considered for the metric. We see
that . The next step would be to
find AAU.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 83 Issue 3, Volume 10, March 2013

 The first method uses 4 attributes, the second
uses 3 attributes and the third uses 5. Thus the total
attribute usage is 12 and the average usage would be
(4 + 3 + 5)/3 = 4. Hence AAU = 4. Having found
AAU, we can proceed to find the link strength
between each pair of methods. In our case since the
number of methods considered is 3, we have 3 * (3 -
1)/2 = 3 method pairs. Below we show the
calculation steps for the first method pair m1 and
m2. Table 1 shows the link strength values for all
method pairs.

Table 1 Link Strength of method pairs for class in Fig. 5

Method Pair Common
Attributes

Link
Strength

m1m2 1 0.25

m1m3 3 0.75

m2m3 2 0.50

Total 6.00 1.50

Finally we proceed to find the High Precision
Cohesion Metric.

5 Criteria of Application
Metrics tend to be plagued by poor definition,
assumptions and lack of application criteria. This
causes difficulty in using the metric and can result
in multiple interpretations by different users. In this
section we put forward the criteria of application for
HPCM.

5.1 Class Level Design Metric
Metrics can be specified at various levels like
system, class or method level. HPCM is a class level
metric. Metrics can also be classified based on the
phase in which they are computed in a life cycle of
the software product. HPCM is a design phase
metric.

5.2. Inheritance
We only consider public methods which are directly
implemented in this class. This also includes
methods that are inherited and overridden. In short
we avoid methods that are inherited but not
overridden and those that are private. Similarly we
only consider attributes that are introduced by the
class and avoid the attributes that are got through
inheritance.

5.3. Methods not accessing any attribute
Two kinds of methods do not access any class
attribute. Static members accessing only static
attributes are not allowed to access any class
attributes. Similarly pure virtual methods not
implemented in this class will not access any
attribute. We do not consider such methods while
computing HPCM.

5.4. Attributes not accessed by any method
This is allowed only in inheritance where the child
class might use an attribute not used by its parent.
However that attribute should not be considered
while computing the cohesion of the parent class.
We do not consider such attributes while computing
HPCM.

5.5. Access Methods
The get/set methods typically deal with a single
attribute and are used as access methods to set or get
the value of that attribute. They should not be
considered for computing HPCM as they would
skew the cohesion value.

5.6. Constructors and Destructor
Constructor and destructor methods by design
access many attributes for initializing or freeing
them. Since they do not contribute to the cohesion
we suggest excluding them for computing HPCM.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 84 Issue 3, Volume 10, March 2013

5.7. Method Invocations
In HPCM we do not consider method invocations as
part of the relationships between methods. If method
Mi calls Mj it does not add to the link strength
between them. However we consider the transitive
access of attributes that result due to method
invocations. Consider that method Mi calls method
Mj and if Mj accesses an attribute ak, then we can
consider that method Mi transitively accesses
attribute ak and is taken into account while
measuring link strength.

6 Mathematical Validation
We use the four properties advocated as part of
theoretical validation by Briand et al. in 1998 [18] in
his Unified Framework for Cohesion.

6.1. Non-Negativity and Normalization.
The minimum value of HPCM is 0. This happens
when there are no attributes or when there are no
common attributes between the pairs of methods.
The maximum value of HPCM is 1, when all
methods share at least AAU attributes between
them. Thus where ‘c’ is the class
of an object oriented system C.

6.2. Null value and maximum value.
Let c be the class of an object oriented system C and
IR is the set of all interactions in the class. The
cohesion of a class is null if IR is empty, that is
there are no shared attributes between the methods.
Refer to class 6 in Fig. 8. We see that IR results in
an empty set or link strength is 0 for all the method
pairs and hence the HPCM gets a corresponding null
value of 0 i.e. . Alternatively the
class 7 in Fig. 8 results in a set with all possible
members in the set IR. In our case we refer to links
with full possible strength. This gives the maximum
possible value for HPCM i.e. .

Fig. 8 Example for null and maximum value of HPCM

6.3. Monotonicity
Consider a class c in the object oriented system C. If
we modify the class c to form a new class c' which
is identical to c except that few more attributes are
shared by methods. So, on adding a few more
relationships to the existing class relationships we
have better link strength with increase in numerator.
Hence HPCM also increases. .
So HPCM satisfies the monotonicity property.

6.4. Merging unconnected classes
Let C be an object oriented system and .
Let c' be the class which is the union of c1 and c2.
Let C' be the object-oriented system which is
identical to C except that c1 and c2 are replaced by
c'. If no relationships exist between classes c1 and
c2 in C, then

.

7 Empirical Validations
In this section we present the analyses that we did to
discover the relationship of HPCM with other
cohesion metrics and its ability as an accurate
indicator of faults in classes. We performed two
types of analyses. The first analysis was targeted
towards finding whether HPCM was contributing
new information in finding the cohesion of classes.
The second analysis was focused on building
models to validate HPCM’s ability to predict faults.

7.1. Data Set
We considered four open source projects written in
Java from the sonar source repository website [19]
for our validation. The projects were chosen such
that they had close to 20 classes each for a fair
analysis. The projects we chose were Spojo, Maven
Plugin, XDoclet, and Sonar Plugin.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 85 Issue 3, Volume 10, March 2013

7.2. Cohesion Metrics considered
The following cohesion metrics were taken for this
empirical validation - LCOM1, LCOM2, LCOM3,
LCOM4, LCOM5, TCC, LCC, CC, SCOM, and the
proposed HPCM.

7.3. Data Collection Procedure
To compute the cohesion metrics, we used an
automated tool [20]. This tool was developed by us
to aid in our research work. The tool takes in source
code of object oriented programs as input and
computes the relevant metrics. We added the ability
to compute HPCM in addition to the already
existing list of object oriented metrics in the tool.
The bug data was available online in the Sonar
source website. The bugs were classified as major
and minor. For our study we concentrated only on
the major bugs. The source code of the projects
considered were downloaded and used to extract the
metrics. Table 2 gives the snapshot of the metrics
computed with the minimum, 25 percentage
quartile, mean, median, 75 percentage quartile, max
and standard deviation.

7.4. Correlation Results
Correlation studies are required to evaluate whether
two variables are related and if they are trending.

Pearson coefficient gives the correlation between
two variables X and Y in the range of +1 to -1. A
value of 1 indicates perfect positive correlation
which means that the variables are tracking the same
information. A value of -1 indicates perfect negative
correlation.

 It means that the variables are tracking the same
information but in opposite direction. A value of 0
indicates zero correlation which means that the
variables are independent and are tracking different
information. We calculated the Pearson coefficients
between all pairs of cohesion metrics and their p-
values. p-values indicate statistical significance,
which is the probability that the coefficient is
different from zero by chance. When p-value is
closer to zero, it means that the coefficient is highly
significant. Table 3 shows the Pearson coefficients
for the cohesion metrics. High correlation
coefficients which also have significant p-value
(p<0.0001) have been highlighted. Correlations
between LCOM1, LCOM2, LCOM3 and LCOM4,
between LCOM5, TCC, LCC, SCOM and CC are
greater than 0.7. If a metric has low Pearson
coefficients, it indicates that the metric is capturing
unique information regarding cohesion compared to
other metrics. We see that HPCM is capturing
unique information.

Table 2 Descriptive statistics for the cohesion metrics

Metrics Min 25Q Mean Median 75Q Max StdDev

LCOM1 0.00 3.00 72.94 13.00 63.00 683.00 139.02

LCOM2 0.00 1.00 62.64 7.00 44.00 663.00 133.33

LCOM3 1.00 2.00 4.06 3.00 4.00 19.00 3.80

LCOM4 1.00 1.00 2.88 2.00 3.00 17.00 2.94

LCOM5 0.00 0.63 0.75 0.79 0.91 2.00 0.33

TCC 0.00 0.12 0.29 0.17 0.33 1.00 0.27

LCC 0.00 0.13 0.35 0.24 0.50 1.00 0.33

SCOM 0.00 0.12 0.29 0.19 0.40 1.00 0.27

CC 0.00 0.06 0.20 0.13 0.31 1.00 0.22

HPCM 0.00 0.02 0.20 0.11 0.25 1.00 0.26

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 86 Issue 3, Volume 10, March 2013

7.5 Univariate Models
Precise fault prediction is considered as an
important criterion in a metric’s indicator of quality
[2], [21] [22] [23]. In this analysis, we evaluate how
each cohesion metric fares individually in their
capability of predicting faults. Since the focus of
this study is on metrics we did not try to evaluate
many fault prediction models. We chose the widely
accepted and used linear regression for the
univariate analysis. Linear regression maps the
cohesion values to the bug data, where Y is the
dependent variable (bugs), X is the independent
variable (metrics), ‘a’ is the constant term called
intercept and ‘b’ is the coefficient.

Linear regression models can be evaluated based on
a number of indicators. We use Root Mean Square
error (RMSE). RMSE measures the differences
between the values predicted by the linear
regression model and the actual values. The lower
the RMSE the better the fit of the model. The
equation for RMSE is given below where xm is the
predicted value by the model and xa is the actual
value and ‘n’ is the number of observations.

The results of the univariate linear regression are
given in the Table 4. HPCM is a significant
contributor with the RMSE of 0.37.

Table 4 Results of Univariate Linear Regression

Metric Coefficient Constant RMSE

LCOM1 .001 .54 .51

LCOM2 .001 .54 .51

LCOM3 .05 .39 .48

LCOM4 .05 .46 .53

LCOM5 .72 .07 .43

TCC -1.19 .95 .38

LCC -.91 .92 .39

SCOM -1.19 .95 .39

CC -1.46 .89 .41

HPCM -1.32 .87 .37

Table 3 Pearson Coefficients for Cohesion Metrics

Metrics LCOM2 LCOM3 LCOM4 LCOM5 TCC LCC SCOM CC HPCM

LCOM1 0.99 0.91 0.81 0.24 -0.33 -0.33 -0.36 -0.31 -0.14

LCOM2 1.00 0.92 0.82 0.24 -0.33 -0.33 -0.36 -0.31 -0.16

LCOM3 1.00 0.82 0.30 -0.45 -0.46 -0.49 -0.43 -0.27

LCOM4 1.00 0.25 -0.39 -0.40 -0.41 -0.35 -0.15

LCOM5 1.00 -0.64 -0.58 -0.71 -0.75 -0.53

TCC 1.00 0.96 0.95 0.86 0.55

LCC 1.00 0.91 0.74 0.41

SCOM 1.00 0.91 0.53

CC 1.00 0.31

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 87 Issue 3, Volume 10, March 2013

7.6. Multivariate Models
The goal of this analysis is to confirm that when
HPCM is included, the fault prediction accuracy
improves in models developed using other cohesion
metrics. We developed pairs of multivariate models,
one with all the cohesion metrics except HPCM and
another including HPCM.
 We chose three different multivariate models -
linear regression, Bayesian network and Decision
trees. Multivariate Linear Regression maps more
than one independent variable to a dependent
variable. ’Y’ is the dependent variable and ‘a’ is the
constant term. b1,b2...bn are the coefficients for the
independent variables X1,X2...Xn respectively.

Table 5 shows the details of the prediction with and
without HPCM for multivariate linear regression.
We find that by adding HPCM the root mean square
error improves from 3.85 to 2.90.

Table 5 Results of Multivariate Linear Regression

Model

RMSE

Without
HPCM

With
HPCM

Multivariate
Linear Regression

3.85 2.90

Bayesian Network is a probabilistic graphical model
that represents a set of random variable and their
conditional dependencies. We have used it to map
the cohesion metrics and bug data. On providing the
cohesion metrics the model will output the
probability of occurrence of bug. Decision Trees
represents decision making with branches relating to
decisions and leaves representing the result. For
each set of input the tree is traversed and the
corresponding leaf is chosen. Table 6 shows the
details of the prediction with and without HPCM for
Decision tree and Bayesian network. The prediction
accuracy of models with HPCM is better compared
to the prediction accuracy of models without
HPCM.

Table 6 Results of Bayesian and Decision Tree models

Model

Prediction Accuracy

Without HPCM With
HPCM

Decision Tree 71 78

Bayesian Net 50 60

7.7. Threats to Validity
The empirical validation that we have done in this
section is prone to some limitations. We have
considered open source code in Java. This data set
may not be representative of real time large object
oriented software systems. A thorough validation
has to consider programs of different sizes and types
and from different domains. Another obvious threat
is modeling faults with cohesion metrics alone.
There could be other factors like coupling which
would also contribute to quality. However if we
consider that the effect of external attributes is
constant, our validation holds.

8 Conclusions
In this study, we have identified the problems with
the existing cohesion metrics. We then presented a
new cohesion metric called High Precision
Cohesion Metric (HPCM) which attempts to address
the short comings of the earlier metrics. The Unified
Framework for Cohesion was used to present the
metric to avoid ambiguity. The criteria of
application of the metric were also provided. We
subjected the metric to a rigorous mathematical
validation advocated by Briand et al. This was
followed by empirical validations with open source
java projects. HPCM fared well both as a standalone
metric in univariate models as well as a contributing
metric in multivariate models. Future study areas
include applying the HPCM along with other
metrics to evaluate software quality and see the
effectiveness of the metric in commercial software.
The same concepts of HPCM can be used to present
a complimentary metric for coupling between
classes.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 88 Issue 3, Volume 10, March 2013

References:
[1] Z. Chen, Y. Zhou, B. Xu, “A novel approach to

measuring class cohesion based on dependence
analysis” Proceedings of the International
Conference on Software Maintenance, 2002,
pp. 377-384.

[2] L. C. Briand, C. Bunse, J. Daly, “A controlled
experiment for evaluating quality guidelines on
the maintainability of object-oriented designs”
IEEE Transactions on Software Engineering,
Vol. 27, 2001, pp. 513-530.

[3] J. Bieman, L. Ott, “Measuring functional
cohesion” IEEE Transactions on Software
Engineering, Vol. 20, 1994, pp. 644-657.

[4] T. Mens, S. Demeyer, “Future trends in
software evolution metrics” Proceedings of
IWPSE2001, ACM, 2002, pp. 83-86.

[5] S. R. Chidamber, C. F. Kemerer, “Towards a
metrics suite for object-oriented design”
Proceedings of Conference on Object-Oriented
Programming Systems, Languages and
Applications, 1991, pp. 476-493.

[6] S. R Chidamber, C. F. Kemerer, “A metrics
suite for object-oriented design” IEEE
Transactions on Software Engineering, 1994,
pp. 476-493.

[7] W. Li, S. Henry, “Object-oriented metrics that
predict maintainability” Journal of Systems and
Software, 1995, pp. 111-122.

[8] M. Hitz, B. Montazeri, “Chidamber and
Kemerer metric suite - a measurement theory
perspective” IEEE Transactions on Software
Engineering, 1996, pp. 267-271.

[9] B. S. Henderson, “Object-oriented Metrics:
Measure of Complexity” New Jersey, Prentice
Hall, 1996, pp. 142-147.

[10] M. Hitz, B. Montazeri, “Measuring coupling
and cohesion in object oriented systems”
Proceedings of the Int. Symposium on Applied
Corporate Computing, 1995, pp. 25-27.

[11] M. M. Bieman, B. K. Kang, W. Melo,
“Cohesion and reuse in an object oriented
system” Proceedings of the symposium on
software reliability, 1995, pp. 259-262.

[12] L. Badri, M. Badri, “A Proposal of a new class
cohesion criterion, an empirical study” Journal
of Object Technolog, Vol. 3. No. 4. 2004, pp.
145-159.

[13] C. Bonja, E. Kidanmariam, “Metrics for class
cohesion and similarity between methods”
Proceedings of the 44th Annual ACM Southeast
Regional Conference, 2006, pp. 91-95.

[14] L. Fernandez, R. Pena “A sensitive metric of
class cohesion” International Journal of

Information Theories and Applications, Vol.
13, 2006, pp. 82-91.

[15] J. Bansiya, L. Etzkorn, C. Davis, W. Li “A
class cohesion metric for object-oriented
designs” Journal of Object Oriented Program,
Vol. 11, 1999, pp. 47-52.

[16] S. Counsell, S. Swift, J. Crampton “The
interpretation and utility of three cohesion
metrics for object-oriented design” ACM
Transactions on Software Engineering and
Methodology, Vol. 15, 2006, pp. 123-149.

[17] A. J. Dallal, L. Briand, “A Precise method-
method interaction based cohesion metric for
objectoriented classes” Simula Research
Laboratory, Simula Technical Report, 2009.

[18] L.C. Briand, J. Daly, J. Wuest, “A unified
framework for cohesion measurement in
object-oriented systems” Empirical Software
Engineering, An International Journal, 1998,
pp. 65-117

[19] SonarSource, “Sonar Project Source and Bug
Repository” http://nemo.sonarsource.org
(visited September 2012)

[20] N. Kayarvizhy, S. Kanamani, “An Automated
Tool for Computing Object Oriented Metrics
using XML” Proceedings of International
Conference on Advances in Computing and
Communication ACC2011, Springer, 2011,
Vol. 191, pp. 69-79.

[21] T. Gyimothy, R. Ferenc, I. Siket, “Empirical
validation of object-oriented metrics on open
source software for fault prediction” IEEE
Transactions on Software Engineering, Vol. 3,
2009, pp. 897-910.

[22] K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra,
“Investigating effect of design metrics on fault
proneness in object-oriented systems” Journal
of Object Technology, Vol. 6, 2007, pp. 127-
141.

[23] A. Marcus, D. Poshyvanyk, R. Ferenc, “Using
the conceptual cohesion of classes for fault
prediction in object-oriented systems” IEEE
Transactions on Software Engineering, Vol.
34, 2008, pp. 287-300.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 89 Issue 3, Volume 10, March 2013

http://nemo.sonarsource.org/�

