
High Precision Cohesion Metric 
 

N. KAYARVIZHY1, S. KANMANI2, R.V. UTHARIARAJ3 
1Assistant Professor, Department of Computer Science and Engineering 

AMC Engineering College 
12th K.M., Bannerghatta Road, Bangalore – 560083 
2Professor, Department of Information Technology 

Pondicherry Engineering College 
Puducherry – 605014 

3Professor and Director, Ramanujam Computing Centre, 
Anna University, Chennai – 25, Tamil Nadu 

INDIA 
1kayarvizhy@gmail.com, 2kanmani@pec.edu, 3rhymend@annauniv.edu  

 
 
Abstract: - Metrics have been used to measure many attributes of software. For object oriented software, 
cohesion indicates the level of binding of the class elements. A class with high cohesion is one of the desirable 
properties of a good object oriented design. A highly cohesive class is less prone to faults and is easy to 
develop and maintain. Several object oriented cohesion metrics have been proposed in the literature. These 
metrics have provided a lot of valuable insight into the mechanism of cohesion and how best to capture it. 
However they do suffer from certain criticisms. In this paper, we propose a new cohesion metric named as High 
Precision Cohesion Metric (HPCM). HPCM addresses the drawbacks present in the existing cohesion metrics. 
We introduce two novel concepts - link strength and average attributes used in a class and apply them to arrive 
at the proposed metric. The metric is presented using the unified cohesion framework to avoid ambiguity. The 
metric is validated using theoretical approach suggested in the unified framework for cohesion metrics. 
Empirical validation is also carried out on this metric using data from open source Java projects. The newly 
proposed High Precision Cohesion Metric overcomes the shortfalls of the earlier proposed cohesion metrics. 
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1 Introduction 
Object oriented design and development continues 
to be the most widely used methodology for 
designing high quality software. Ensuring the 
quality of such systems is of prime interest. This is 
done through various approaches at different phases 
in the life cycle in software development. 
Eliminating the defects that affect quality in early 
stages of software development life cycle, like 
design, saves cost and effort. Object oriented 
design-level metrics and their associated quality 
prediction techniques attempt to ensure quality 
during the design and early coding phase. This has 
been a prime area of research. 

Cohesion metrics indicate how well the class 
elements bind with each other. Since a class consists 
of two basic sets of elements, attributes and 
methods, all of the cohesion metrics revolve around 
the usage of these. A high cohesion value indicates 
that the class is well structured and provides the 
stated functionality with the help of well knit 

attributes and methods [1]. Conversely a low 
cohesive value indicates a class that may need to be 
split or redesigned. A non-cohesive class is a 
maintenance nightmare and is prone to faults [2] [3]. 
Mens [4] has stated that the cohesion metrics are too 
coarse and need to be complemented with finer 
grained factors. After analyzing existing cohesion 
metrics, we found that the metrics do not capture 
precise information which can be used to 
discriminate classes based on their cohesion values. 
Preventive actions on classes which are tagged as 
non cohesive are costly and hence there is a need to 
group classes based on a highly precise cohesion 
value. We propose a new cohesion metric that has 
high precision and hence capable of distinguishing 
classes with similar but not identical cohesiveness. 
This property sets it apart from the earlier proposed 
metrics and manages to provide a wider range of 
values to fit the classes.  
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This paper is organized as follows. Section 2 
describes in short the significant cohesion metrics 
that have been proposed in the literature. This is 
followed by Section 3 that describes the drawbacks 
of the existing cohesion metrics and hence the 
motivation behind the new cohesion metric. Section 
4 introduces the proposed metric and presents it in 
the unified framework proposed by Briand et al. 
developed for cohesion metrics. Section 5 highlights 
the applicability criteria of the new metric. Section 6 
deals with mathematical evaluation of the proposed 
metric. This is followed by an empirical validation 
in Section 7 with open source object oriented 
programs in Java. Section 8 summarizes the 
conclusions derived from this study 
 
 
2 Related Work 
Several cohesion measures have been proposed in 
the literature. Chidamber and Kemerer in 1991 [5] 
proposed the first cohesion metric. They presented 
an inverse metric, thus measuring the lack of 
cohesion (LCOM1). This metric simply measures 
the number of pairs of methods that do not have any 
common attribute.  
     Chidamber and Kemerer revised their metric in 
1994 and came up with an altered version LCOM2 
[6], which found the difference between the number 
of pairs of methods not sharing any attribute and 
those sharing at least one attribute. Li and Henry in 
1995 [7] proposed their version of lack of cohesion, 
LCOM3 as the number of connected components in 
a graph with methods as node and edges between 
each pairs of methods with at least one common 
attribute. Hitz and Montazeri in 1996 [8] enhanced 
the LCOM3 to include edges for method to method 
invocations as well and named it LCOM4. 
Henderson-Sellers [9] came up with LCOM5 which 
included the number of distinct attributes accessed 
by each method. The first direct cohesion metric, 
Connectivity (Co) was introduced by Hitz and 
Montazeri [10]. Briand et al in 1998 proposed Coh 
[18] which uses the concept of number of attributes 
used by each method. Bieman and Kang in 1995 
[11] introduced TCC (Tight class cohesion) and 
LCC (Loose class cohesion) which captured the 
methods connected through attributes directly and 
indirectly. Badri in 2004 introduced variations on 
TCC and LCC naming them DCD and DCI [12] 
which includes method invocations also, directly or 
in the call trace respectively. The metrics that were 
proposed further were based on the similarity 
between methods based on the number of common 
attributes used between them. Bonja and 
Kidanmariam in 2006 defined Class Cohesion (CC) 

based on this similarity of methods [13]. The 
concept was further enhanced by Fernandez and 
Pena in 2006 [14] in their metric Sensitive Class 
Cohesion Metric (SCOM). Bansiya et al. [15] in 
1999 defined Cohesion among Methods in a class 
(CAMC) as a modified version of Co. Counsell et al 
in 2006 introduced Normalized Hamming Distance 
(NHD) and Scaled Normalized Hamming Distance 
(SNHD) [16] based on how many attributes each 
method accesses. Al Dallal and Briand in 2009 
came up with Low-level design Similarity based 
Class Cohesion (LSCC) [17] which finds out how 
many methods access each attribute. 
 

 
Fig. 1 Example of a Class with methods and attributes 

 
3 Motivation 
While the existing metrics capture cohesion and are 
used widely they have their drawbacks as well. In 
each case we explain the method to compute the 
metric and provide an example that highlights the 
drawbacks of that metric. A method attribute 
interaction diagram is provided in Fig. 1. The 
methods are represented as circular nodes and the 
attributes are represented as square nodes. A line 
between a method and an attribute indicates that the 
method accesses that attribute. In the sample class in 
Fig. 1 we have 2 methods and 4 attributes. Method 
m1 uses attributes a1 and a2 while method m2 uses 
attributes a2, a3 and a4. This gives the connection 
patterns of a class. 
 
 
3.1 LCOM1 and LCOM2 
LCOM1 measures the number of pairs of methods 
that do not share any common attribute. LCOM2 is 
computed as the number of pairs of methods that do 
not share any common attribute minus the number 
of method pairs that share at least one attribute. For 
all method pairs Ii and Ij in a class, we have.  
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     Since LCOM1 and LCOM2 were the first 
cohesion metrics proposed, they fall short on many 
accounts. The first and foremost is the lack of a 
normalized form, as the values can grow 
exponentially and are directly proportional to the 
number of methods in a class.  
     This makes it very difficult to compare the 
cohesion between a pair of classes. Consider the two 
classes in Fig. 2. We can see that the class 2 has a 
lot more methods compared to the class 1. Though it 
seems that both the classes have relatively similar 
cohesion, the values are skewed due to the number 
of methods in the two classes. We have 

 
and . 
 

 
 

 
Fig. 2 LCOM1 and LCOM2 examples 

 
 
3.2 LCOM3 and LCOM4 
To compute LCOM3 a graph is constructed with 
methods as nodes and edges between methods 
sharing at least one attribute. LCOM3 is given as the 
number of connected components in the graph. 
LCOM4 is also computed similarly except that 
during the construction of the graph, edges are also 

added if one method calls another method. In 
LCOM3 and LCOM4 the drawback related to range 
of values has been improved. This is because both 
these metrics count the connected components.  
This restricts their range of values compared to 
LCOM1 and LCOM2 which measured the method 
pairs. However the problem of totally different 
values for classes with similar cohesion still exists. 
For the example shown in Fig. 2 we 
have  and 

. This is 
not very intuitive. But a better example to highlight 
the drawback of LCOM3 and LCOM4 is given in 
Fig. 3. The class 3 contains 7 attributes and 6 
methods. Each method accesses a unique attribute 
along with one common attribute a4. In essence 
there is almost no cohesion between the methods 
and each of them behaves like an isolated island. 
The common attribute could be a debug variable or 
a static counter variable. But we get 

 which is 
the best possible cohesion value for these metrics. 
 

 
Fig. 3 Example for LCOM3 and LCOM4 

 
 
3.3 TCC, LCC, DCD, DCI 
TCC and LCC provide another way to measure the 
cohesion of a class by looking at relations between 
methods. Two methods ‘a’ and ‘b’ are related if they 
both access the same class level variable or if the 
call trees starting at ‘a’ and ‘b’ access the same class 
level variable. Once the graph is drawn with edges 
depicting relations, two methods are said to be 
directly connected if they have an edge between 
them. If they are connected through other methods 
then they are indirectly connected. If there are N 
methods, NDC represents number of direct 
connections; NIC represents the number of indirect 
connections, then 
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For DCD, DCI we consider an additional relationship 
of method invocation. So methods ‘a’ and ‘b’ are 
said to be connected if the two methods directly or 
indirectly invoke a third method. If NTC represents 
the number of transitive connections, then  

 

 

 
     The value for TCC, LCC, DCD and DCI is 1 for 
the example in Fig. 3. The reason behind the same 
value is that all these metrics provide highest 
cohesion between the sharing methods of the class 
even if just one attribute is shared across them. 
 
 
3.4 CC and SCOM 
CC and SCOM are different from the earlier 
cohesion metrics. They do not consider just a single 
common attribute sufficient for providing highest 
cohesion value between pairs of methods. Instead 
they consider the level of similarity between the pair 
of methods. Similarity between methods is 
calculated using the number of common attributes 
used between the pairs of methods. CC and SCOM 
differ in the denominator used to divide the common 
attributes. CC uses the distinct attributes between 
the methods whereas SCOM uses the minimum 
number of attributes used in the two methods. If N 
is the number of methods in a class, Ii and Ij refer to 
the method pairs, CC and SCOM are given by 

 

 

 
     Though both CC and SCOM deliver a far better 
measure for cohesion compared to the earlier 
metrics, they still fall short on a few parameters. 
When there are many method pairs that access very 
few attributes of the class, but have sufficient 
commonality, they tend to bloat the cohesion value. 
See class 4 in Fig. 4. The class has 5 attributes and 5 
methods. Attribute a1 is accessed by 4 methods 

while the other attributes are accessed by method 
m5 alone. Careful observation would tell us that the 
class has a poor cohesion since the majority of the 
attributes are not shared across the methods but both 
CC and SCOM give better than average value. We 
have  (1 is max 
cohesion possible). So the actual reality of 
cohesiveness in the class is not fully captured by the 
metrics. 

 
Fig. 4 Example for SCOM and CC 

 
     All the above reasons contributed to the 
motivation behind the need to explore a better 
metric, which would suit all cases and capture 
cohesion realistically 
 
 
4 High Precision Cohesion Metric 
We use Briand et al.’s Unified Framework for 
Cohesion (UFC) in 1998 [18] to present the new 
cohesion metric. First we propose two new concepts 
that will form the basic building blocks for the new 
cohesion metric.  
 
 
4.1 Average Attribute Usage 
The Average Attribute Usage (AAU) is a separate 
metric which computes the average number of 
attributes used by each method of the class. We 
consider only public, non-inherited methods of a 
class. As per UFC, the total of such methods are 
arrived at using the following approach. Let ’c’ be 
the class in consideration. Then  is the set of 
non-inherited, overriding or newly implemented 
methods of c. Further  is the set of public 
methods of c. Public non-inherited or overridden 
methods are given by .  
The total number of methods in our case is the 
cardinality of such a set. It is given by 

. The attributes referenced by a method is 
given by where m is the method. Hence total 
attributes referenced is given by , for each 
‘m’ in the set . Hence the AAU is 
given as 
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The AAU for class 4 in Fig. 4 is 1.6. 
 
 
4.2 Link Strength 
The Link Strength (LS) is based on the AAU. Link 
Strength for a pair of methods m1 and m2 is given 
by 

 

 

 
 
LCOM4 considers the methods as nodes of a graph. 
Two nodes are connected with an edge if the 
underlying methods have at least one attribute in 
common. Consider the example of class 5 in Fig. 5. 
The class consists of 6 attributes and 3 methods. A 
LCOM4 graph is drawn to depict the same in Fig. 6 
 

 
Fig. 5 Example for Link Strength 

 

 
Fig. 6 LCOM4 Graph for Class 5 

As expected the graph shows a single connected 
component giving an LCOM4 value of 1. On 
observing the class we find that method m1 and 
method m2 share a single attribute a2. Method m2 
and Method m3 share two attributes a3 and a4. 
Method pairs m1 and m3 share three attributes a1, 
a5, a6. So the linkage between m1 and m2 is not the 
same as that of m2 and m3 which in turn is different 

from the link between m1 and m3. The Link 
Strength metric is specifically meant to capture this 
difference in the strength of the links between 
methods. The graph for LCOM4 metric has been 
modified to include link strength in Fig. 7. It is clear 
that though all three methods are linked, the level or 
strength of their links is different and this is 
captured in LS 

 
Fig. 7 Link Strength for Class 5 

 
 
4.3 Definition of HPCM 
The new cohesion metric has been named High 
Precision Cohesion Metric (HPCM) to denote its 
capability to distinguish and assign precise cohesion 
values for a wide variety of classes with various 
method-attribute interactions. It depends on the 
earlier proposed metrics AAU and LS. The formula 
for HPCM is given 
 

 

 

 
 
HPCM is an average of LS of all method pairs in the 
class. To find the average we first find the total of 
all LS in the numerator which is done by .  
Here all public non inherited, overridden and newly 
implemented methods are considered, similar to 
AAU and their link strengths are summed up. The 
denominator denotes the total available method 
pairs and is given by a simple formula of n * (n - 
1)/2 where ‘n’ is the total number of methods. 
     In our case the total number of methods is given 
by  and hence results in the 
denominator of

. The final division by 2 gets back to 
the numerator. Below is an example showing the 
calculation of HPCM for the class 5 given in Fig. 5. 
The first step would be to decide how many 
methods are to be considered for the metric. We see 
that . The next step would be to 
find AAU.  

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 83 Issue 3, Volume 10, March 2013



     The first method uses 4 attributes, the second 
uses 3 attributes and the third uses 5. Thus the total 
attribute usage is 12 and the average usage would be 
(4 + 3 + 5)/3 = 4. Hence AAU = 4. Having found 
AAU, we can proceed to find the link strength 
between each pair of methods. In our case since the 
number of methods considered is 3, we have 3 * (3 - 
1)/2 = 3 method pairs. Below we show the 
calculation steps for the first method pair m1 and 
m2. Table 1 shows the link strength values for all 
method pairs. 

 

 
 

 
Table 1 Link Strength of method pairs for class in Fig. 5 

Method Pair Common 
Attributes 

Link 
Strength 

m1m2 1 0.25 

m1m3 3 0.75 

m2m3 2 0.50 

Total 6.00 1.50 
 
Finally we proceed to find the High Precision 
Cohesion Metric. 
 

 
 

 

 

 

 

 
 

 
 
 
5 Criteria of Application 
Metrics tend to be plagued by poor definition, 
assumptions and lack of application criteria. This 
causes difficulty in using the metric and can result 
in multiple interpretations by different users. In this 
section we put forward the criteria of application for 
HPCM. 
 

5.1 Class Level Design Metric 
Metrics can be specified at various levels like 
system, class or method level. HPCM is a class level 
metric. Metrics can also be classified based on the 
phase in which they are computed in a life cycle of 
the software product. HPCM is a design phase 
metric. 
 
 
5.2. Inheritance 
We only consider public methods which are directly 
implemented in this class. This also includes 
methods that are inherited and overridden. In short 
we avoid methods that are inherited but not 
overridden and those that are private. Similarly we 
only consider attributes that are introduced by the 
class and avoid the attributes that are got through 
inheritance. 
 
 
5.3. Methods not accessing any attribute 
Two kinds of methods do not access any class 
attribute. Static members accessing only static 
attributes are not allowed to access any class 
attributes. Similarly pure virtual methods not 
implemented in this class will not access any 
attribute. We do not consider such methods while 
computing HPCM. 
 
 
5.4. Attributes not accessed by any method 
This is allowed only in inheritance where the child 
class might use an attribute not used by its parent. 
However that attribute should not be considered 
while computing the cohesion of the parent class. 
We do not consider such attributes while computing 
HPCM. 
 
 
5.5. Access Methods 
The get/set methods typically deal with a single 
attribute and are used as access methods to set or get 
the value of that attribute. They should not be 
considered for computing HPCM as they would 
skew the cohesion value. 
 
 
5.6. Constructors and Destructor 
Constructor and destructor methods by design 
access many attributes for initializing or freeing 
them. Since they do not contribute to the cohesion 
we suggest excluding them for computing HPCM. 
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5.7. Method Invocations 
In HPCM we do not consider method invocations as 
part of the relationships between methods. If method 
Mi calls Mj it does not add to the link strength 
between them. However we consider the transitive 
access of attributes that result due to method 
invocations. Consider that method Mi calls method 
Mj and if Mj accesses an attribute ak, then we can 
consider that method Mi transitively accesses 
attribute ak and is taken into account while 
measuring link strength. 
 
 
6 Mathematical Validation 
We use the four properties advocated as part of 
theoretical validation by Briand et al. in 1998 [18] in 
his Unified Framework for Cohesion. 
 
  
6.1. Non-Negativity and Normalization. 
The minimum value of HPCM is 0. This happens 
when there are no attributes or when there are no 
common attributes between the pairs of methods.  
The maximum value of HPCM is 1, when all 
methods share at least AAU attributes between 
them. Thus  where ‘c’ is the class 
of an object oriented system C. 
 
 
6.2. Null value and maximum value. 
Let c be the class of an object oriented system C and 
IR is the set of all interactions in the class. The 
cohesion of a class is null if IR is empty, that is 
there are no shared attributes between the methods. 
Refer to class 6 in Fig. 8. We see that IR results in 
an empty set or link strength is 0 for all the method 
pairs and hence the HPCM gets a corresponding null 
value of 0 i.e. . Alternatively the 
class 7 in Fig. 8 results in a set with all possible 
members in the set IR. In our case we refer to links 
with full possible strength. This gives the maximum 
possible value for HPCM i.e. . 
 

 
 

 
Fig. 8 Example for null and maximum value of HPCM 

 
 
6.3. Monotonicity 
Consider a class c in the object oriented system C. If 
we modify the class c to form a new class c' which 
is identical to c except that few more attributes are 
shared by methods. So, on adding a few more 
relationships to the existing class relationships we 
have better link strength with increase in numerator. 
Hence HPCM also increases. . 
So HPCM satisfies the monotonicity property. 
 
 
6.4. Merging unconnected classes  
Let C be an object oriented system and . 
Let c' be the class which is the union of c1 and c2. 
Let C' be the object-oriented system which is 
identical to C except that c1 and c2 are replaced by 
c'. If no relationships exist between classes c1 and 
c2 in C, then

. 
 
 
7 Empirical Validations 
In this section we present the analyses that we did to 
discover the relationship of HPCM with other 
cohesion metrics and its ability as an accurate 
indicator of faults in classes. We performed two 
types of analyses. The first analysis was targeted 
towards finding whether HPCM was contributing 
new information in finding the cohesion of classes. 
The second analysis was focused on building 
models to validate HPCM’s ability to predict faults. 
 
 
7.1. Data Set 
We considered four open source projects written in 
Java from the sonar source repository website [19] 
for our validation. The projects were chosen such 
that they had close to 20 classes each for a fair 
analysis. The projects we chose were Spojo, Maven 
Plugin, XDoclet, and Sonar Plugin. 
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7.2. Cohesion Metrics considered 
The following cohesion metrics were taken for this 
empirical validation - LCOM1, LCOM2, LCOM3, 
LCOM4, LCOM5, TCC, LCC, CC, SCOM, and the 
proposed HPCM. 

 
 
7.3. Data Collection Procedure 
To compute the cohesion metrics, we used an 
automated tool [20]. This tool was developed by us 
to aid in our research work. The tool takes in source 
code of object oriented programs as input and 
computes the relevant metrics. We added the ability 
to compute HPCM in addition to the already 
existing list of object oriented metrics in the tool. 
The bug data was available online in the Sonar 
source website. The bugs were classified as major 
and minor. For our study we concentrated only on 
the major bugs. The source code of the projects 
considered were downloaded and used to extract the 
metrics. Table 2 gives the snapshot of the metrics 
computed with the minimum, 25 percentage 
quartile, mean, median, 75 percentage quartile, max 
and standard deviation. 
 
7.4. Correlation Results 
Correlation studies are required to evaluate whether 
two variables are related and if they are trending. 

Pearson coefficient gives the correlation between 
two variables X and Y in the range of +1 to -1.  A 
value of 1 indicates perfect positive correlation 
which means that the variables are tracking the same 
information. A value of -1 indicates perfect negative 
correlation. 
 

 
     It means that the variables are tracking the same 
information but in opposite direction. A value of 0 
indicates zero correlation which means that the 
variables are independent and are tracking different 
information. We calculated the Pearson coefficients 
between all pairs of cohesion metrics and their p-
values. p-values indicate statistical significance, 
which is the probability that the coefficient is 
different from zero by chance. When p-value is 
closer to zero, it means that the coefficient is highly 
significant. Table 3 shows the Pearson coefficients 
for the cohesion metrics. High correlation 
coefficients which also have significant p-value 
(p<0.0001) have been highlighted. Correlations 
between LCOM1, LCOM2, LCOM3 and LCOM4, 
between LCOM5, TCC, LCC, SCOM and CC are 
greater than 0.7. If a metric has low Pearson 
coefficients, it indicates that the metric is capturing 
unique information regarding cohesion compared to 
other metrics. We see that HPCM is capturing 
unique information. 
 

Table 2 Descriptive statistics for the cohesion metrics 

Metrics Min 25Q Mean Median 75Q Max StdDev 

LCOM1 0.00 3.00 72.94 13.00 63.00 683.00 139.02 

LCOM2 0.00 1.00 62.64 7.00 44.00 663.00 133.33 

LCOM3 1.00 2.00 4.06 3.00 4.00 19.00 3.80 

LCOM4 1.00 1.00 2.88 2.00 3.00 17.00 2.94 

LCOM5 0.00 0.63 0.75 0.79 0.91 2.00 0.33 

TCC 0.00 0.12 0.29 0.17 0.33 1.00 0.27 

LCC 0.00 0.13 0.35 0.24 0.50 1.00 0.33 

SCOM 0.00 0.12 0.29 0.19 0.40 1.00 0.27 

CC 0.00 0.06 0.20 0.13 0.31 1.00 0.22 

HPCM 0.00 0.02 0.20 0.11 0.25 1.00 0.26 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS N. Kayarvizhy, S. Kanmani, R.V. Uthariaraj

E-ISSN: 2224-3402 86 Issue 3, Volume 10, March 2013



 
 
7.5 Univariate Models 
Precise fault prediction is considered as an 
important criterion in a metric’s indicator of quality 
[2], [21] [22] [23]. In this analysis, we evaluate how 
each cohesion metric fares individually in their 
capability of predicting faults.  Since the focus of 
this study is on metrics we did not try to evaluate 
many fault prediction models.  We chose the widely 
accepted and used linear regression for the 
univariate analysis. Linear regression maps the 
cohesion values to the bug data, where Y is the 
dependent variable (bugs), X is the independent 
variable (metrics), ‘a’ is the constant term called 
intercept and ‘b’ is the coefficient. 

 
 
 
Linear regression models can be evaluated based on 
a number of indicators. We use Root Mean Square 
error (RMSE). RMSE measures the differences 
between the values predicted by the linear 
regression model and the actual values. The lower 
the RMSE the better the fit of the model. The 
equation for RMSE is given below where xm  is the 
predicted value by the model and xa is the actual 
value and ‘n’ is the number of observations. 
 
 
 

 

 
The results of the univariate linear regression are 
given in the Table 4. HPCM is a significant 
contributor with the RMSE of 0.37. 
 

Table 4 Results of Univariate Linear Regression 

Metric Coefficient Constant RMSE 

LCOM1 .001 .54 .51 

LCOM2 .001 .54 .51 

LCOM3 .05 .39 .48 

LCOM4 .05 .46 .53 

LCOM5 .72 .07 .43 

TCC -1.19 .95 .38 

LCC -.91 .92 .39 

SCOM -1.19 .95 .39 

CC -1.46 .89 .41 

HPCM -1.32 .87 .37 
 

Table 3 Pearson Coefficients for Cohesion Metrics 

Metrics LCOM2 LCOM3 LCOM4 LCOM5 TCC LCC SCOM CC HPCM 

LCOM1 0.99 0.91 0.81 0.24 -0.33 -0.33 -0.36 -0.31 -0.14 

LCOM2 1.00 0.92 0.82 0.24 -0.33 -0.33 -0.36 -0.31 -0.16 

LCOM3  1.00 0.82 0.30 -0.45 -0.46 -0.49 -0.43 -0.27 

LCOM4   1.00 0.25 -0.39 -0.40 -0.41 -0.35 -0.15 

LCOM5    1.00 -0.64 -0.58 -0.71 -0.75 -0.53 

TCC     1.00 0.96 0.95 0.86 0.55 

LCC      1.00 0.91 0.74 0.41 

SCOM       1.00 0.91 0.53 

CC        1.00 0.31 
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7.6. Multivariate Models 
The goal of this analysis is to confirm that when 
HPCM is included, the fault prediction accuracy 
improves in models developed using other cohesion 
metrics. We developed pairs of multivariate models, 
one with all the cohesion metrics except HPCM and 
another including HPCM.  
     We chose three different multivariate models - 
linear regression, Bayesian network and Decision 
trees. Multivariate Linear Regression maps more 
than one independent variable to a dependent 
variable. ’Y’ is the dependent variable and ‘a’ is the 
constant term. b1,b2...bn are the coefficients for the 
independent variables X1,X2...Xn respectively. 

 

 
Table 5 shows the details of the prediction with and 
without HPCM for multivariate linear regression. 
We find that by adding HPCM the root mean square 
error improves from 3.85 to 2.90. 
 

Table 5 Results of Multivariate Linear Regression 

Model 

RMSE 

Without 
HPCM 

With 
HPCM 

Multivariate 
Linear Regression 

3.85 2.90 

 
 
Bayesian Network is a probabilistic graphical model 
that represents a set of random variable and their 
conditional dependencies. We have used it to map 
the cohesion metrics and bug data. On providing the 
cohesion metrics the model will output the 
probability of occurrence of bug. Decision Trees 
represents decision making with branches relating to 
decisions and leaves representing the result. For 
each set of input the tree is traversed and the 
corresponding leaf is chosen. Table 6 shows the 
details of the prediction with and without HPCM for 
Decision tree and Bayesian network. The prediction 
accuracy of models with HPCM is better compared 
to the prediction accuracy of models without 
HPCM. 

 

 

Table 6 Results of Bayesian and Decision Tree models 

Model 

Prediction Accuracy 

Without HPCM With 
HPCM 

Decision Tree 71 78 

Bayesian Net 50 60 
 
 
7.7. Threats to Validity 
The empirical validation that we have done in this 
section is prone to some limitations. We have 
considered open source code in Java. This data set 
may not be representative of real time large object 
oriented software systems. A thorough validation 
has to consider programs of different sizes and types 
and from different domains. Another obvious threat 
is modeling faults with cohesion metrics alone. 
There could be other factors like coupling which 
would also contribute to quality. However if we 
consider that the effect of external attributes is 
constant, our validation holds. 
 
 
8 Conclusions 
In this study, we have identified the problems with 
the existing cohesion metrics. We then presented a 
new cohesion metric called High Precision 
Cohesion Metric (HPCM) which attempts to address 
the short comings of the earlier metrics. The Unified 
Framework for Cohesion was used to present the 
metric to avoid ambiguity. The criteria of 
application of the metric were also provided. We 
subjected the metric to a rigorous mathematical 
validation advocated by Briand et al. This was 
followed by empirical validations with open source 
java projects. HPCM fared well both as a standalone 
metric in univariate models as well as a contributing 
metric in multivariate models. Future study areas 
include applying the HPCM along with other 
metrics to evaluate software quality and see the 
effectiveness of the metric in commercial software. 
The same concepts of HPCM can be used to present 
a complimentary metric for coupling between 
classes. 
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