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Abstract: - In order to shorten test time and realize rapid evaluation of the reliability of products, a method of 

optimal design on multiple-crossed step-down stress accelerated life test (hereinafter written as MCSDS-ALT) 

based on Monte-Carlo simulation is proposed. The optimal plan of combined stresses in the accelerated life test 

is designed. The analogue simulation on the step-down accelerated life test with Monte-Carlo method is carried 

out, the asymptotic variance estimation of the product’s lifetime distribution with the stress under normal 

condition is regarded as the goal function, we take every test stress level and censored data under corresponding 

stress as variables of the design, and the related statistical analysis is also made by applying the theory of 

maximum likelihood estimation (MLE). The optimal model of MCSDS-ALT based on simulation is put 

forward. Through applying the method of cubic spline interpolation and fitting theory, the simulation scale is 

reduced and the test efficiency is also improved. Thus the paper can give the technical support on optimal 

design of accelerated test which can be applied in the life forecast of electronic equipment. 
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1 Introduction 
The accelerated life test is an effective technical 

way to make quantitative evaluation of products 

with high reliability. As the electronic products may 

be affected by many factors i.e., different levels of 

environmental stress, so the accelerated life test on 

them should be made if we want to get rapidly 

quantitative evaluation on the reliability levels of 

the electronic products in their actual working 

environments. Now, there are a large number of 

literatures published are concern on this topic. For 

example, Chen Wenhua and other coauthors [1-3] 

have researched the theories and methods of 

combined stress accelerated life test and its optimal 

design. 

Zhang Chunhua and Wang Yashun have made the 

research of the accelerated life experiment and its 

optimization under single-crossed step-down stress 

conditions[ 4-6]. 

 Mao Shisong, etc [7-12] have made an overview 

analysis on the MCSDS-ALT. The MCSDS-ALT, is 

an effective test method which is very close to the 

actual working environment of products. It is a 

research hotspot in this field around the world. As a 

newly proposed reliability test method, the test shall 

be also optimized, but there are only a few 

researches concern on the optimization of MCSDS-

ALT, and the test optimization of electronic 

products under multiple-crossed stresses have not 

been proposed with a complete theoretical method 

yet, which cannot  meet demands of actual 

engineering applying. Therefore, we adopt the 

simulation method of Monte-Carlo to simulate the 

MCSDS-ALT in the paper, statistical analysis on the 

MCSDS-ALT data produced in simulation also is 

made, and we put forward the optimal design of 

MCSDS-ALT based on Monte-Carlo simulation, 

and the minimize target function value is regarded 

as the optimal plan.  

2 Method of MCSDS-ALT  
If we make the assumption that there are two 

groups of stress levels which can be expressed as 
1S and 2S , in each stress group includes a series of 

stress levels. In order to make the subsequent 

analysis, we assume the stress level number and 

stress group number of the two groups both are k , 

and thus the types (1)and (2) are obtained. 
1 1 1 1

1 2 0... kS S S S> > > >                           (1) 

2 2 2 2

1 2 0... kS S S S> > > >                         (2) 

The 1 2

0 0( , )S S represents the normal stress group 

which acts on products, 1 2( , )i jS S  is a group with the 

i  stress level number of the first stress group and 

the j  stress level number of the second stress group 

( 1,2, ,i k= ⋯ , 1,2, ,j k= ⋯ ). Under the condition 
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that the assumption mentioned above is met, the test 

process can be described in details as follows. 

In the test, n  represents numbers of sample are 

tested. Firstly, they are put under the highest stress 

level group of 1 2

1 1( , )S S until 11r  invalid ones are 

appeared; then, they are put under the next stress 

level group of 1 2

2 1( , )S S  until 21r  invalid ones are 

come forth; in this way, they are put under the next 

stress level group of 
1 2

2 2( , )S S  until 22r  invalid ones 

are also appeared; and till they are put under the last 

stress level group of 1 2( , )k kS S  and kkr  invalid ones 

are appeared. The application of stress process in 

the overall test is shown as in Fig.1.  

( )1 2
1 1,S S

( )1 2
2 1,S S

( )1 2
,k kS S

( )1 2,i jS S

 
Fig.1 Stress Application Process of MCSDS-ALT 

3 Model assumption  
If we make the assumption that a product in 

use is greatly affected by the temperature and 

voltage. Under the combined influence of the 

temperature and voltage, the life of product presents 

Weibull distribution with two parameters, and its 

probability density function can be expressed as (3).  

( ) ( ) ( )1 exp
mm mf t m t tη η−  = −    (3) 

Where, 0η >  is the scale parameter and 0m >  is 

the shape parameter.  

Under the influence of different levels of 

temperature stress and electric stress, if the failure 

mechanism of product remains unchanged, its 

specific statistical model may be described as 

follows:  

1.The product life is mutually independent in 

statistics and presents Weibull distribution with two 

parameters;  

2.The shape parameter m of Weibull 

distribution function under different stress levels 

remains unchanged;  

3.The two stresses act on the product have no 

interactions and the accelerator model is written 

as(4) . 

)()()ln( 2

22

1

110 jii SS ϕγϕγγη ++=       (4) 

Based on the priori values of parameters m , 0γ , 1γ , 

and 2γ  and the expressions of 
1

1( )iSϕ  and 
2

2 ( )jSϕ , 

the method mentioned in paper [4] can be adopted 

to realize the simulation of MCSDS-ALT.  

4. Description of Optimization 

Problem  

4.1 Optimization objective  
We take the local estimated values of 

asymptotic variance estimation of percentile under 

the normal stress level as the target function, which 

is expressed as (5). 

( )0pU Var ξ=                   (5

) 

4.2 Design variable  
Key factors of the design plan include: (1) the 

sample number which is expressed as n ; (2) the 

stress level group number k  (3) the accelerated 

stress level group which is denoted by 1 2( , )i jS S ; (4) 

ir  is the invalid censored data of the stress level 

group 1 2( , )i jS S . In order to reduce the test 

difficulties and the search dimension, the design 

plan may be expressed as { }1 2( , ),
l i j ij

d S S r=  

(where, 1, 2, ,i k= ⋯ ， 1, 2, ,j k= ⋯ ).  

4.3 Constraint conditions  
(1) The sample number meets the condition of 

max0 nn ≤< , where, maxn  is the maximum sample 

number allowed in the test ;  

(2) The stress level number is nk ≤ ;  

(3)The stress level is 1+> ii SS  （

1,2, , 1i k= −⋯ ）;  
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(4)The invalid censored number is satisfied 

with the condition of ∑ ≤ nrij ;  

5. Optimal Design Method Based on 

Monte-Carlo Simulation  

5.1 Theories related to interpolation and 

fitting optimization algorithm  

The cubic spline interpolation algorithm 

has characteristics such as the uniform 

convergence, computational stability of 

piecewise low-order interpolation, and the 

overall adequate smoothness of high-order 

interpolation, etc, which can meet the need of 

multi-variable target function fitting and also 

have a good precision. In the paper, we adopt 

the cubic spline interpolation algorithm to fit 

the target function in order to reduce the 

simulation scale and the difficulty of surface 

fitting. 

The cubic spline interpolation adopts the 

method of piecewise interpolation and has 1+n  

nodes within the given interval ],[ ba , which 

satisfied with the condition 

that bxxxxa n =<<= ⋯210
. The results of the 

function with these nodes are ni xxxy ,,, 1,0 ⋯ . 

Cubic polynomials are constructed on every 

interval of ],[ 1+ii xx , shown as type (6). 

qpxnxmxxFxF i +++== 23)()(  

],[ 1+∈ ii xxx )1,1,0( −= ni ⋯     (6)  

The polynomial (6) is called cubic spline 

interpolation function. It is obviously that there 

needs 4n terms to be known in the solving this 

polynomial and the nodes provides 1n +  terms; 

every interior point relationships are used to 

establish conditions and we may get another 

3 3n − conditions; then if we use the two 

boundary conditions , the spline function can be 

determined, exclusively.  

The cubic spline interpolation function of 

)(xF  is a piecewise cubic polynomial and also 

is separately a cubic polynomial within every 

interval of ],[ 1 ii xx − . Therefore, )('' xF  is a first-

degree polynomial within every subinterval 

of ],[ 1 ii xx − . If two point values of )('' xF  within 

the subinterval of ],[ 1 ii xx −  have been known, 

which are represented as (7). 

iiii MxFMxF == −− )(,)( ''

11

''  

),1,0( ni ⋯=           (7) 

If we make the assumption that the length 

of every subinterval is 
1−−= iii xxh , according to 

Lagrange's interpolation polynomial, the first-

degree Lagrange's interpolation polynomial of 

the function F"(x) within the subinterval of 

],[ 1 ii xx −  can be expressed as below. 

( )
i

i
i

i

i
i

h

xx
M

h

xx
MxF 1

1
−

−

−
+

−
=′′  

(1, 2, , )i n= ⋯       (8) 

After integrating of the type ( )F x′′   with twice, 

the (9) will be obtained. 

( ) ( ) ( )
dcx

h

xx
M

h

xx
MxF

i

i
i

i

i
i ++

−
+

−
= −

−
66

3

1

3

1

(1, 2, , )i n= ⋯        (9)  

Where c  and d  are determined by the 

interpolation condition of ( )i iF x y= . Therefore, 

the expression of the interpolation function 

( )F x  can be written as (10). 

( ) ( ) ( )

666

66

1

22

1
1

3

1

3

1

−−
−

−
−

−








−+

−








−

+
−

+
−

=

iii
i

i

iii
i

i

i
i

i

i
i

xxhM
y

h

xxhM
y

h

xx
M

h

xx
MxF

],[ 1 ii xxx −∈ )1,2,1( −= ni ⋯      (10)  

In formula (10), the interpolation function )(xF  

is expressed by using of second derivative 

of ),2,1,0( niM i ⋯= , which is also called the M 

expression of )(xF .  

In the type (10), the parameter 
iM  is 

actually unknown. Only when 
1+iM  is 

calculated, )(xF  can be determined. From the 

derivation process of (10), we know that )(xF  

meets the interpolation condition of
ii yxF =)( , 

which is thus continual within the whole 

interval of [a, b]; in addition, )(xF  is a cubic 

polynomial within every subinterval. Therefore, 

we may use the continuity of )(' xF  in nodes to 
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get the parameter
iM , and calculate first-order 

derivative on both sides of (10), and then we 

may get (11). 

( ) ( ) ( )

i
ii

i

ii

i

i
i

i

i
i

h
MM

h

yy

h

xx
M

h

xx
MxF

6

22

11

2

1

2

1

−−

−
−

−
−

−
+

−
+

−
−=′

 

],[ 1 ii xxx −∈ (1, 2, , 1)i n= −⋯     (11)  

Then we may calculate the left derivative of 

)(xF  in point of ix  

( )
i

iii
i

i
ii

h

yyh
M

h
MxF 1

1
36

−
−

− −
++=′  

(1,2, , )i n= ⋯         (12)  

The right derivation of )(xF  in  point of 
1−ix  is 

(13). 

( )
i

iii
i

i
ii

h

yyh
M

h
MxF 1

11
63

−
−

+
−

−
+−−=′   

)1,2,1( −= ni ⋯        (13)  

If we replacr i  in (13) with 1i + , and then we 

can calculate the right derivation of )(xF  in the 

point of 
ix  ,expressed as (14). 

( )
i

iii
i

i
ii

h

yyh
M

h
MxF

−
+−−=′ ++

+
++ 11

1
1

63
  (14)  

As )(' xF  is continual within the interval of[ , ]a b , 

the left derivative and right derivative in 1ix +  is 

equivalent, which means ( ) ( )+− ′=′
ii xFxF . From 

formula (12)and(13), the (15) can be obtained. 

i

ii

i

ii

i
i

ii
i

i
i

h

yy

h

yy

h
M

hh
M

h
M

1

1

1

1
1

1
1

636

−

+

+

+
+

+
−

−
−

−

=+
+

+
  (15)  

If the both sides of (15) is multiplied by 

1

6

++ ii hh
 , the (16) will be obtained. 

iiiiii MMM λβα =++ +− 11 2  

   )1,2,1( −= ni ⋯         (16)  

Where, 






















 −
−

−
+

=

−=
+

=

+
=

−

+

+

+

+

+

+

i

ii

i

ii

ii

i

i

ii

i
i

ii

i
i

h

yy

h

yy

hh

hh

h

hh

h

1

1

1

1

1

1

1

6

1

λ

αβ

α

   (17) 

)1,2,1( −= ni ⋯  

Equation (16) represents the relation between 

)(xF  and the second derivative ),2,1,0( niM i ⋯=  

in the interpolation node, which is called M  

relation.  

The (16) can be constituted a tri-diagonal 

equation, based on the known boundary 

conditions, and which can be easily solved by 

applying the chasing method.  

5.2 Optimization Algorithm  

,
1
∑=
Q

q

ql U
Q

U

}{minarg*

q
D

Ud =

   Fig.2  Optimal Design Flow Chart of MCSDS-            

ALT Algorithm 
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The basic thought of the optimization 

algorithm is as follows. First step is to 

determine the optimized objective, constraint 

conditions, and design variable, and second is to 

generate test data by using Monte-Carlo 

analogue simulation, and make statistical 

analysis by using MLE and get the target 

function value, last step is to select a test plan 

target function value of which is the minimum 

as the optimal test plan. The design flow chart 

of MCSDS-ALT based on simulation is given 

out in Fig.2.  

The steps of Fig.2 can be described in details as 

follows:  

Step1. Build the plan set with  D.  

Step2.Select a test plan of { }1 2( , ),l i j ijd S S r=  

among the alternative plans, in which l is the 

number of alternative plans.  

Step3. Use Monte-Carlo method to simulate 

MCSDS-ALT process according to the priori 

knowledge of (m ， 0γ ， 1γ ， 2γ ), and generate 

the test data of  

{ }, 1, 2, , , 1, 2, , , 1, 2,ij q
t j l i k q Q= = =⋯ ⋯ ⋯ , ijr  is 

the invalid censored data under the stress of 1 2,i jS S ; 

simulation procedure is shown in details as follows:  

 (a) The priori knowledge of (m ， 0γ ， 1γ ， 2γ ) 

and the stress level group of 1 2( , )i jS S  are 

substituted into Formula (4) to calculate the life 

characteristic quantity iη ;  

 (b) Sampling ),(~ij imWeibullt η  with inverse 

transformation;  

Step4. Make statistical analysis on every group 

of test data to get the target function qU ;  

Step5. Calculate the target function:  

                              1 ( )
Q

l q

q

U Q U= ∑          (18) 

Step6. Return to Step2, in order to select 

another test plan to repeat Step2 to step 5 until the 

completion of L plan, then we may get the target 

function set of { }, 1, 2, , ;lU U L= ⋯ .  

Step7.Utilizing cubic spline interpolation 

method to build a virtual function of the plan set D 

and target function set U; 

Step8. Utilizing the optimization algorithm to 

realize target optimization on the virtual function in 

Step7 and then get the optimal plan set
*d .  

5.3 Maximum Likelihood Estimation with 

Censored Test  

Among common statistical methods, MLE 

is not affected by outer interference such as 

table lookup, which is commonly used in the 

analysis of the test data. It is applied to most 

theoretical models and various censored 

methods. According to these advantages, we 

can deduce the maximum likelihood function 

under any stress level number with Weibull 

distribution by using the simulation test failure 

data and the censored data in group tests, which 

is expressed as (19). 

∏

∏∏

=

−

−

= =

∑
−−

⋅=

=

k

r

rin
m

i

rim

i

ij

m

i

ij
k

i

ri

j i

r

i
itjt

jtm
mL

1

)(

1

1 1

210

1))
)(

(exp().)
)(

(exp(

.)
)(

(),,,(

ηη

ηη
γγγ

 

 (19)  

The logarithmic function is (20):  

0 1 2

( )

1 1

ln ( , , , )

( (ln ( 1)ln ( ) ln ( ) ))
k ri

ij j m

ij i

i j i

L m

t
m m t j m

γ γ γ

η
η= =

= + − − −∑∑

∑ ∑
= =

−−
k

r

m

i

ri
r

i

i

t
rn

1 1

))((
η

 

         (20)  

From (20), we can obtain partial derivatives in 

different orders of the function l  against m 、

0γ 、 1γ 、 2γ , and calculate partial Fisher 

matrix with MLE value of m̂ 、 0γ̂ 、 1̂γ 、 2γ̂  of 

the model through Newton iteration method. 
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2 2 2 2

2

0 1 2

2 2 2 2

2

0 0 0 1 0 2

2 2 2 2

2

1 1 0 1 1 2

2 2 2 2

2

2 2 0 2 1 2

l l l l

m m m m

l l l l

m
F

l l l l

m

l l l l

m

γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

 ∂ ∂ ∂ ∂
− − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
− − − − 
∂ ∂ ∂ ∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ − − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 
∂ ∂ ∂ ∂ − − − −

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (21) 

Elements in the Fisher matrix are the second-

order partial derivatives of formula (20). 

5.4 Target Function and Sample Size  

From the model assumed, we know that 

test life presents Weibull distribution, thus we 

can calculate the logarithmic percentile life 

under the normal stress level 0S [13-15]. 

)log(),(ˆ
),(,1010 2010 SSRR tSSY =  

mR ˆ)).log(log()ˆlog( 0 −+= η     (22) 

If w substitute (4) into (22), the (23) can be 

obtained. 

10 10 0 1 10 2 20
ˆ ˆ( , ) log( log( )).RY S S S S R mγ γ γ= + + + −   

                                                                      (23) 

From papers[16-20], we can get the basic model 

of the target function (24). 

                  1Var(ln ) T

p BF Bη −=             (24

)  

Where,  

         

]
),(ˆ

,
),(ˆ

,
),(ˆ

,
m

),(ˆ
[

2

1010

1

1010

0

10101010

γγ

γ

∂
∂

∂
∂

∂
∂

∂
∂

=

SSYSSY

SSYSSY
B

RR

RR

   (25) 

F  denotes partial Fisher information matrix.  

6. Analysis  
In the paper, we takes direct current (DC) 

motor as an example in the cyclic step-down 

accelerated life test. As known that the life of 

the DC motor presents Weibull distribution and 

the priori-value of shape parameter 

is 9479.2=m . Its normal temperature level is 

CT o550 =  and its normal voltage level is 

VV 100 = . From the failure mechanism of the 

product, we can know that the highest 

temperature level is VV 100 =  and the highest 

voltage level is VV 25max = , and we can get the 

related data from paper [10], CT o57min =  

and VV 11min = .  

The researches of the test have verified 

that the accelerator model is Eyring model. 

)()()ln( 2

22

1

110 jii SS ϕγϕγγη ++=    (26) 

Where 

( ) ( )1 273i iT Tϕ = +  and ( ) log( )i iV Vϕ = , 

the priori values of the model are 

9204.50 −=r , 0714.61 =r , and 5604.12 −=r .  

We make the following assumptions on the 

test in order to simplify and optimize problems:  

(1) We only analyzes MCSDS-ALT plans 

under the condition that the stress level k=2 and 

k=3, and the optimal design methods under 

other stress levels is nearly the same;  

(2) In order to simplify the analysis, the 

stresses are set with equal interval, which are 

( )max max min1 ( ) 1iT T i T T k= − − − −  

( )max max min1 ( ) 1jV V j V V k= − − − −  

Where , 1, 2, ,i j k= ⋯ .  

(3) In order to guarantee the evaluation 

precision, we analyze at least five sample 

numbers under every stress level.  

We assume the stress levels are separately 

2 and 3, and 100=n , the invalid sample number 

88n = cab be obtained when 2=k , the uniform 

orthogonal method is used in test in order to 

guarantee its generality. We assume the sample 

failure is ]13,20,55[=ir  under the 

corresponding stress level group, so if 3=k , the 

sample failure will be  ]5,8,12,25,35[=ir  under 

the corresponding stress level group, where 

60L =  and 100=M .  

Fig.3 gives out the relationship diagram 

between the sub-target function and the target 

function which are obtained from the 

accelerated simulation test by using of Monte-

Carlo  method when k=2.  

When we smooth Fig.3 by applying cubic 

spline interpolation and fitting theory, it can be 
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improved. The results are shown as Fig.4. The 

result of optimum test plan is the red point 

shown in Fig.4. 

 

 

Fig.3 Simulation results of original data when k=2 

 

Fig.4 Cubic spline interpolation results when k=2 

 

Fig.5 Simulation of original data results when k=3 

Fig.5 shows the relationships between the 

sub-target function and the target function 

obtained from the accelerated simulation test by 

using of Monte-Carlo when k=3.  
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Fig.6 is the result of Fig.5 after adopting 

the cubic spline interpolation and fitting theory 

method. The result of optimum test plan is the 

red point as shown in Fig.6. 

 

Fig.6 Results of cubic spline interpolation when k=3 

In Fig.5 and Fig.6, we can find that the 

values of target function at the periphery are too 

large which make the bottom part of Fig.5 and 

Fig.6 too flat. It seems that values of the target 

function at the bottom are almost the same. But 

actually they are different, in order to see them 

clearly, the target function data at the periphery 

where the value is too big are removed.     

 

 
Fig.7  Simulation results of local original data when   

k=3 

Fig.7 is the result after removing the target 

function data at the periphery.Fig.8 is the result 

after cubic spline interpolation and fitting. The 

optimum test plan results are shown by the red 

point in them. 

 

Fig.8 Local cubic spline interpolation results (k=3) 

Tab.1 Optimum test plan results 

k 2 3 

Original Xmax 2.9880 2.5000 
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data 
Ymax 2.9444 2.9789 

Var 6.3101 15.296 

Interpolation 

and fitting 

data 

Xmax 2.9871 3.0358 

Ymax 2.9643 2.5637 

Var 5.2301 11.339 

Through the optimization and analysis on 

the target function and its variables by using of 

spline interpolation method, we can get the 

optimal plan design when 2=k  and 3=k , 

which is shown in Tab.1.  

Through the analysis of Tab.1 and the 

fitting on the target function with the cubic 

spline interpolation and fitting algorithm, the 

simulation scale can be reduced and the test 

efficiency is also improved. In actual 

engineering application, if the test expense is 

limited with high precision, the test plan with 

low stress level number shall be used. 

Otherwise, the test plan with good stability and 

high stress level number shall be adopted even 

if the precision is not high.  

7 Conclusions 
In the paper we analyze the target 

optimization and design variables in MCSDS-

ALT based on Monte-Carlo simulation. We 

make constant-stress accelerated life test and 

step-down accelerated life by applying the 

related theory, and we fit the target function  

through using the cubic spline interpolation 

fitting algorithm, the result show that it cab 

reduces the simulation scale, improves the test 

efficiency. Form the research in the paper we 

can obtain the sample size with the optimal plan 

and also can draw some useful conclusions to 

guide the MCSDC-ALT. 

 The method proposed can improve the 

theoretical system of the accelerated test 

optimal design, thus it will provide a powerful 

theoretical support for subsequent accelerated 

test and performance analysis on the product. 

So our research work will lay a good foundation 

for the optimal design of MCSDS-ALT in the 

actual engineering application.  
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