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ABSTRACT: - Document clustering is useful in many information retrieval tasks such as document 

browsing, organization and viewing of retrieval results. They are very much and currently the subject 

of significant global research. Generative models based on the multivariate Bernoulli and multinomial 

distributions have been widely used for text classification. In this work, address a new hybrid 

algorithm called MLK-Means for clustering TMG format document data, in which, the normal 

Euclidean distance based metric of the k-mean process is replaced by a machine learning technique.  

The results of the proposed algorithm were compared with the probabilistic model namely, von Mises-

Fisher model-based clustering (vMF-based k-means) and the standard k-mean with L-2 normalized 

data method. In this proposed work, the MLK-Means algorithm has been implemented and its 

performance is compared with other algorithms mentioned above. The improvements in the proposed 

algorithm are more significant and comparable.   

Key Words: Document Clustering; Model Based Clustering; Term Document Matrix; Text to Matrix 

Generator (TMG); k-means; Machine Learning; Bernoulli; Multinomial and von Mises-Fisher Clustering. 

 

 

1. Introduction 

Document Clustering 

Document clustering is a kind of text data mining 

and organization technique that automatically 

groups related documents into clusters. Document 

clustering also referred to as text clustering is 

closely related to the concept of data clustering. 

Document clustering is a more specific technique 

for unsupervised document organization, automatic 

topic extraction and fast information retrieval or 

filtering [14, 15, 16]. Document clustering is a 

specialized data clustering problem, where the 

objects are in the form of documents. Document 

clustering aims to discover natural grouping among 

documents in such a way that document with in a 

cluster are similar (high intra cluster similarity) to 

one another and are dissimilar to documents in other 

clusters (low inter cluster similarity). 

Document clustering algorithms mainly uses 

features like words, phrases, and sequences from the 

documents to perform clustering. Document 

clustering has been studied intensively because of 

its wide applicability in areas such as web mining 

and information retrieval. Document clustering has 

long been important problem in text processing 

systems. The goal of these document clustering is 
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systems is to automatically discover, in the absence 

of metadata or a pre-existing categorization, 

sensible topical organizations of the document. 

1.2. Problem Specification 

Generally, unsupervised algorithms were used in 

document clustering. There are different variants of k-

means clustering algorithms derived exclusively for 

document clustering application. Recently,  the 

spherical k-means algorithm,  which has desirable  

properties  for  text  clustering,  has  been  shown  to  

be  a  special  case  of  a  generative model based on a 

mixture of von Mises-Fisher (vMF) distributions.  The 

standard k-mean clustering algorithm is having some 

weakness on clustering TMG format document data 

and document in general. In our previous evaluation 

work [16], we showed the results of k-means 

clustering algorithm on document clustering 

application.   Often, the normal Euclidean distance 

based metric of the k-mean process which is used for 

clustering the word count based feature vectors leads 

to inaccurate clusters. So in this work, we propose a 

new model of k-mean algorithm in which the 

traditional Euclidean distance based clustering process 

is replaced by a SVM based machine learning (ML) 

technique. In addition to that, to get more performance 

in terms of speed, we will incorporate the Principal 

Component Analysis (PCA) in the k-mean process. 

Even though SVM is a supervised ML technique, in 

this work, we are deriving an unsupervised clustering 

algorithm by using this supervised machine learning 

technique. 

1.3. Machine Learning  

Machine learning (ML) evolves from artificial 

intelligence (AI). It combines AI heuristics with 

advanced statistical analysis. ML is contributing to a 

major category of data mining algorithms. AI was 

not commercially successful and is mostly used only 

for research. But ML is applied very widely as its 

entry price itself was lower than AI. It is capable of 

taking advantage of the improving 

price/performance ratios of computer. ML learns 

characteristics of data using fundamental statistics 

and uses AI heuristics to achieve its goal [22]. 

2. Material and Methods 

2.1. Probabilistic K-Mean Clustering 

Algorithms    

 Model-based Partitional Clustering 

The model-based k-means (mk-means) algorithm is 

a generalization of the standard k-means algorithm, 

with the cluster centroid vectors being replaced by 

probabilistic model. Let 1{ ,..., }NX x x=  be the set 

of data objects and 1{ ,..., }Kλ λ∧ =  the set of 

cluster models. The mk – means algorithm locally 

maximizes the log – likelihood objective function 

( )log ( | ) log ( | ),y x

x X

P X p x
ε

λ∧ =∑  

where y(x) = argmax log ( | )y yp x λ  is the 

cluster identity of object x [14,15,16,23].  

The  traditional  vector  space  representation  is  

used  for  text  documents,  i.e.,  each  document  is 

represented as a high dimensional vector of "word"2  

counts in the document.  The dimensionality equals 

the number of words in the vocabulary used.  Next, 

we briefly introduce the three generative models 

studied in our experiments. 

A. Multivariate Bernoulli Model 

In  a  multivariate  Bernoulli  model  [9],  a  

document  is  represented  as  a binary vector over 

the space of words. The l-th dimension of a 

document vector x is denoted by x(l), and is either 0 

or 1, indicating whether word wl occurs or not in the 

document. The the number of occurrences is not 

considered, i.e., the word frequency information is 

lost. 

With naïve Bayes assumption, the probability of a 

document x in cluster y is  

( | ) ( )y l

l

P x Py wλ =∏ x(l) (1 ( ))lPy w− 1 – x(l) 

where { ( )}, ( )y l y ly P w P wλ =  is the probability 

of word wl being present in cluster y, and 

(1 ( ))y lP w−  the probability of word wl not being 

present in cluster y. To avoid zero probabilities 

when estimating ( )y lP w , one can employ the 

solution as [9]  

 
1 ( | , ) ( )

( )
2 ( | , )

x
y l

x

P y x x l
P w

P y x

+ ∧
=

+ ∧

∑
∑

 (1) 
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where ( | , )P y x ∧  is the posterior probability of 

cluster y[25].  

B. Multinomial Model 

 

Based on the naive Bayes assumption, a 

multinomial model for cluster y represents a 

document x by a multinomial distribution of the 

words in the document (vocabulary)  

 ( | ) ( )y y

l

P x P lλ =∏ x (l)
 

where ( )x l  is the l-th dimension of document 

vector x, indicating the number of occurrences of 

the l-th word in document x. To accommodate 

documents of different lengths, we use a normalized 

(log)-likelihood measure 

 
1

log ( | ) log ( | )
| |

y yP x P x
x

λ λ=ɶ  (2) 

where | | ( )
l

x x l=∑  is the size of the length of 

document x. The ( )Py l ’s are the multinomial model 

parameters and represent the word distribution in 

cluster y. They are subject to the constraint 

( ) 1y
l
P l =∑  and can be estimated by counting the 

number of documents in each cluster and the 

number of word occurrences in all documents in the 

cluster (Nigam, 2001). With Laplacian smoothing, 

i.e., with model prior ( ) . ( )y t yP C P lλ = ∏ , the 

parameter estimation of multinomial models 

amounts to 

1 ( | , ) ( )
( )

(1 ( | , ) ( ))

x

i x

P y x x l
Py l

P y x x i

+ ∧
=

+ ∧

∑
∑ ∑

= 1 ( | , ) ( )

| | ( | , ) ( )

x

i x

P y x x l

V P y x x i

+ ∧

+ ∧

∑
∑∑

    (3) 

where |V| is the size of the word vocabulary, i.e., the 

dimensionality of document vectors [23].     

C. von Mises-Fisher Model 

The von Mises-Fisher distribution is the analogue of 

the Gaussian distribution for directional data in  the  

sense  that  it  is  the  unique  distribution  of  L2-

normalized  data  that  maximizes  the  entropy 

given the first and second moments of the 

distribution (Mardia, 1975).  It has recently been 

shown that the spherical k-means algorithm that 

uses the cosine similarity metric (to measure the 

closeness of a data point to its cluster's centroid) can 

be derived from a generative model based on the 

vMF distribution under certain restrictive conditions 

(Banerjee & Ghosh, 2002; Banerjee et al., 2003). 

The vMF distribution for cluster j can be written as 

1
( | )

( )
i j

j

P d
Z k

λ = exp( )
|| ||

i

j

Td j
kj

µ

µ
,  (4) 

where id is a normalized document vector and the 

Bessel function ( )jZ k is a normalization term. The 

parameter k measures the directional variance and 

the higher it is, the more peaked the distribution is. 

For the vMF-based k-means algorithm, we assume k 

is the same for all clusters, i.e., ,j jk k= ∀ . This 

results in the spherical k-means (Dhillon & Modha, 

2001; Dhillon et al., 2001). The model estimation in 

this case simply amounts to
:

1

i

i i
i y j

j

d
n

µ
=

= ∑ , 

where 
jn  is the number of documents in cluster j 

[23]. 

Here, the proposed work only concentrates on von 

Mises – Fisher model and improve the results 

significantly. 

2.2.k-means and the Proposed MLK-Means 

clustering algorithm 

One of the most popular heuristics for solving the k-

means problem is based on a simple iterative 

scheme for finding a locally optimal solution. This 

algorithm is often called the k-means algorithm. 

There are a number of variants to this algorithm, so 

to clarify which version we are using, we will refer 

to it as the naïve k-means algorithm as it is much 

simpler compared to the other algorithms described 

here. This algorithm is also referred to as the 

Lloyd’s algorithm [26]. 

The naive k-means algorithm partitions the dataset 

into ‘k’ subsets such that all records, from now on 

referred to as points, in a given subset "belong" to 

the same center. Also the points in a given subset 

are closer to that center than to any other center. The 

partitioning of the space can be compared to that of 

Voronoi partitioning except that in Voronoi 

partitioning one partitions the space based on 
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distance and here we partition the points based on 

distance [12, 21]. The algorithm keeps track of the 

centroids of the subsets, and proceeds in simple 

iterations. The initial partitioning is randomly 

generated, that is, we randomly initialize the 

centroids to some points in the region of the space. 

In each iteration step, a new set of centroids is 

generated using the existing set of centroids 

following two very simple steps. Let us denote the 

set of centroids after the i
th
 iteration by C

(i)
. The 

following operations are performed in the steps [12, 

21, 26] : 

• Partition the points based on the centroids 

C(i),  that is, find the centroids to which 

each of the points in the dataset belongs. 

The points are partitioned based on the 

Euclidean distance from the centroids.  

•   Set a new centroid c(i+1)  ∈  C (i+1)  to be 

the mean of all the points that are  closest 

to c(i) ∈  C (i) The new location of the 

centroid in a particular partition is referred 

to as the new location of the old centroid.   

The algorithm is said to have converged when 

recomputing the partitions does not result in a 

change in the partitioning. In the terminology that 

we are using, the algorithm has converged 

completely when C
(i) 
and C

(i – 1)
 are identical. For 

configurations where no point is equidistant to more 

than one center, the above convergence condition 

can always be reached.  This convergence property 

along with its simplicity adds to the attractiveness of 

the k-means algorithm.  The naïve k-means needs to 

perform a large number of "nearest-neighbour" 

queries for the points in the dataset. If the data is ‘d’ 

dimensional and there are ‘N’ points in the dataset, 

the cost of a single iteration is O (kdN). As one 

would have to run several iterations, it is generally 

not feasible to run the naïve k-means algorithm for 

large number of points.  Sometimes the convergence 

of the centroids (i.e. C
 (i)
 and C

(i+1)
 being identical) 

takes several iterations. Also in the last several 

iterations, the centroids move very little. As running 

the expensive iterations so many more times might 

not be efficient, we need a measure of convergence 

of the centroids so that we stop the iterations when 

the convergence criterion is met. Distortion is the 

most widely accepted measure.  

Clustering error measures the same criterion and is 

sometimes used instead of distortion. In fact k-

means algorithm is designed to optimize distortion. 

Placing the cluster center at the mean of all the 

points minimizes the distortion for the points in the 

cluster. Also when another cluster center is closer to 

a point than its current cluster center, moving the 

cluster from its current cluster to the other can 

reduce the distortion further. The above two steps 

are precisely the steps done by the k-means cluster. 

Thus k-means reduces distortion in every step 

locally. The k-Means algorithm terminates at a 

solution that is locally optimal for the distortion 

function. Hence, a natural choice as a convergence 

criterion is distortion. Among other measures of 

convergence used by other researchers, we can 

measure the sum of Euclidean distance of the new 

centroids from the old centroids. Here, we use 

clustering error/distortion as the convergence 

criterion for all variants of k-means algorithm [12, 

21, 26].   

Definition: Clustering error is the sum of the 

squared Euclidean distances from points to the 

centers of the partitions to which they belong. 

Mathematically, given a clusteringφ , we denote by 

)(xφ  the centroid this clustering associate with an 

arbitrary point x (so for k-means, )(xφ  is simply the 

center closest to x). We then define a measure of 

quality forφ :  

∑ −=
x

xx
N

distortion
2

)(
1

φφ  (5) 

where |a| is used to denote the norm of a vector ‘a’. 

The lesser the difference in distortion over 

successive iterations, the more the centroids have 

converged. Distortion is therefore used as a measure 

of goodness of the partitioning. In spite of its 

simplicity, k-means often converges to local optima. 

The quality of the solution obtained depends heavily 

on the initial set of centroids, which is the only non-

deterministic step in the algorithm. Note that 

although the starting centers can be selected 

arbitrarily, k-means is fully deterministic, given the 

starting centers. A bad choice of initial centers can 

have a great impact on both performance and 

distortion. Also a good choice of initial centroids 

would reduce the number of iterations that are 

required for the solution to converge.  
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Many algorithms have tried to improve the quality 

of the k-means solution by suggesting different 

ways of sampling the initial centers, but none has 

been able to avoid the problem of the solution 

converging to a local optimum. For example, gives a 

discussion on how to choose the initial centers, 

other techniques using stochastic global 

optimizations methods (e.g. simulated annealing, 

genetic algorithms), have also been developed. 

None of these algorithms is widely accepted [12, 21, 

26].   

Problems with K-Means 

� The algorithm is simple and has nice 

convergence but there are number of 

problems with this 

� Selection of value of K is itself an issue and 

sometimes it’s hard to predict before hand 

the number of clusters that would be there in 

the data. 

� Experiments have shown that outliers can be 

a problem and can force the algorithm to 

identify false clusters. 

� Experiments have shown that performance of 

algorithms degrade in higher dimensions and 

can be off by factor of 5 from optimum. 

A. The Standard K-means Algorithm 

Inputs : X= {x1,…,xk}     (the document vectors to be 

clustered) 

 n                 (the number of clusters) 

Outputs: C= {c1,…, cn}      (the Cluster Centroids) 

  m: X → {1..n} (the cluster membership) 

Procedure k-means { 

 Randomly initialize C 

 For each xi∈ X { 

  m(xi)=argmin distance(xi, cj) 

            j∈{1..n} 

 } 

            While m has changed { 

      For each i ∈ {1..n} { 

  Recomputed Ci as the centroid of    

                              {x|m(x) = i} 

       } 

       For each xi∈ X { 

  m(xI) = argmin distance(xi , cj) 

   j∈{1..n}  

        } 

             } 

} 

B. The Proposed MLK-Means Algorithm 

Inputs : X= {x1,…,xk}     (the document vectors to be 

clustered) 

 n                 (the number of clusters) 

Outputs : C={c1,…, cn}      (the Cluster Centroids) 

  m: X → {1..n} (the cluster membership) 

Procedure MLK-means  

{ 

1. Randomly initialize C 

2. ( λi , ui ) ← pca(C)       where λi – 
eigenvalues and u i  - eigenvectors 

3. uiC is the will be the dimensionality 

reduced representation of C 
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4. Create a network to learn the 

dimensionality reduced inputs and map it 

to the original output class of the 

documents 

5. Learn the document space using the 

Centroids uiC and their corresponding 

class labels {1..n} 

6. For each xi∈X, calculate uixi and predict 
the membership m (uixi) of each calculate 

uixi using the trained network where 

i∈{1..k} 

             7. While m has changed { 

      For each i ∈ {1...n} { 

  Recomputed Ci as the centroid of  

                              {x|m(x) = i} 

( λi , ui ) ← pca(C) 

Calculate new uiC 

       } 

        Again, for Each xi∈X, calculate uixi 
and predict the membership m(xi) of 

each calculate uixi using the trained 

network where i∈{1..k} 

             } 

} 

Instead of using all the attributed, the proposed 

algorithm uses principal components of the 

attributes in the clustering process. Generally, while 

using a dimensionality reduction technique such as 

PCA, the entire data set is transformed in to the 

dimensionality reduced form. But that operation is 

not cost effective. Particularly, the document 

clustering is nothing but dealing with a very high 

dimensional data. So, applying PCA to the whole 

data set in one step will consume lot of time. So, in 

the proposed MLK-mean algorithm, first the 

principal components of the initially guessed 

centroids were only calculated. Since there were 

only C records corresponding to the C centers, the 

PCA process will not consume much time (the PCA 

on centroids will give corresponding Eigen values 

and eigenvectors).Thus, after fining the PCA of 

assumed centroids, a SVM is trained with the 

principal components of those centroids. The whole 

dataset is reduced to a lower dimension using the 

eigenvectors of the centroids calculated in the 

previous step. This operation will consume only 

negligible time since there is only a multiplication 

operation involved in it. 

The dimensionality reduced form of data is now 

classified using the trained network. Re-compute the 

centroids using the newly classified data (using all 

the attributes corresponding to the class membership 

– average of the attributes of the each class). Now 

this is the newly calculated centroids. Now we can 

repeat the whole procedure again from the 

beginning to find more optimum centroids and class 

members. In k-mean, generally Euclidean distance 

as used in distance calculation during finding the 

membership of a record. But, if we use that kind of 

distance calculation in a document classification 

problem which is dealing with a huge dimensional 

data set, then this kind of distance metrics will not 

lead to accurate result. Several previous works 

highlights this weakness of k-mean clustering. So, 

in proposed MLK-mean, the traditional distance 

based membership calculation function is replaced 

with SVM and yields a new kind of machine 

learning based k-mean. 

C. Principle Component Analysis (PCA) 

A data setx i , (i =1,. ..,n) is summarized as a linear 

combination of orthonormal vectors (called 

principal components) [27]:  

f x,V( )= u + xV( )V T
  (6) 

where f x,V( )  is a vector valued function, u  is the 

mean of the data x i{ },  and  V  is an d × m  matrix 

with orthonormal columns.  The mapping z i = xiV  

provides a low-dimensional projection of the vectors 

x i   if m < d .  

  The PCA estimates the projection matrix V  

minimizing 
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Remp x ,V( )=
1

n
xi − f xi ,V( )

2

i=1

n

∑ .  (7) 

The first principal component is an axis in the 

direction of maximum variance. Consequently, 

Principle Component Analysis (PCA) replaces the 

original variables of a data set with a smaller 

number of uncorrelated variables called the 

principle components. If the original data set of 

dimension D contains highly correlated variables, 

then there is an effective dimensionality, d < D, that 

explains most of the data. The presence of only a 

few components of d makes it easier to label each 

dimension with an intuitive meaning. Furthermore, 

it is more efficient to operate on fewer variables in 

subsequent analysis [19].  

3. Results and Discussion  

To evaluate the algorithms, a suitable and standard 

data set is needed. We decided to use some of the 

same datasets which were originally used in a 

previous reference work [23]. The datasets were 

originally from TREC collections 

(http://trec.nist.gov).  Datasets tr11, tr23, tr41, and 

tr45 were originally derived from TREC-5, TREC-

6, and TREC-7 collections. (NIST Text REtrieval 

Conferences - TREC). The dataset la12 was also 

originally derived from TREC. We used TMG 

format of these datasets which is available in several 

internet resources. We selected these data sets for 

evaluation because of their standard. 

3.1. Metrics Considered for Evaluation 

Validating clustering algorithms and comparing 

performance of different algorithms is complex 

because it is difficult to find an objective measure of 

quality of clusters. In order to compare results 

against external criteria, a measure of agreement is 

needed. Since we assume that each record is 

assigned to only one class in the external criterion 

and to only one cluster, measures of agreement 

between two partitions can be used [14, 15, 16]. An 

important aspect of cluster analysis is the evaluation 

of clustering results. Halkidi, M. et al. (2001) made 

a comprehensive review of clustering validity 

measures available in the literature and classified 

them into three categories. In this section we briefly 

review the commonly used document clustering 

evaluation measures and the evaluation of search 

results clustering in the literature [28].   

The first is the external evaluation method, which 

evaluates the results of clustering algorithm based 

on a pre-classified document set. There are several 

ways of comparing the clusters with the pre-defined 

classes: Rand Index, purity and mutual information. 

3.1.1. Rand Index 

The Rand index or Rand measure is a commonly 

used technique for measure of such similarity 

between two data clusters. Given a set of n objects S 

= {O1, ..., On} and two data clusters of S which we 

want to compare: X = {x1, ..., xR} and Y = {y1, ..., 

yS} where the different partitions of X and Y are 

disjoint and their union is equal to S; we can 

compute the following values [18]: 

� a is the number of elements in S that are in 

the same partition in X and in the same 

partition in Y,  

� b is the number of elements in S that are not 

in the same partition in X and not in the 

same partition in Y,  

� c is the number of elements in S that are in 

the same partition in X and not in the same 

partition in Y,  

� d is the number of elements in S that are not 

in the same partition in X but are in the same 

partition in Y.  

Intuitively, one can think of a + b as the number of 

agreements between X and Y and c + d the number 

of disagreements between X and Y. The rand index, 

R, then becomes, 

 (8) 

The rand index has a value between 0 and 1 with 0 

indicating that the two data clusters do not agree on 

any pair of points and 1 indicating that the data 

clusters are exactly the same [14, 15, 16, 18].  

3.1.2. Purity 

Purity can be computed by assigning class labels for 

each cluster by majority voting, then for a single 

cluster calculating the ratio of the correctly labelled 
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documents to the total number of documents in the 

cluster. Let there be k clusters (the k in k-means) of 

the dataset D and size of cluster Cj   be |Cj |.  Let |Cj 

|class=i denote number of items of class i assigned 

to cluster j [13]. Purity of this cluster is given by 

  (9) 

The overall purity of a clustering solution could be 

expressed as a weighted sum of individual cluster 

purities. 

 (10)  

In general, larger value of purity means better the 

solution [15, 16].  

3.1.3. Mutual Information 

Here, use the mutual information between an 

element (document) and its features (terms). In this 

algorithm, for each element e, construct a frequency 

count vector C(e) = (ce1, ce2, …, cem), where m is the 

total number of features and cef is the frequency 

count of feature f occurring in element e. In 

document clustering, e is a document and cef is the 

term frequency of f in e [13]. Construct a mutual 

information vector MI(e) = (mie1, mie2, …, miem), 

where mief is the mutual information between 

element e and feature f, which is defined as: 

N

c

N

c

N

c

ef
j

ej
i

if

ef

logmi
∑∑

×

=  (11) 

where N = ∑∑
i j

ijc is the total frequency count of all 

features of all elements. Compute the similarity 

between two elements ei and ej using the cosine 

coefficient of their mutual information vectors [29]: 

( )
∑∑

∑

×

×

=

f

fe

f

fe

f

fefe

ji

ji

ji

mimi

mimi

eesim
22

,  (12) 

3.2. Performance in Terms of CPU time 

In the following table we present the outputs of time 

study made on a Windows XP laptop equipped with 

Intel core 2 duo CPU at 2GHz and 2GB RAM. The 

Matlab implementations of the algorithms were used 

for evaluation. As shown in the following tables and 

graphs, the performance in terms of CPU time was 

very good in the proposed MLK-means clustering 

algorithm. 

Table 1: Accuracy in Terms of CPU time  

Data Set 

Used and its 

size  

(rows x 

Columns) 

Time Taken for Clustering 

(Average of Three runs) 

von 

Mises-

Fisher 

based  

k-means 

 

k-

mean

s with 

L2-

norm

alized 

data 

MLK-

means 

Tr11 (414 x 

6424) 
0.4530 1.219 0.2660 

Tr12 (313 x 

5799) 
0.2500 0.828 0.2340 

Tr23 (204 x 

5831) 
0.1720 0.531 0.1720 

Tr31 (927 x 

10127) 
1.0470 2.094 0.3280 

Tr41 (690 x 

8261) 
0.3593 1.906 0.2810 

Tr45.mat 

(690  x 8261) 
0.4210 1.75 0.2810 

La2.mat 

(3075 x 

31472) 

1.2920 4.5 0.4690 

La12.mat 

(6279 x 

31472) 

2.9060 8.718 0.8590 

Avg 0.862538 
2.693

25 
0.3613 
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Fig. 1.  Algorithm vs CPU time 

3.3. The performance of Clustering with 

Different Datasets 

3.3.1. Clustering Accuracy in Terms of Rand 

Index 

Table 2: Accuracy in Terms of Rand 

Index with Different Data Sets 

 

Data Set Used 

and its size  

(rows x 

Columns) 

Clustering Accuracy in Terms 

of Rand Index (Average of 

Three runs) 

von 

Mises-

Fisher 

based  

k-

means 

k-

means 

with 

L2-

normali

zed 

data  

MLK-

means 

Tr11 (414 x 

6424) 
0.8387 0.8484 0.8415 

Tr12 (313 x 

5799) 
0.8308 0.8314 0.8248 

Tr23 (204 x 

5831) 
0.6932 0.6924 0.7532 

Tr31 (927 x 

10127) 
0.8184 0.7859 0.8162 

Tr41 (690 x 

8261) 
0.8847 0.8743 0.8654 

Tr45.mat (690  

x 8261 ) 
0.8821 0.8741 0.8904 

La2.mat (3075 

x 31472) 
0.8161 0.7742 0.8086 

La12.mat  

(6279 x 

31472) 

0.8248 0.7869 0.8397 

Avg 0.8236 0.8084 0.8300 

 

As shown in the above table and the following 

figure, the performance of proposed MLK-means 

clustering was very good and little bit higher than 

that of the probabilistic model - von Mises-Fisher 

based k-means clustering. 

Rand Index

0.8236

0.8085

0.8300

0.7950

0.8000
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0.8100

0.8150

0.8200
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0.8350
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based k-means

k-means MLK-means

Algorit hm

 
 

Fig. 2. Rand Index - Comparison Graph 

 

3.3.2. Clustering Accuracy in Terms of Mutual  

           Information 

As shown in the following tables and graphs, the 

performance in terms of mutual information 

measure was also good in the case of proposed 

MLK-means clustering algorithm. 
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Table 3: Accuracy in Terms of Mutual 

Information Measure with Different Data Sets 

 

 

Mutual Informat ion Measure

0.31775

0.4881875 0.49055

0

0.1

0.2

0.3

0.4

0.5

0.6

von M ises-Fisher

based k-means

k-means MLK-means

A lgorit hm

Fig. 3. Mutual Information - Comparison Graph 

As shown in the following tables and graphs, the 

performance in terms of purity measure was also 

good in the case of proposed MLK-means clustering 

algorithm.   

 

Table 4: Accuracy in Terms of Purity with 

Different Data Sets 

 

Data Set Used 

and its size  

(rows x 

Columns) 

Clustering Accuracy in 

Terms of Purity Measure 

(Average of Three runs) 

 

von 

Mises

-

Fisher 

based  

k-

means 

k-

means 

with 

L2-

normal

ized 

data 

MLK-

means 

Tr11 414 x 

6424 

0.215

0 
0.7352 0.5295 

Tr12 313 x 

5799 

0.213

3 
0.4716 0.6772 

Tr23 204 x 

5831 

0.201

5 
0.6783 0.7171 

Tr31 927 x 

10127 

0.210

2 
0.7553 0.6799 

Tr41 690 x 

8261 

0.234

6 
0.7942 0.7548 

Data Set 

Used and 

its size  

(rows x 

Columns) 

Clustering Accuracy in Terms 

of Mutual Information 

(Average of Three runs) 

von 

Mises-

Fisher 

based  

k-

k-means 

with 

L2-

normali

zed data 

MLK-

means 

Tr11 414 x 

6424 
0.2150 0.5727 0.4121 

Tr12 313 x 

5799 
0.2133 0.4038 0.5024 

Tr23 204 x 

5831 
0.2015 0.3199 0.4468 

Tr31 927 x 

10127 
0.2102 0.5163 0.4703 

Tr41 690 x 

8261 
0.2346 0.6365 0.5836 

Tr45.mat 

690  x 

8261 

0.4825 0.6105 0.6564 

La2.mat 

3075 x 

31472 

0.4841 0.3717 0.3810 

La12.mat 

6279 x 

31472 

0.5008 0.4741 0.4718 

Avg 
0.3177 0.4882 0.4906 
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Tr45.mat 690  

x 8261 

0.680

4 
0.7495 0.8041 

La2.mat 3075 

x 31472 

0.716

1 
0.6055 0.5929 

La12.mat 

6279 x 31472 

0.705

1 
0.7321 0.6675 

Avg 
0.397

0 
0.6902 0.6779 

 

 

 

 Fig. 4. Purity – Comparison Graph 

 

4. conclusion and Scope For Further 

Enhancements 

In this paper, we have proposed improved k-mean 

based unsupervised clustering model using 

supervised machine learning technique. The 

proposed MLK-means clustering algorithm has been 

successfully implemented and evaluated with 

suitable datasets. The arrived results were more 

significant and comparable. We used different kinds 

of metrics to evaluate the performance of the 

proposed MLK-means clustering algorithm. If we 

compare performance of these three algorithms in 

terms of CPU time, Rand Index, Mutual 

Information, and Purity Measure,  it was obvious 

that results of the proposed MLK-means algorithm 

is significantly better than all the other previous 

methods. As in the case of standard k-means, this 

implementation of the MLK-means algorithm also 

starts with some randomly initiated centriods. 

Future work may address the ways to find better 

methods to start with optimum centroids to achieve 

better results. For that we may use any fast 

clustering method to estimate the initial centroids 

and then apply the proposed method with those 

centroids to achieve improved results. Our future 

work will address these new ideas. 
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