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Abstract: - This paper deals with removal of errors due to various noise distributions in continuous glucose 

monitoring (CGM) sensor data. A feed forward neural network is trained with Extended Kalman Filter (EKF) 

algorithm to nullify the effects of white Gaussian, exponential and Laplace noise distributions in CGM time 

series. The process and measurement noise covariance values incoming signal. This approach answers for the 

inter person and intra person variability of blood glucose profiles. The neural network updates its parameters in 

accordance with signal to noise ratio of the incoming signal. The methodology is being tested in simulated data 

with Monte Carlo and 20 real patient data set. The performance of the proposed system is analyzed with root 

mean square(RMSE) as metric and has been compared with previous approaches in terms of time lag and 

smoothness relative gain(SRG). The new mechanism shows promising results which enables the application of 

CGM signal further to systems like Hypo Glycemic alert generation and input to artificial pancreas.  

 

Key-words:- Continuous Glucose Monitoring, Denoising, Extended Kalman Filtering, Laplace noise, Neural 
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1  Introduction 
Diabetes becomes an alarming threat to public 

health. World Health Organization (WHO) has 

estimated that 285 million people are affected with 

diabetes around the world and this number is 

expected to increase up to 438 million by year 2030. 

Diabetes Mellitus is a chronic device due to the 

failure of pancreatic beta cells in secreting sufficient 

insulin. Insulin is the hormone required for the 

uptake of glucose from the blood stream to body 

cells. The glucose concentration in blood fluctuates 

in response to food intake, hormonal cycles or 

behavioral factors. The Diabetes Control and 

Complications Trial group (DCCT) has proved that 

if the blood glucose variations are maintained the 

range of 70 to 120 mg/dL, the complications of the 

disease can be avoided. The daily management of 

diabetes can be improved by regular monitoring of 

blood glucose and proper drug administration.  

 

 

 

 

1.1  Continuous Glucose Monitoring 
The CGM devices use minimal invasive electro 

chemical sensors placed subcutaneously.[1] The 

CGM devices assist the diabetes people in analyzing 

the fluctuations of blood glucose and their variation 

trend. Evaluation of accuracy of CGM monitors is 

complex for two  primary reasons. 1. CGMs assess 

BG fluctuations indirectly by measuring the 

concentration of interstitial Glucose but are 

calibrated via self monitoring to approximate BG. 2. 

CGM data reflect an underlying process in time and 

consist of ordered-in-time highly interdependent 

data points.[2][3] Apart from the physiological time 

lag, improper calibration, random noise and errors 

due to sensor physics and chemistry affects the 

accuracy of CGM data. This deteriorates the 

performance of CGM signals in Hypoglycemic alert 

generation and control input to Artificial pancreas.  

The CGM standards report [4] has provided 

consensus guidelines on how the data should be 

used and presented in CGM devices. Varied types of 

CGM devices are available now a days. The Food 

and Drug Administration (FDA) of US government 

has approved Glucowatch®  and CGMS® with alert 
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generation. The CGM manufacturers have not 

opened out the full details of their filtering. Some of 

their information can be known from the 

patents.[5][6]  The studies have shown that the 

percentage of false alarm and missing alarm is of 50. 

This might be due to the insufficient filtering.  

Therefore more advanced technique should be 

adopted in the preprocessing of CGM sensor data 

before using it in further applications. 

 

 

1.2 Review on Filtering of CGM sensor data 
The signal processing in continuous glucose 

monitoring can be explained  with the equation,   

                     yk  =  uk + vk                                                  ----(1) 

where yk is the received CGM signal, uk is the 

unknown glucose value at time ‘k’ and vk is the 

additive noise which results for the measurement 

error. Given the expected spectral characteristics of 

noise, low pass filtering represents the most natural 

candidate to denoise CGM signals. One major 

problem with low pass filtering is that, since signal 

and noise spectra normally overlap, removal of 

noise vk, will introduce distortion in the true signal 

uk. This distortion results in a delay affecting the 

estimate of true signal. Understanding how 

denoising is done inside commercial CGM devices 

is often difficult, but some of the informations can 

be obtained from the registered patents which are 

given below. Medtronic Minimed has patented the 

use of moving average filter.[7] Dexcom suggests 

the use of IIR filters.[8] Panteleon and colleagues 

cited the use of a 7’th order FIR filter[9]. Keenan 

and associates have studied the delays in CGMS 

Gold and GuardianRT devices.[10] Chase et al., 

developed an integral based fitting and filtering 

algorithm for CGM signal, but it requires the 

knowledge of Insulin dosages.[11] Knobbe and 

Buckingham used a Kalman filter for the 

reconstruction of CGM data.[12] Palerm et al., used 

the optimal estimation theory of Kalman filter 

algorithm for the prediction of glucose profile and 

detection of hypoglycemic events.[13][14] Kuure-

Kinse worked with a dual rate Kalman filter for the 

continuous glucose monitoring.[15] Fachinetti et al., 

adopted the real time estimation of  parameters  of 

Kalman filter for online denoising of random noise 

errors in CGM data..[16] The same group have tried 

the extended Kalman filter algorithm for calibration 

errors.[17] Facchinetti et al., arrived  an online 

denoising method to handle intraindividual 

variability of signal to noise ratio(SNR) in CGM 

monitoring, implemented with a kalman filter by 

continuously updating their filter parameters with a 

Bayesian smoothing criterion[18]. Earlier they 

worked with tuning of filter parameter only in the 

burning interval to assess the interindividual SNR 

variation. Since the CGM time series observed with 

different sampling rates must be processed by filters 

with different parameters, it is clear that 

optimization made on order and weights of the 

filters cannot be directly transferred one sensor to 

another. Moreover, filter parameters should be tuned 

according to the SNR of the time series, e.g., the 

higher SNR, the flatter the filtering. Precise tuning 

of filter parameters in an automatic manner is a 

difficult problem for the basic filters. So far the 

filtering approaches have been tested with a 

consideration of white Gaussian noise alone in 

CGM sensor data.  Xuesong chen  identified the 

presence of double exponential or Laplace noise in 

CGM time series in his work for impact of 

continuous glucose monitoring system on model 

based glucose control.[19] Inspite of these 

tremendous works by various research groups, 

achievement of 100% accurate prediction is still a 

tough task. This shows the need of more smart 

filtering algorithms.  

For reliable real time monitoring of blood glucose, 

the filtering algorithm should account for: 

1. Short term errors due to motion artifacts. 

2. Random Noise and other noise models. 

3. Errors due to imperfect calibration. 

4. Long term errors due to performance 

deterioration of sensor, bio fouling, 

inflammatory complications etc.. 

5. Uncertainty in physiological parameters. 

Filtering of short term errors and random errors for 

the linear case is simple. To account for errors due 

to imperfect calibration and sensor electronics we go 

for non linear modeling which could be achieved 

with Extended Kalman Filter(EKF). But to track the 

uncertainties in physiological parameters, some 

artificial intelligent modeling technique is needed. 

An artificial neural network which does information 

processing as per the way of biological neurons 

would be the best choice. The processing time of 

neural network will be of no concern with today’s 

high performance processors.  

Therefore the proposed method Hybrid 

Filtering Technology (HFT) comprises of a Feed 

forward neural network with Back propagation 

algorithm trained with EKF algorithm. Training of 

feed forward neural network can be seen as state 

estimation for non linear process. The EKF method 

gives excellent convergence performance compared 

to traditional gradient descent optimization 

technique. Our proposed system has been tested 
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with WGN, Exponential noise and Double Laplace 

noise.  The remaining part of the paper is organized 

as follows. Section 2 describes the materials and 

methods, section 3 explains the hybrid filtering 

technique, section 4 deals with the experimental 

actions and results, section 5 gives the related 

discussion and section 6 is the conclusion. 

 

2  Materials and Methods 

 
2.1  Data 
The data used in this paper comes from two data 

sets. The first set is through simulation with Monte 

Carlo. The second one is the real patient data set 

obtained through the diabetes resource [22].  

In the first phase we obtained the continuous 

glucose profile data from the meal simulation model 

of Dalla Man.[20][21] 25 data sets have been 

generated from the simulation with different 

parameters of diabetic patient. Each data set is 

applied with Monte Carlo 20 times so as to have 

20*25  = 500 sets of data. The data are added with 

both WGN and Double Laplace noise with varying 

variances of noise distributions.[23] One of the 

representative glucose profile is shown in figure 1.  

Blood glucose profiles were created with 5 minutes 

sampling interval. 

 

       Fig.1:  A Representative simulated Noise free  

                 CGM profile 

 

2.2  Noise Distributions 
Breton et al., modeled the sensor error based on a 

diffusion model of blood to interstitial fluid glucose 

transport which accounts for the time delay and a 

time series approach, which includes auto regressive 

moving average noise to account the 

interdependence of consecutive sensor errors. He 

had given a histogram of sensor error with fitted 

normal distribution(green) and fitted Johnson 

distribution(Red) which is reproduced here in 

figure2.  

They have pointed out that the discrepancy 

between sensor and reference glucose differ from 

random noise by having substantial time-lag 

dependence and other non independent identically 

distributed (iid) characteristics.( i.e., the error is 

independent of previous errors and drawn from the 

same time independent probability distribution). But 

they have omitted high frequency errors( period of 1 

to 15 minutes) in their modeling due to the need of 

fine samples.[24] 

 

 

 Fig  2: Histogram of of sensor error with fitted 

normal distribution(green) and fitted Johnson  

distribution(Red) 

 

Specifically no study has reported a histogram of 

CGM values versus gold standard measures[25]. 

However an approximate model can be created 

using the available literature and data. The error 

profile can be simply and approximately modeled 

using a normal distribution with 17% standard 

deviation. This standard deviation and distribution 

allows 78% of the measurements to be within 20% 

matching the reported values in [26]. A maximum of 

40% (2.5 standard deviation) can be applied. A 

sample model of normal distributed random noise 

added to a simulated glucose profile is shown in 

figure 3. 
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Fig 3: Example of approximated CGMS error to a 

simulated glucose profile. Dashed lines show 20% 

and 40% bounds to estimate the magnitude of any 

error[11] 

              The Laplace distribution is also called as 

double exponential distribution. It is a distribution of 

differences between two independent variates with 

identical exponential distribution. The probability 

density function of the distribution is given by  

       f((x) / µ,b) = (1/ 2b) exp (- ( |x-µ| / b) ) 

         ---- (2)  

where ‘µ’ is location parameter and ‘b’ is a scale 

parameter. The Laplace distribution sets more 

values closer to zero. Hence it may represent the 

CGM sensor noise reported in the literature. The 

double Laplace Distribution noise is generated 

separately with two different pairs of standard 

deviation and mean. The inlier of the distribution is 

defined using the data reported in to lie within ± 

20% range and the region from ± 20% to ±40% is 

defined as outliers. These two different processes 

are completely isolated from each other. [23] 

 

Fig. 4: Approximated Double Laplace Distribution 

 

        Fig. 5: A Noisy CGM Time Series 

 2.3 Overview of the Proposed System 
BG fluctuations are continuous process in time 

BG(t). Each point of that process is characterized by 

its location, speed and direction of change. Thus, at 

any point in time BG(t) is a vector. CGM sensors 

allow the monitoring of the process in short (e.g 3 to 

10 minutes) increments, producing a discrete time 

series that approximates BG(t). Clarke’s Error Grid 

Analysis is used to judge the precision of the CGM 

sensors in terms of both accuracy of BG readings 

and accuracy of evaluation of BG change[2]. The 

data sets obtained with a simulation and with Monte 

Carlo are used first for training and testing the new 

methodology. The WGN of different variance 

values and the double Laplace noise distributions of 

different location and scale parameters are added to 

the generated glucose profiles. The noisy CGM data 

are applied to an artificial neural network that is 

being trained with Extended Kalman Filter (EKF) 

algorithm. The new filtering approach with the 

combination of neural network and EKF algorithm 

is named as Hybrid Filtering Technique (HFT). First 

20% data of noisy CGM is used to train the neural 

network in the HFT with EKF algorithm. The 

remaining data is applied for filtering through HFT. 

The root mean square error (RMSE) between the 

actual value and the filtered value are computed to 

analyze the performance of the proposed 

mechanism. In our previous work, we tried this 

methodology with variability of signal to noise ratio 

(SNR) from one person to another(interperson 

variability).[34] This paper analyses the 

applicability of  HFT to SNR variation in a single 

person(intraindividual variability).   
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Fig.6 : Overview of Proposed System 

3 Hybrid Filtering Technique 
The transport of glucose from blood to ISF is 

represented as a diffusion model [27] given by 

 

                                                                                                   

                                                                         ---- (3) 

Where  is the rate of change of ISF 

glucose,   is the time constant that defines the 

dynamic relationship between BG and IG and ‘g’ is 

the static gain that is equal to ‘1’ under steady state  

conditions.  

The ISF glucose is related to CGM reading with a 

deviation. Let ‘ ἀ ‘ be the time varying deviation of 

sensor gain from unitary value. The variation in 

unknown signals can be described by random walk 

models of order 2 which is common in physiological 

process.  The model order is decided by Akaike 

Information Criteria. [28 ]  

 

 
                                                                         ---- (4) 

                                                                                                                  

                                                                          ---- (5) 

ἀ                                                                                

                                                                                 ---- (6) 

where  w1(k) and w2(k) are assumed to be zero 

mean noise distributions with variances ‘ἀ1
2
’ and 

‘ἀ2
2
’. 

 

 

3.1  State Space Modeling 

To obtain a state space dynamic model, let x1 = 

BG(k), x2 = BG(k-1), x3 = IG(k), x4 = IG(k-1), x5 

=  ἀ(k) and x6 = ἀ(k-1).   

Then the state equations for the process can be 

written as follows. 

x1(k+1) = a1*x1(k)  +  a2*x2(k) + w1(k) ; 

x2(k+1) = x1(k); 

x3(k+1) = x3(k) + *x1(k) ;  

x4(k+1) = x3(k); 

x5(k+1) = c1*x5(k) + c2*x6(k) + w2(k); 

x6(k+1) = x5(k); 

 

The measurement model is given by 

Y(k) = x3(k)*x5(k) + v(k);                             ---- (8) 

 

Where y(k) is the CGM signal obtained with IG(k) 

with multiplicative sensor gain deviation ἀ(k) and 

v(k) is the zero mean noise distribution with 

variance ‘ἀ3
2
’. This nonlinear measurement model 

is linearized with Extended Kalman Filter algorithm. 

[29] 

 

 

3.2   Extended Kalman Filter  Algorithm 
The minimum variance estimate of state vector of a 

dynamic discrete time process is governed by a non 

linear stochastic difference equation 

   X(k+1) = f( X(k),w(k) )                                  --- (9) 

With a measurement vector, 

Y(k) = h( X(k),v(k) )            ---- (10) 

Where f and h are non linear vectorial functions. Wk 

and Vk are the vectors of process and measurement 

noises respectively. w(k) and v(k) are assumed to be 

zero mean white noise processes with covariance 

matrices Qk and Rk respectively.  ‘f’ is the non linear 

function that relates the state at previous time step 

‘k-1’ to the state at time step ‘k’. ‘h’ is the non 

linear function that relates the state and 

measurement vector. Estimation of state vector X is 

done similar to linear case.[24] The time update 

equations are given as follows. 

Estimate of state vector :  

 /k)(k 1x +
)

  = f ( )x (k/k
)

 ,0)         ---- (11) 

Estimate of  Covariance matrix at k’th sampling 

time :   

P(k+1/k) = Ak P(k/k) Ak
T
 + Wk Qk Wk

T
.        ---- (12) 

The measurement update equations are : 
Kk = P( k+1/k)Hk

T
( Hk P(k+1/k) Hk

T
  + Vk Rk Vk

T 
) 

-   1                                                                             

                                                                       ---- (13) 

x
)

(k+1/k+1) = x
)

(k+1/k) + Kk(y(k+1) – ( x
)

(k+1/k),0) ) 

                                                                        ---- (14)    

P(k+1/k+1)  =  ( I - Kk Hk ) P(k+1/k , 0)       ---- (15)  

(7) 
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Where Ak and Hk are the Jacobian matrices of the 

partial derivatives of f and h with respect to X, 

whereas Wk and Vk are the Jacobian matrices of 

partial derivatives of f and h with respect to wk and 

vk respectively. Kk is the Kalman gain matrix at the 

k’th sample and I is the identity matrix with size as 

that of  X.  

 The State transition matrix Ak obtained 

from the process model and the vector Hk  from 

measurement model are applied to the  neural 

network as initial weights.  

 

 

3.3  Neural Network 
The two main forms of system representation in 

modeling control processes are state space and 

input-output. Identification of nonlinear dynamic 

systems represented by state space difference 

equations can be performed by recurrent neural 

networks. Since the interactions between the factors 

for glucose metabolism are complex, 

multidimensional, highly nonlinear, stochastically 

and time variant time series, the neural network 

model seems to be a more suitable predictor. It has 

been proven that inclusion of past measurements 

increases the prediction accuracy of the neural 

network considerably.[33] The neural network can 

model the input-output behavior of the glucose 

metabolism and with the assistance of EKF , it is 

applied for denoising of errors in glucose dynamics.   

                The architecture of HFT filter is shown in 

figure 7. It is a multi layer feed forward back 

propagation neural network with an input, hidden 

and an output layer. The output and hidden units 

have bias. The input layer is connected to hidden 

layer and hidden layer is connected to output layer 

through interconnection weights. These weights are 

decided by extended Kalman filter algorithm. The 

non linearity in the glucose time series can very well 

be estimated and corrected by EKF. The EKF 

provides minimum variance estimates in system 

applications where the dynamic process and 

measurement models contain non linear 

relationships.  Since the HFT comprises of only one 

hidden layer the computational complexity is less in 

this network.  

 

  

 

 Fig 7: HFT Neural Network. 

The training of back propagation network involves 

four stages, viz 

1. Initialization 

of weights. 

2. Feed forward. 

3. Back 

propagation of errors. 

4. Updation of 

weights and biases. 

During first stage which is the initialization of 

weights, some small random values are assigned. 

During feed forward stage each input unit (Xi) 

receives an input signal and transmits this signal 

with a weightage to each of the hidden units 

Z1,Z2,……..Zp. Each hidden unit summarizes the 

inputs and its bias (Hj),then calculates the activation 

function(f1) and sends its signal Zi to each output 

unit. The output unit calculates the activation 

function(F0) with bias (V) to form the response of 

the net for the given input pattern.[30] 

              During the back propagation of errors, each 

output unit compares its computed activation Yk 

with its target value ‘tk’ to determine the error. 

Based on the RMSE, the factor ‘δk’ (k = 1,2,….m) is 

computed and used to distribute the error at the 

output unit ‘Yk’ back to all units in the hidden layer. 

Similarly the factor ‘δj’ is computed for each hidden 

unit Zj. For efficient operation of back propagation 

network, appropriate parameters should be assigned 

for training.[31] 
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4 Experiments and Results 
The proposed mechanism was implemented in the 

working platform of MATLAB (R2010a) to denoise 

the CGM data. The glucose profiles have been 

obtained from a type 1 diabetes simulator.[ 20][21] 

The anthropological parameters of the diabetes 

patient model such as age, weight, body mass index, 

disease duration etc.. for the simulator are chosen 

with heuristic approach so as to get different types 

of CGM profiles. The continuous glucose time 

series data were generated in varied ranges with 

ages between 10 to 75 and weight between 30 to 87 

kg. The calories intake and insulin dosages are 

chosen in such a way to have hypo and hyper 

glycemic occurrences. 25 data sets were obtained 

through the simulator. Each in turn were simulated 

n=20 times with Monte Carlo method. Thus, there 

are 25x20 = 500 CGM time series in total where 

each is different due to the addition of noise with 

random parameters. Monte Carlo simulation has 

been used to have statistical analysis of the results. 

The noise sequences with variance values in the 

span of 5 to 25 mg
2
/dL

2
, and different scaling and 

location parameters are  applied to the reference 

glucose profiles. The time lag for the glucose to 

traverse from blood to interstitial fluid is taken to be 

average of 6 minutes. [32] 

             With the aid of the simulator generated data 

set and real patient data obtained through the 

diabetes resource[22], our proposed work HFT filter 

comprising of neural network and extended Kalman 

filter has been evaluated with Monte Carlo method 

and validated with Root Mean Square Error 

(RMSE). The process and measurement noise 

variance are initialized with q= 0.1 and r = 0.1 

mg
2
/dL

2
 respectively. Initially, the inputs to the 

neural network are applied as vectors of size 6 x 1. 

The state vector is of size 6 x 6. The IG values from 

the sensor are given to the network’s input layer. At 

hidden layer neural nodes, the weighted inputs are 

applied to activation similar to tansigmoidal 

function. This function introduces a non linearity in 

the model. The nodes at output layer are applied 

with linear activation function. The output of the 

network depends upon the weights ‘A
n
i,j  ‘ of the 

neurons that are determined by the EKF state 

estimation and correction approach. ‘n’ represents 

n’th layer and the suffices i,j denotes the traversal of 

input from i’th node in first layer to j’th node in next 

layer. i = 1,2….Ni and j = 1,2,….Nj. In each 

iteration,  the updated variance values are analyzed. 

If the rate of change is more , then the input vector 

size is expanded automatically to capture the intra 

individual variability of SNR.  If the vector size is 

small, less number of data points are needed which 

usually gives a good approximate representation of 

the true values. Higher vector size requires more 

number of data points, which offers a good 

description of the trend in glucose profile. 

The State matrix ‘A’ and measurement vector ‘H’ 

used in the experiment as per the above discussion 

in   section 3.1 are given below. 

 

A = 

 

[ a1 a2 0 0 0 0 

1 0 0 0 0 0 

1/  0 1-(1/  0 0 0 

0 0 1 0 0 0 

0 0 0 0 c1 c2 

0 0 0 0 1 0 ]; 

 

 

 H   =     [ 0  0  1  0 1  0 ]  ; 

 

 

4.1 Qualitative Analysis            
The noisy CGM signals are applied to both Hybrid 

Filtering Technique and online denoising by KF 

method[18]. The resultant output is compared with 

the actual noise free CGM time series. RMSE 

between the filtered signal and the true glucose 

signal is calculated as the performance metric. The 

proposed HFT mechanism has been compared with 

the online Kalman filter (KF) to quantify the 

capability of HFT in denoising the combined effects 

of random noise and double Laplace noise. With the 

trials conducted with 500 simulated data sets, it is 

observed that the RMSE is minimum in HFT 

method compared with the KF in almost all the 

trials. 

               Since KF method needed 6 hours tuning 

period, we also adopted the same initial training slot 

so as to have a uniformity in the conduction of 

experiment and comparison of results. The 

denoising capability of both the methods are 

analyzed in low and high SNR regions. The HFT 

provides perfect smoothing by the intelligence of 

sensing the variations in the noise variance of 

different noise distributions. The KF method has 

been developed with only white Gaussian noise in 

mind. Therefore when tested with combination of 

WGN and Double Laplace noise, the performance of 

KF is little lower. The results clearly prove that the 

HFT mechanism is able to capture and remove the 

combined noise effects in a superior way than the 
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other methods. This shows that the artificial neural 

network in HFT is trained well with physiological 

variations of each individual and it tracks the 

glucose profile perfectly, neglecting the various 

noise effects in the CGM time series.  The denoising 

effect of HFT in a representative noisy glucose 

profile is shown in figure 8.  

 

 

      Fig : 8 Denoised CGM signal from HFT  

The efficiency of HFT can very well be 

observed with the comparison shown in figure 9. 

 

  Fig.9 Denoised CGM signal from KF , HFT 

The smoothing performance of HFT is 

corroborated with graphical representation of the 

enlarged view of time frame of  16 to 19 hours in 

figure 10 and time frame of 5 to 10 hours in figure 

11 which are of different SNR values. 

            The figures clearly shows the 

oscillations in noise variance in KF output when 

compared with HFT which gives a smoother 

output. This smoothness is due to the ability of 

the artificial intelligent neural network that is 

being trained with EKF algorithm in capturing 

the non linear dynamics of the glucose profile. 

 
 

 

Fig .10: Enlarged view of time frame 800-1200   

              minutes 

 

 
Fig.11: Enlarged view of time frame 300-600  

            minutes 

 

 

 

 

4.2 Quantitative Analysis            
The effect of denoising is quantitatively analyzed 

with three indexes as in [18] i.e RMSE(calculated 

between the denoised and real profile), the time 

delay(calculated as the time shift which minimizes 

the distance between true and denoised signal) and 

SRG,the smoothness relative gain(calculated as the 

normalized difference between energy of second 

order differences of the original and denoised CGM 

signals), in order to evaluate the regularity increase 

of the denoised with respect to original CGM 

profile. The RMSE obtained for HFT is with a mean 

of 5.5 ± 1.6 and for KF it is 8.3 ± 2.6. The delay 

introduced in the HFT is slightly higher ie. 1.9 

minutes as an average whereas  that of KF is 0.9 

minutes. This delay is due to the estimation of 

neural weights with respect to the varying noise 
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variances.  SRG is high 0.95 thanks to the 

intelligence of neural  network. The experiments 

were conducted with different scenarios and some 

representative results are listed in table 1. 

 

 

RMSE 

(mg/dL) 

 

 

Time Delay 

(min) 

 

SRG 

       

S. 

No 

 

KF 

 

HFT 

 

KF 

 

HFT 

 

KF 

 

HFT 

 

1 6.1 4.3 0.42 0.54 0.88 
0.91 

 

2 4.3 2.5 0.11 0.19 0.89 
0.92 

 

3 7.8 5.1 0.22 0.35 0.76 
0.89 

 

4 9.4 3.9 0.18 0.31 0.65 
0.95 

 

5 10.9 6.1 0.90 1.53 0.5 
0.99 

 

6 5.7 3.3 0.23 1.15 0.74 
0.89 

 

7 3.8 1.0 0.15 0.39 0.56 
0.88 

 

8 8.1 4.2 0.75 1.21 0.81 
0.95 

 

9 7.3 5.7 0.80 0.91 0.69 
0.88 

 

10 6.7 3.0 0.75 0.89 0.78 
0.90 

 

11 5.9 4.1 0.67 0.71 0.67 
0.89 

 

12 8.6 5.2 0.33 0.42 0.61 
0.87 

 

13 9.3 5.5 0.15 0.71 0.74 
0.91 

 

14 10.5 6.1 0.19 0.65 0.59 
0.87 

 

15 9.0 5.7 0.32 0.43 0.74 
0.99 

 

 

Table 1:  Performance Comparison of HFT and   

                 Kalman Filter 

 

 

5  Discussion  
Initially the approach of extended Kalman filter was 

used by Knobbe and Buckingham for the estimation 

of blood glucose and physiological parameters ( i.e 

time lag ’t’ ) [12]. Their model includes five state 

variables, each one has its own variance which have 

to be trained. Whereas Fachinetti et al., focused on 

EKF for improving the accuracy of CGM data by 

enhanced calibration in cascade to the standard  

device calibration. [17] Even though their model has 

apparently six states, the true unknown variables are 

only three. But different description of the 

variables(i.e random walk process). Here in our 

work we also adopted the random walk model 

approach for BG and sensor gain deviation 

parameter. The model order are fixed with Akaike 

information criteria and the coefficients are arrived 

with weighted least squares estimation. The 

estimated state values and their variances are sent to 

a neural network as parameters. The network is 

trained initially with these values and are altered  

gradually to meet out the required criteria of 

minimum RMSE.  This approach is a newer one  

and we claim that the updation of neural weights 

and biases by EKF procedure will perform good for 

interindividual and intra individual variability of 

SNR of CGM time series. 

 

6  Conclusion 
The Continuous Glucose Monitoring is very much 

essential for prevention of Diabetic complications. 

Perfect filtering of various types of noise 

distributions in CGM data enables it to be used for 

further processing like Hypo/Hyper glycemic alert 

generation and as control input to closed loop 

artificial pancreas. Conventional filtering methods 

are not sufficient to track the variations of  

physiological signal neglecting the noise effects. 

Our proposed work comprising the intelligent 

artificial neural network with extended Kalman filter 

algorithm has proved its success in denoising the 

CGM signal with simulated data sets. The time lag 

that occurs in the HFT  due to enormous 

computations of neural network can be nullified by 

the latest high speed processors.  
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