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Abstract: - This paper presents a Differential Evolution algorithm combined with Opposition Based Learning 
(DE-OBL) to solve Economic Load Dispatch problem with non-smooth fuel cost curves considering 
transmission losses, power balance and capacity constraints. The proposed algorithm varies from the Standard 
Differential Evolution algorithm in terms of three basic factors. The initial population is generated through the 
concept of Opposition Based Learning, applies tournament based mutation and uses only one population set 
throughout the optimization process. The performance of the proposed algorithm is investigated and tested with 
two standard test systems, the IEEE 30 bus 6 unit system and the 20 unit system. The experiments showed that 
the searching ability and convergence rate of the proposed method is much better than the standard differential 
evolution. The results of the proposed approach were compared in terms of fuel cost, computational time, 
power loss and individual generator powers with existing differential evolution and other meta-heuristics in 
literature. The proposed method seems to be a promising approach for load dispatch problems based on the 
solution quality and the computational efficiency. 
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Economic Load Dispatch, solution quality, robustness 
 
1 Introduction 
Economic Load Dispatch (ELD) is one of the most 
significant optimization problems in modern 
computer aided power system design. The ELD 
problem finds the optimum allocation of load 
among the committed generating units subject to 
satisfaction of power balance and capacity 
constraints, such that the total cost of operation is 
kept at a minimum [1]. Various methods and 
investigations are being carried out until date in 
order to produce a significant saving in the 
operational cost.  Conventional techniques like 
Lambda Iteration method [2], dynamic 
programming [3], mixed integer programming [4], 
branch and bound [5], gradient-based method, [6] 
and Newton’s method [7] were used earlier to obtain 
optimal dispatch to the ELD problems.  

In lambda iteration and gradient based methods, 
the solution to ELD is obtained by approximately 
representing the cost function for individual 
generators in terms of single quadratic function. 
These techniques require incremental fuel cost 
curves which are piecewise linear and 
monotonically increasing to find the global optimal 
solution [8]. For generators with non-monotonically 

incremental cost curves, conventional methods 
ignores or flattens out portions of incremental cost 
curve that are not continuous or monotonically 
increasing [9], [10]. Newton-based methods are not 
capable of obtaining quality solutions for ELD 
problems due to highly non-linear characteristics 
and large number of constraints. Though dynamic 
programming is capable of solving non-linear and 
discontinuous problems, it suffers from the problem 
of curse of dimensionality with large computational 
time [11].  

These limitations of conventional methods were 
overcome by modern meta-heuristic approaches like 
Artificial Neural Networks (ANN) [12], Genetic 
Algorithms (GA) [13], Tabu Search (TS) [14], 
Simulated Annealing (SA) [15], Particle Swarm 
Optimization (PSO) [16], Ant colony optimization 
(ACO) [17], Artificial immune systems (AIS) [18], 
Differential Evolution (DE) [19], Bacterial Foraging 
Algorithm (BFA) [20], Intelligent Waterdrop (IWD) 
[8] and Bio-geography based optimization (BBO) [ 
21] [ 22] algorithms. Though these methods are not 
capable in attaining global best optimal solutions to 
the ELD problems, to a great extent they produce 
near optimal solutions. Later several hybridizations 
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and improvements were imposed on the meta-
heuristics to obtain faster convergence and quality 
solutions for ELD problems. Some of these 
approaches in literature include Simulated 
Annealing – Particle Swarm Optimization (SA-
PSO) [23], Quantum-inspired version of the PSO 
using the harmonic oscillator (HQPSO) [24], Self-
organizing hierarchical particle swarm optimization 
(SOH-PSO) [25], Bacterial foraging with Nelder–
Mead algorithm (BFA-NM) [20], Adaptive Particle 
Swarm Optimization (APSO) [26], Uniform design 
with the genetic algorithm (UHGA) [27], Particle 
swarm optimization with chaotic and Gaussian 
approach (PSO-CG)  [28], Self Tuning Hybrid 
Differential Evolution (STHDE) [29], variable 
Scaling Hybrid Differential Evolution (VSHDE) 
[30], Improved genetic algorithm with multiplier 
updating (IGAMU) [31], Differential evolution with 
sequential quadratic programming (DEC-SQP) [32], 
and Improved fast evolutionary programming 
(IFEP) [33].          

Differential Evolution (DE) is one of the most 
significant optimization technique proposed by 
Storn and Price [34] to reveal consistent and reliable 
performance in non-linear and multimodal 
environment. They have proved to be efficient for 
constrained optimization problems [35]. In [19], the 
authors proposed the classical DE for solving ELD 
problems with specialized constraint handling 
mechanisms. Khamsawang et. Al.,[36] proposed the 
original DE for ELD with regenerated population 
technique and tuning of parameters. Wang et. Al., 
[29] used the concept of the 1/5 success rule of 
evolutionary strategies in the original Hybrid DE 
(HDE) to accelerate the search for the global 
optimum in ELD problems. The need for fixed and 
random scale factors in HDE was overcome by the 
work of Chiou et. Al., [30], in which a variable 
scaling factor was added to HDE thus improving the 
search for the global solution for ELD problems. 
Mariani et. Al., [32] proposed a hybrid technique 
that combined the differential evolution algorithm 
with the generator of chaos sequences and 
sequential quadratic programming technique. 
Aniruddha et. Al.,[22] offered a hybrid combination 
of DE with BBO to accelerate the convergence 
speed and to improve the quality of the ELD 
solutions.  

In this paper, we propose an Differential 
Evolution with Opposition Based Learning (DE-
OBL) algorithm for solving the ELD problems. The 
major improvements made to the exisiting standard 
DE (SDE) are: 
 Initialization –Population initialization is based 

on opposition based learning rather than the 

random method 
 Mutation – The mutant individual is selected 

based on tournament selection 
 Population – Parent and the individuals after 

reproduction are compared based on fitness and 
the better ones are maintained in one 
population, in contrast to two sets in SDE 

The idea of Opposition Based Learning (OBL) for 
DE was proposed by Rahnamayan et.Al., [37]. For a 
problem under consideration, the estimated and the 
opposite of estimated solutions are chosen and it has 
been mathematically proved that opposite numbers 
to the initial set of random numbers are more likely 
to be closer to the optimal solution rather than 
purely random solutions. The advantages of the 
proposed method are convergence speed, 
robustness, and the ease in application of opposite 
points rather than random ones. This paper presents 
the application of DE-OBL to solve the ELD 
problems of two test systems namely IEEE 30 bus 6 
unit and 20 unit systems, whose generating units are 
characterized by non-convex operational features 
including transmission losses. Solving this practical 
optimization problem leads to a minimized total 
generation cost of operating the two respective 
power systems in the presence of generator capacity 
and power balance constraints. 

 Section II of this paper provides the 
nomenclature of symbols used and section III 
presents a brief mathematical description of the 
ELD problem. The basic DE, concept of OBL, and 
proposed DE-OBL are explained in Section IV. The 
experimental results and comparative analysis for 
the two test systems are detailed in Section V. The 
conclusion and future scope are presented in Section 
VI. 
 
2 Nomenclature 

TF  Fuel cost of the system 

iF   Fuel cost of the generating unit of the 
system 

  Power generated in the  generating unit 
N     Number of generators 

iii cba ,,  Cost coefficients of the ith generator 

DP  Power demand  

LP  Transmission losses 

minGiP   Minimum value of the real power 

maxGiP   Maximum value of the real power 
min
jX  Lower bound of initial population for jth 

component 
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max
jX  Upper bound of initial population for jth 

component  
NP  Number of individuals in population P 

]1,0[rand   Uniform random number in the 
interval [0,1] 

D  Dimension 
P  Initial population  

addP   Additional population to create new 
population for DE-OBL 

newP   New population for DE-OBL  

raX , rbX  and rcX   Random individuals for 
mutation 

F  Scaling factor for mutation 
rC  Crossover constant  

)(xf  Fitness function 
 
3 ELD Problem Formulation 
The principal objective of the economic load 
dispatch problem is to find a set of active power 
delivered by the committed generators to satisfy the 
required demand subject to the unit technical limits 
at the lowest production cost. The optimization of 
the ELD problem is formulated in terms of the fuel 
cost expressed as,  
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Subject to the equality constraint,  
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Subject to the inequality constraint, 
maxmin GiGiGi PPP        (3) 

 
4 Proposed Methodology 
The basic function of the SDE algorithm and the 
concept of the Opposition based learning are 
described in this section. Followed by the brief 
introduction to the concepts, the implementation of 
DE-OBL and its application to ELD problem is 
explained in detail.  
 
4.1 Standard Differential Evolution 
The SDE algorithm is a stochastic population based 
algorithm similar to Genetic Algorithms (GA) using 
the operators; crossover, mutation and selection. 
The key dissimilarity between GA and SDE is that 
GAs rely mostly on crossover while SDE relies on 
mutation operation. The algorithm uses mutation 
operation as a search mechanism and selection 
operation to direct the search toward the prospective 

regions in the search space [34]. Mutation in SDE 
uses differences of randomly sampled pairs of 
solutions in the population and greediness may be 
embedded in it. The SDE algorithm also uses a non-
uniform crossover that can take child vector 
parameters from one parent more often than it does 
from others. By using the components of the 
existing population members to construct trial 
vectors, the recombination (crossover) operator 
efficiently shuffles information about successful 
combinations, enabling the search for a better 
solution space. An optimization problem consisting 
of N parameters can be represented by an N-
dimensional vector. In SDE, a population of Np 
solution vectors is randomly created at the 
initialization stage. This population is successfully 
improved by applying mutation, crossover and 
selection operators thus evaluating the objective 
function or the fitness function. A brief description 
of different steps of SDE is given below.  
Initialization - An initial population of candidate 
solutions is formed by assigning random values to 
each decision parameter of every individual in the 
population, dimension of each vector being N, 
according to the rule, 

 
DjandNi

XXrandXX

P

jjjji

,,2,1,,2,1

,]1,0[ minmaxmin)0(
,

 


  (4) 

Mutation – Three distinct individuals are chosen in 
random from the population such that 

ircrbra  and mutation is performed 
according to  

  P
G
rc

G
rb

G
ra

G
i NiXXFXV ,2,1,1   (5) 

where G
raX  can be any random individual among the 

selected three and F is the scaling factor.  
Crossover – The current population member G

jiX ,  
and the mutated member 1

,
G

jiV are subject to 
crossover, to generate a set of trial vectors as 
follows:  

 
 (6)

  
 

Selection – Compute the fitness function value of 
the new individual and select the best individual for 
the next generation.  
 
4.2 Opposition Based Learning 
In general, heuristic optimization methods start with 
few initial solutions in a population and try to 
improve them towards optimal solutions during 
generations. The optimization process terminates 
when some predefined criteria are satisfied. Without 
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any a priori information about the solutions to the 
problem under consideration, the optimization starts 
with a set of random presumptions. The chance of 
obtaining a fitter solution can be attained through 
the opposite solution. By monitoring the opposite 
solution, the fitter presumed solution can be chosen 
as an initial solution. In fact, according to 
probability theory, 50% of the time a presumption is 
further from the solution than its opposite 
presumption. Therefore, based on the fitness, two 
close presumption has the potential to accelerate 
convergence. This approach is not only applied to 
initial solutions but also continuously to each 
solution in the current population.  

Consider a point ),,,( 21 nxxxP  , with 
D-dimensional space consisting of candidate 
solutions. Let (.)f  be the fitness function used to 
measure the fitness of the candidate solutions. If 

Diqpx iii ,...,2,1],[  represents a real 
number, then the opposite points of ix (denoted as 

ix ) is defined as  

iiii xqpx     (7) 
Based on Eq. 

(7), ),,,( 21 nxxxP 



 represents the opposite of 

),,,( 21 nxxxP  . If )()( PfPf 


, then P  can 

be replaced with P


, otherwise the optimization 
procedure continues with P . Thus the point and its 
opposite point are evaluated simultaneously in order 
to continue the generations with the fitter 
individuals.  
 
4.4 Proposed DE-OBL for ELD 
Though SDE has emerged as one of the most 
popular technique for solving optimization problem, 
it has been observed that the convergence rate of 
SDE does not meet the expectations in case of 
multi-objective problems. Hence certain 
modifications using the concept of opposition based 
learning, and random localization are performed on 
the SDE. The proposed DE-OBL varies from the 
basic SDE in terms of the following factors: 
- DE-OBL uses the concept of opposition based 
learning in the initialization phase while SDE uses 
the uniform random numbers for initialization of 
population 
- During mutation, DE-OBL chooses the best 
individual among the three points as the mutant 
individual whereas in SDE, a random choice is 
made with equal choice of any of the three being 
selected.  

- SDE uses two sets of population – current 
population and an advanced population for next 
generation individuals. DE-OBL uses only one 
population set and the same population is updated as 
the best individuals are found.  

The steps of the proposed algorithm are 
explained below:     
Initialization: The basic step in the DE-OBL 
optimization is to create an initial population of 
candidate solutions by assigning random values to 
each decision parameter of each individual of the 
population. A population P  consisting of NP 
individuals is constructed in a random manner such 
that the values lie within the feasible bounds 

min
jX and max

jX of the decision variable, according 
to the following rule, 

 
DjandNi

XXrandXX

P

jjjji

,,2,1,,2,1

,]1,0[ minmaxmin)0(
,

 


  (8) 

where ]1,0[rand  represents a uniform random 
number in the interval [0,1], min

jX and max
jX are the 

lower and upper bounds for the jth component 
respectively, D is the number of decision variables. 
Each individual member of the population consists 
of an N-dimensional vector 

},,,{ 21
)0(

Ni PPPX  where the ith element of 
)0(

iX  represents the power output of the ith 
generating unit. 
 An additional population addP  is 
constructed using the rule,      

jijjji PXXY ,
maxmin)0(

,  ,    (9) 

where jiP , denotes the points of population P . The 

new population newP  for the proposed approach is 
formed by combining the best individuals of both 
populations P  and addP  as follows 

)0(
,

)0(
, jijinew YXP                 (10) 

Mutation: Next generation offspring are introduced 
into the population through the mutation process. 
Mutation is performed by choosing three individuals 
from the population newP  in a random manner. 
Let raX , rbX  and rcX  represent three random 
individuals such that ircrbra  , upon which 
mutation is performed during the Gth generation as,      

  P
G
rc

G
rb

G
best

G
i NiXXFXV ,2,1,1 

  (11) 

where 1G
iV is the perturbed mutated individual and 

G
bestX represents the best individual among three 

random individuals. The difference of the remaining 
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two individuals is scaled by a factor F, which 
controls the amplification of the difference between 
two individuals so as to avoid search stagnation and 
to improve convergence.  
Crossover: New offspring members are reproduced 
through the crossover operation based on binomial 
distribution. The members of the current population 
(target vector) G

jiX ,  and the members of the mutated 

individual 1
,
G

jiV are subject to crossover operation 

thus producing a trial vector 1
,
G
jiU  according to, 





 






otherwiseX
CrandifV

U G
ji

r
G
jiG

ji ,
]1,0[,

,

1
,1

,             (12) 

where rC is the crossover constant that 
controls the diversity of the population and prevents 
the algorithm from getting trapped into the local 
optima. The crossover constant must be in the range 
of [0 1]. 1rC implies the trial vector will be 
composed entirely of the mutant vector members 
and 0rC  implies that the trial vector individuals 
are composed of the members of parent vector. Eq. 
(12) can also be written as  

r
1G

ji,r
G

ji,
1G

ji, CV + )C -(1 X= U  

          (13) 
Selection: Selection procedure is performed with the 
trial vector and the target vector to choose the best 
set of individuals for the next generation. In this 
proposed approach, only one population set is 
maintained and hence the best individuals replace 
the target individuals in the current population. The 
objective values of the trial vector and the target 
vector are evaluated and compared. For 
minimization problems like ELD, if the trial vector 
has better value, the target vector is replaced with 
the trial vector as per, 

PG
i

G
i

G
i

G
iG

i Nifor
otherwiseX

XfUfifU
X ,,2,1;

,
)()(, 11




 




               (14) 
Fitness evaluation: The objective function for the 
ELD problem based on the fuel cost and power 
balance constraints is framed as 









 



N

i
LD

N

i
ii PPPikPFxf

11

)()(         (15) 

where k is the penalty factor associated with the 
power balance constraint, )( ii PF is the ith generator 
cost function for output power Pi, N is the number 
of generating units, DP is the total active power 
demand and LP represents the transmission losses.  
For ELD problems without transmission losses, 

setting k=0 is most rational, while for ELD 
including transmission losses, the value of k was set 
to 1.   
 
The pseudocode of the proposed approach is shown 
below: 
Generate an initial population P randomly with 
each individual representing the power output of the 
ith generating unit according to Eqn (8).  
Generate an additional population addP  according 
to Eqn (9) 
Obtain the new population newP as per Eqn (10) 

Evaluate fitness for each individual in newP based on 
Eqn (15) 
While termination criteria not satisfied 
 For i = 1 to NP 

Mutate random members in newP  to obtain 
1G

iV   

 Perform crossover on G
iX and 1

,
G
jiU  

 Evaluate fitness function of G
iX and 1G

iU  

 If )()( 1 G
i

G
i XfUf   
Replace existing population with 

1G
iU  

 End if 
 End for 
End While 
 
5 Experimental Results and Analysis 
The efficiency of the proposed algorithm for solving 
Economic Load Dispatch (ELD) problem has been 
tested on two different power generating units – the 
6 unit and the 20 unit system including the 
transmission losses. The performances of these 
algorithms are evaluated and compared with 
classical Lambda Iteration Method (LIM) and other 
meta-heuristics available in literature. The 
algorithms are implemented in MATLAB R2008b 
platform on i3 processor, 2.53 GHz, 4 GB RAM 
personal computer. 
 
5.1 Test System I – IEEE 30 bus system 
The IEEE 30 bus six unit test system has been 
adopted from [38], in which the fuel cost 
coefficients, and power limits are known. The 
specifications of the system for six generator test 
system are detailed in Table 1. The system is found 
to have minimum and maximum generation capacity 
of 117 MW and 435 MW, respectively. 
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Table 1 Fuel cost coefficients and power 
limits for IEEE 30 bus test system 

Unit 
no. 

ai 
($/hr) 

bi 
($/MW hr) 

ci 
($/MW2 hr) 

PGimax 
(MW) 

PGimin 
(MW) 

1 .00375 2 0 50 200 
2 .01750 1.75 0 20 80 
3 .06250 1 0 15 50 
4 .00834 3.25 0 10 35 
5 .02500 3 0 10 30 
6 .02500 3 0 12 40 

The transmission loss coefficient denoted as Bij is 
given according to Eq. (16) as,  





































000358.0000000.0000050.0000107.000030.0000027.0
000000.0000243.0000094.0000153.000002.0000002.0
000050.0000094.0000221.0000131.000015.000140.
000107.000153.000131.000417.0000004.0000009.0
000030.0000002.0000015.000004.0000181.0000103.0
000027.0000002.0000010.000009.0000103.0000218.0

ijB

               (16) 
Table 2 Parameters of DE used to implement 

ELD for six unit system 
Parameters of DE Notations 

used 
Values 

1. No. of members in 
population 

NP [20,100] 

2. Vector of lower 
bounds for initial 
population 

min
jX  [-2,-2] 

3. Vector of upper 
bounds for initial 
population 

max
jX  [2,2] 

4. Number of iterations Iter 200 
5. Dimension  D 5 
6. Crossover Rate Cr [0,1] 
7. Step size F [1,2] 
8. Strategy parameter DE/best/2/bin 9 
9. Refresh parameter R 10 
10. Value to Reach VTR 1.e-6 

 
The generalized DE-OBL parameters and their 
settings for the ELD problem are listed in Table 2. 
For optimal parameters, simulations were carried 
out for 50 trials each time varying the basic 
parameters like scale factor (F), Crossover rate (Cr) 
and population size (P). The effect of these 
parameters on the IEEE 30 bus system for a demand 
of 283.4 MW is shown below.  
 
Effect of population size 
The population size is related with the problem 
dimension and complexity. The population size was 
varied between [20,100] and the results are shown 
in Table 3. Experiments were repeated for 50 trials 
for each population size and it was found that a size 
of 80 was more consistent in obtaining the global 
optimal solution. The corresponding standard 
deviation was also computed and it was found very 
low for the population size of 80 which implies that 
most of the best solutions are very close to the 
optimal value.  
 
Effect of F and Cr 
The parameter F controls the speed and robustness 
of the search, i.e., a lower value of F increases the 
convergence rate but also increases the risk of 
getting stuck into a local optimum. On the other 
hand, if F > 1.0 then solutions tend to be more time 
consuming and less reliable. The parameter Cr 
which controls the crossover operation can also be 
thought of as a mutation rate, i.e., the probability 
that a variable will be inherited from the mutated 
individual. The role of Cr is to provide a means of 
exploiting decomposability.  
 

 

 
 

Table 3 Effect of population size on IEEE 30 bus system 

Population 
size 

Min 
Cost 

($/hr) 

Max 
cost 

($/hr) 

Mean 
cost 

($/hr) 
SD 

CPU 
Time 

(s) 

No. of 
hits for 

min 
cost 

20 794.9129 794.9212 794.9188 0.03929 1.326 43 
40 794.9129 794.9758 794.9144 0.009042 2.6988 44 
60 794.9129 794.9668 794.914 0.007702 3.8064 46 
80 794.9129 794.9273 794.9133 0.002294 4.992 49 

100 794.9129 794.9385 794.9134 0.003668 5.9592 47 
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Table 4 Influence of F and Cr on IEEE 30 bus system 

Cr 
F 

0 0.2 0.4 0.6 0.8 1 
0.1 795.733 794.9767 794.9728 794.9675 794.9773 794.91309 
0.2 795.84346 794.9654 794.9662 794.9189 794.9514 794.913626 
0.3 781.54936 794. 9628 794.9735 794.9598 794.9228 794.912854 
0.4 796.2055 794. 9422 794.9577 794.9308 794.7974 794.912863 
0.5 796.41323 794.9138 794.9423 794.9907 794.9458 794.912904 
0.6 800.1263 794.9251 794.9385 794.9522 794.9328 794.912858 
0.7 802.30951 795.1291 794.9601 794.9582 794.9185 794.91326 
0.8 796.58186 795.4591 794.9809 794.9254 794.9129 794.913771 
0.9 803.46569 797.4425 794.9190 794.9391 794.9131 794.91919 
1 813.48962 802.1391 794.9337 794.9859 794.9138 794.916266 

 
Table 5 Results using DE-OBL for IEEE 30 bus system  

PD(MW) 117 150 200 250 283.4 300 350 400 435 
PG1 (MW) 50 75.96083 116.3169 155.6807 181.6329 200 200 200 200 
PG2 (MW) 20.09735 27.23823 35.96627 44.4934 50.12272 46.33002 78.99963 80 80 
PG3 (MW) 15 15 16.14298 18.56025 20.15867 20.26121 24.39775 21.89781 50 
PG4 (MW) 10 10 10 10 10 12.44659 10.00169 29.49016 35 
PG5 (MW) 10 10 10 10 10.46971 10.06413 25.93428 30 30 
PG6 (MW) 12 12 12 12 12 12 12 40 40 

Fuel cost ($/ MW hr) 292.6102 378.5813 521.9338 680.5186 794.9129 828.6273 1027.465 1229.463 2805.379 
Total PG (MW) 117.0974 150.1991 200.4261 250.7343 284.384 301.102 351.3334 401.388 435 

PL (MW) 0.090852 0.189186 0.41102 0.714077 0.960433 1.101951 1.332519 1.387965 1.400663 
CPU Time (s) 1.54441 1.57561 1.51321 1.669211 1.466409 1.825212 1.638011 1.57561 1.56001 

 
Table 6 Comparison of results for IEEE 30 bus system 

Heuristic 
Algorithms 

Output Power (MW) Fuel 
cost 

($/hr) 

Total 
power 

PG 
(MW) 

Power 
loss 

(MW) 

CPU 
time (s) PG1 PG2 PG3  PG4  PG5  PG6  

DE-OBL 181.6329 50.12272 20.15867 10 10.46971 12 794.9129 284.384 9.30433 1.466409 
LIM 174.3403 56.89421 29.66026 10 10 12 808.9491 292.8948 9.48889 25.9063 
HGA 176.2358 49.0093 21.5023 21.8115 12.3387 12.0129 802.465 292.9105 9.5105 NA 
EP 176.1522 48.8391 21.5144 22.1299 12.2435 12 802.404 292.8791 9.4791 NA 

FGA 189.613 47.745 19.5761 13.8752 10 12 799.823 292.8093 9.6897 0.125 
PS 175.727 48.6812 21.4282 22.8313 12.0667 12 802.015 292.7344 9.3349 NA 
GA 179.367 44.24 24.61 19.9 10.71 14.09 803.699 292.917 9.5177 315 

GA-PS 175.6627 48.6413 21.4222 22.6219 12.3806 12 802.0138 292.7287 9.3286 NA 
ACO 177.863 43.8366 20.893 23.1231 14.0255 13.1199 803.123 292.8611 9.4616 20 
DE 177.3 49.18 12.24 11.19 21.23 21.74 802.23 292.88 NA NA 

SADE_ALM 176.1522 48.8391 21.5144 22.1299 12.2435 12 802.404 292.8791 9.4791 NA 
WIPSO 177.1567 48.6905 21.3013 20.9714 11.9314 12.0078 799.1665 292.0591 8.66 15.453 

ABC 176.88 49.54 21.69 2l.71 10.92 12.15 801.881 271.18 NA 8.94 
*NA – Data Not available in reported literature 

 
In this paper, an extensive study was carried 

out for selecting the most suitable DE-OBL 
parameter set for the chosen problem. In order to 
select the most suitable {F, Cr} pair, P was fixed to 
80, with a load demand of 283.4 MW, and 
experimented by varying F[0,1] and Cr[0.1,1]  

 
with a step size of 0.2 and 0.1 for F and Cr 
respectively. To assure convergence maximum 
generations (MAXGEN=500) was allowed in every 
experimental run. The results of the influence of Cr 
and F are shown in Table 4. The results suggest that 
for most of the Cr and F settings, DE is capable of 
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exhibiting better performance. However, the best 
settings are F=0.8 and Cr=0.8 corresponding to the 
minimum cost of 794.9129 $/hr.   
 
Simulation Results of Test System I 
With the best values of P = 80, F = 0.8 and Cr = 0.8 
obtained from Tables 3, and 4, the DE-OBL 
algorithm was run for different values of demand 
ranging between 117 MW and 435 MW. For each 
demand, 50 independent trials with 500 iterations 
per trial have been performed. The individual 
generator powers, minimum fuel cost, total power 
generated, power loss and the computational time 
required to obtain the simulation results are shown 
in Table 5. 
 
Comparative Analysis 
The results of the proposed DE-OBL for IEEE 30 
bus system are compared with other reported 
approaches such as Hybrid GA (HGA) [39], 
Evolutionary Programming (EP) [40], Fast GA 
(FGA) [38], Pattern Search (PS) [41], GA [42], GA-
PS [41], Ant Colony Optimization (ACO) [43], DE 
[47], Self-Adaptive Differential Evolution with 
Augmented Lagrange Multiplier method  
(SADE_ALM) [46], Weight Imrpoved PSO 
(WIPSO) [44], and Artificial Bee Colony (ABC) 
[45]. The economic dispatch obtained through the 
Lambda iteration method (LIM) was also used for 
comparison and all the results are shown in Table 6. 
The minimum cost for the demand of 283.4 MW 
reported so far in the literature was 799.1665 $/hr 
[44], compared to all others, while the proposed DE-
OBL produced a cost of 794.9129 $/hr, promisingly 
optimal and consistent. The power loss during the 
optimal dispatch was 9.30433 MW relatively less 
than all other meta-heuristic algorithms.  
 
5.2 Test System II – 20 Unit System 
In order to demonstrate the effectiveness of the DE-
OBL algorithm, the ELD benchmark consisting of 
twenty generator units [12] is selected. The details 
of fuel cost coefficients and generating limits for 
each unit are given in Table 7. The maximum and 
minimum power generating limits of the system are 
3865 MW and 1010 MW, respectively.  

The Transmission Loss Coefficient Matrix for 
calculating power loss of 20 Unit test system can be 
obtained from [12]. The various DE-OBL 
parameters used to implement ELD problem for 20 
unit generating system is similar to that of the six 
unit test system except for the dimension which is 
varied based on the size of the problem. Here D=19 
for 20 unit system and the population is usually set 
based on 10 times the D value. Notations of the 

parameters and the range of values are given in the 
Table 2. 

 
Table 7 Fuel cost coefficients and power limits 

for twenty unit test system 
Unit  
no. 

ai 
($/hr) 

bi 
($/MW 

hr) 

ci 
($/MW2 

hr) 

PGimax 
(MW) 

PGimin 
(MW) 

1 0.00068 18.19 1000 600 150 
2 0.00071 19.26 970 200 50 
3 0.00650 19.80 600 200 50 
4 0.00500 19.10 700 200 50 
5 0.00738 18.10 420 160 50 
6 0.00612 19.26 360 100 20 
7 0.0079 17.14 490 125 25 
8 0.00813 18.92 660 150 50 
9 0.00522 18.27 765 200 50 

10 0.00573 18.92 770 150 30 
11 0.00480 16.69 800 300 100 
12 0.00310 16.76 970 500 150 
13 0.00850 17.36 900 160 40 
14 0.00511 18.70 700 130 20 
15 0.00398 18.70 450 185 25 
16 0.00712 14.26 370 80 20 
17 0.0089 19.14 480 85 30 
18 0.00713 18.92 680 120 30 
19 0.00622 18.47 700 120 40 
20 0.00773 19.79 850 100 30 

 
Effect of population size 
To determine the best choice of population size for 
the twenty unit system with a demand of 2500 MW, 
the DE-OBL algorithm was run with different 
values for 30 independent trials. The minimum, 
maximum and the mean cost were determined along 
with the standard deviation and simulation time. The 
results are shown in Table 8 and the best value of 
population size was 40 resulting in minimum mean 
cost during 28 hits out of 30 trials.  
 
Effect of F and Cr 
For a population size of 40, the crossover 
probability Cr is increased from 0.1 to 0.9 in steps of 
0.1. The scale factor is increased from 0 to 1 in steps 
of 0.2 and the results are tabulated in Table 9. The 
best values of Cr and F were found to be 0.6 and 0.8 
respectively at a minimum generation cost 
518276.4353 $/hr.  

 
Simulation Results for Test System II 
The power demands are varied between [1010,3865] 
for the 20-unit system. For each value of PD, 30 
trials are performed with 500 iterations per trial, the 
results are shown in Table 10.    
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Table 8 Effect of population size on 20 unit system 

Population 
size 

Min 
Cost 

($/hr) 

Max 
cost 

($/hr) 

Mean 
cost 

($/hr) 
SD CPU 

Time (s) 

No. of 
hits for 

min 
cost 

20 518276.4 549391.4 519245.5 4695.932 1.6068 22 
40 518276.4 521859.2 518369.1 517.3652 3.12 28 
60 518276.4 539991.1 518815 3104.772 4.5708 24 
80 518276.4 537961.5 518843.8 2857.256 5.8344 26 

100 518276.4 521805 518376.6 519.0833 7.0512 27 
 

Table 9 Influence of F and Cr on 20 unit system  

Cr 
F 

0 0.2 0.4 0.6 0.8 1 
0.1 577970.6004 518276.453 518276.5673 518277.5870 518276.4668 518276.5902 
0.2 630381.2086 518277.1892 518276.5567 518276.5673 518276.4556 518276.4527 
0.3 659122.3723 580981.5683 518276.5378 518276.5433 518276.4553 518276.4658 
0.4 652899.8416 562270.4641 518276.5189 518276.4980 518276.4521 518495.8300 
0.5 650428.2807 577368.9461 518276.4890 518647.0872 518276.4478 518890.2527 
0.6 659347.8982 626230.2365 518411.8924 518276.4753 518276.4353 518276.4736 
0.7 745288.9464 703185.9761 526067.2981 518276.4389 518276.4390 518647.0872 
0.8 773636.0369 737310.0134 583023.8938 518890.2527 518276.4412 518647.0874 
0.9 785706.711 732704.1988 678034.9648 518647.0872 518276.4418 518925.9563 
1 851667.4802 800142.605 651293.8501 562128.0087 518276.4365 522158.4855 
 

Table 10 Results using DE for twenty generator test system 
PD (MW) 1010 1500 2000 2500 3000 3500 3865 
PG1 (MW) 150.0005 261.5139 439.0248 600 600 600 600 
PG2 (MW) 50 50 198.9982 200 200 200 200 
PG3 (MW) 117.8433 200 200 200 200 200 200 
PG4 (MW) 50 84.40388 200 200 200 200 200 
PG5 (MW) 50 50 160 160 160 160 160 
PG6 (MW) 20 47.36409 100 100 100 100 100 
PG7 (MW) 25 25 25 83.94886 83.94887 83.94885 83.94887 
PG8 (MW) 50 150 150 150 150 150 150 
PG9 (MW) 50 50 200 200 200 200 200 
PG10 (MW) 126.7899 150 150 150 150 150 150 
PG11 (MW) 100 100 100 100 100 100 100 
PG12 (MW) 150 150 150 150 150 150 150 
PG13 (MW) 40 40 55.85962 132.3652 132.3652 132.3652 132.3652 
PG14 (MW) 20 20 20 20 20 20 20 
PG15 (MW) 25 25 104.6126 185 185 185 185 
PG16 (MW) 20 62.68257 80 80 80 80 80 
PG17 (MW) 30 46.44614 85 85 85 85 85 
PG18 (MW) 30 120 120 120 120 120 120 
PG19 (MW) 40 40 120 120 120 120 120 
PG20 (MW) 30 100 100 100 100 100 100 
Fuel cost 

($/hr) 
35511.5 47331.11 66494.72 518276.4 1018276 1518276 1883276 

Total power 1026.065 1541.207 2065.542 2592.214 3124.486 3683.671 3865 
Power loss 

(MW) 
16.0651 41.20678 65.54228 92.21373 124.4856 183.6713 214.3426 

CPU Time (s) 1.62241 1.856412 1.747211 1.981213 1.981213 2.012413 1.918812 
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Table 11 Comparative Analysis for 20 unit test system 
Parameters DE-OBL LIM CLIM SHN BBO PSO IWD 
PG1 (MW) 600 470.6366 512.7805 512.7804 513.09 563.3155 563.32 
PG2 (MW) 200 50 169.1033 169.1035 173.35 106.5639 106.56 
PG3 (MW) 200 151.1845 126.8898 126.8897 126.92 98.7093 98.71 
PG4 (MW) 200 97.11856 102.8657 102.8656 103.33 117.3171 117.32 
PG5 (MW) 160 97.77008 113.6836 113.6836 113.77 67.0781 67.08 
PG6 (MW) 100 55.68459 73.5710 73.5709 73.07 51.4702 51.47 
PG7 (MW) 83.94886 125 115.2878 115.2876 114.98 47.7261 47.73 
PG8 (MW) 150 150 116.3994 116.3994 116.42 82.4271 82.43 
PG9 (MW) 200 68.82129 100.4062 100.4067 100.69 52.0884 52.09 
PG10 (MW) 150 150 106.0267 106.0267 100 106.5097 106.51 
PG11 (MW) 100 194.5108 150.2394 150.2395 148.98 197.9428 197.94 
PG12 (MW) 150 337.2191 292.7648 292.7647 294.02 488.3315 488.33 
PG13 (MW) 132.3652 151.1625 119.1154 119.1155 119.58 99.9464 99.95 
PG14 (MW) 20 20 30.8340 30.8342 30.55 79.8941 79.89 
PG15 (MW) 185 103.9979 115.8057 115.8056 116.45 101.525 101.53 
PG16 (MW) 80 80 36.2545 36.2545 36.23 25.8380 25.84 
PG17 (MW) 85 51.67328 66.8590 66.8590 66.86 70.0153 70.02 
PG18 (MW) 120 98.43284 87.9720 87.9720 88.55 53.9530 53.95 
PG19 (MW) 120 98.48716 100.8033 100.8033 100.98 65.4271 65.43 
PG20 (MW) 100 42.17147 54.3050 54.3050 54.27 36.2552 36.26 

Fuel cost ($/hr) 518276.4 63295.81 62456.6391 62456.6341 62456.79 59804.05 59799 
Total power PG (MW) 2592.214 2593.871 2537.662 2591.967 2592.11 2512.3343 2512.34 

Power loss (MW) 92.21373 93.83006 91.9670 91.967 92.11 92.3343 92.33 
CPU time (s) 1.981213 1232.1 33.757 6.355 6.93  3.9 

 
Comparative Analysis 
The optimal dispatch of the test case II was 
computed through the lambda iteration method. The 
results of the proposed method for 20 unit system 
are compared against the results obtained in 
reported heuristic methods like SHN [12], BBO [1], 
PSO [28], IWD [8] and the classical LIM [12]. For a 
demand of 2500 MW, the fuel cost computed 
through the proposed DE-OBL is 518276.4 $/hr, 
comparatively much lesser than other reported 
heuristic algorithms as shown in Table 11.      
 
5.3 Summary of Discussions 
The results obtained for the 6 unit and the 20 unit 
systems have proved that DE-OBL is efficient in 
producing the optimal dispatch when compared with 
several heuristic methods. The consequences of the 
output based on the solution quality, generation 
costs, robustness and efficiency are summarized in 
this section.  
Solution quality - Solution quality is justified based 
on the key optimizing parameter for ELD problems, 
the total operating cost. The results obtained for 
both the test systems have showed that the proposed  

 
DE-OBL method is suitable for producing the best 
compromise solution in terms of fuel cost. Table 6 
shows that the best competent solutions in terms of 
fuel cost and power loss for IEEE 30 bus system are 
obtained by the DE-OBL when compared with the 
classical DE [47] and other algorithms. Similarly, 
Table 11 also emphasizes that DE-OBL is more 
suitable for larger unit power systems generating 
minimum operational cost. The characteristic 
features of the DE-OBL like simple, compact 
structure, and high convergence nature has 
motivated the algorithm in attaining quality 
solutions for the ELD problems.  
Testing of robustness - The performance of any 
heuristic search based optimization algorithm is best 
judged through repetitive runs in order to compare 
the robustness and consistency of the algorithm. For 
this specific goal, the frequency of convergence to 
the minimum cost at different ranges of generation 
cost with fixed load demand is to be recorded. 
Experimental results show that the frequency of 
convergence, for a 6 unit system, using DE-OBL, 
towards the optimal fuel cost was 49 out of 50 trial 
runs for all power demands. Similarly, for the 20 
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unit system, 30 trials were repeated and it was 
observed that the convergence rate of DE towards 
the optimal cost was 28 out of 30.  
Computational efficiency - Apart from yielding the 
optimal solution, it may also be noted that DE-OBL 
yields the minimum cost at a comparatively lesser 
time of execution. It may be observed from Table 6 
and 11, that the average computational time of DE-
OBL in test systems I and II is much less than the 
compared heuristics optimization techniques. Hence 
the proposed DE-OBL is computationally more 
efficient in terms of speed of convergence. 
 
6. Conclusion 
The DE-OBL algorithm had been implemented to 
solve the ELD problems. The main motivation of 
the current work is to use the notion of opposition to 
accelerate the SDE. It has been observed from the 
results of test systems I and II, that DE-OBL is 
capable in achieving optimal quality solutions with 
speedy convergence characteristics. With high 
dimension problems such as test case II, the solution 
quality, and computational efficiency of DE-OBL 
outperforms other method. It is clear from the 
results obtained through several trials, that the 
implementation of DE-OBL overcomes the effect of 
premature convergence, exhibited by other heuristic 
optimization techniques. The idea of proposing the 
DE-OBL is to introduce a new version of opposition 
optimization through meta-heuristic algorithms like 
SDE. Possible directions for future work include 
proposing OBL concepts into mutation in SDE and 
other heuristics like GA, PSO and ACO.  
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