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Abstract: - A spectral element method for one-dimensional transient water flow in unsaturated soils 
considering the pressure head form of the Richards flow equation is developed. The analyses were 
performed for pressure head flow in horizontal, upward and downward vertical unsaturated soils and 
for various hydraulic characteristics. The spectral element method combines the flexibility of the finite 
element method with the accuracy of spectral techniques. The spatial discretized equation was 
performed using the Galerkin weighted formulation combined with Legendre Gauss-Lobatto 
quadrature sets, whereas the temporal discretization is achieved by the Picard iteration procedure for 
soil moisture linearization combines with fully implicit time three-level scheme and two-level scheme 
with/without standard chord slope. The spectral element predictions compare well with exact results 
for pressure head flow in horizontal, upward and downward vertical unsaturated soils. The spectral 
element method results also compare favorably with the finite element method with mass-lumped 
approximation. Numerical experiments indicated that the spectral element method with standard chord 
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slope schemes is mass conservative: the mass balance error is zero for different soil types considered. 
The numerical experiments also show that the spectral element method with three level scheme is 
more efficient that if using standard two-level scheme. Finally, it is found that the spectral element 
method is a convergent algorithm, which maintains high accuracy and less computational times. The 
present formulation of the spectral element method for unsaturated flow problem is original and it is 
of special importance for soil hydrology and groundwater management. 
 

Key-Words: - Hydraulic characteristics, numerical experiments, Richards flow equation, soil moisture 
prediction, spectral element method, unsaturated soils 
 
1 Introduction 
Water flow processes cover some of the most 
important challenges of our time because it is the 
keys to acquire general knowledge on groundwater 
movement, quantify limits, soil-atmosphere 
processes such as rainfall, interception, infiltration, 
soil moisture redistribution and root water uptake 
[1-3]. Flow processes can be conveniently classified 
in two groups: saturated flows for water-table and 
unsaturated flows above the water-table. The water 
flow processes that occur in unsaturated soil 
substantially contribute to a wide variety of 
hydrologic processes [4-6]. In fact, water flow in 
unsaturated soil is greatly influenced by unsaturated 
hydrostatics phenomena such as water content, 
pressure gradient, retention and energy transfer. It is 
also influenced by unsaturated hydrodynamics 
phenomena named diffuse flow or infiltration and 
preferential flow [7-11]. Study of this phenomenon 
requires proper modeling of the governing equations 
and constitutive relation involves.   

Flow process through unsaturated soil is 
governed by the fundamental Richards equation 
[12,13]. This equation is commonly presented in 
three forms: pressure, moisture and mixed pressure-
moisture partial differential forms [14,15]. The 
pressure-based Richards flow equation is considered 
to be more useful for practical problems since it 
facilitates modeling of soil systems that are locally 
saturated and it provides a state variable that is 
always continuous in space [16,17]. However, this 
flow equation can lead to large mass balance errors 
[15,16,18]. This problem, which has been linked to 
the expansion of the storage term, can be 
circumvented by decreasing the variability of the 
storage coefficient during the time step within an 
element space size, evaluates the storage coefficient 
as an effective, or average value over element and 
the duration of the time step, or when equivalence in 
the expansion of the storage term is maintained in 
the discretized form. These principles have been 
applied successful using finite difference (FDM) 

method [16], finite element (FEM) method [17-21] 
and finite volume (FVM) method [22].  

In the current research, a spectral element 
method (SEM) is presented to predict the pressure 
head in unsaturated porous soils characterized by 
variables moisture content capacity and hydraulic 
conductivity, which induce nonlinearity effects in 
the mathematical model. In developing the method, 
the spatial discretized equation is performed using 
the Galerkin weighted formulation combined with 
Legendre Gauss-Lobatto quadrature sets, whereas 
the temporal discretization is achieved by the Picard 
iteration procedure for soil moisture linearization 
combines with fully implicit time schemes 
with/without standard chord slope. The SEM was 
first proposed by Patera [23] for finding numerical 
solutions of the incompressible fluid flow equations. 
It is an approach with dual features that combines 
the flexibility of the finite element method with the 
accuracy of spectral techniques.  In fact, FEM has 
been widely applied in complex engineering 
domains because it is flexible to capture solution for 
complex geometry problems [24,25]. However low 
order FEM often presents some weaknesses to 
perfectly capture some complex solution 
characteristics [24-27]. The spectral element 
technique has been successfully developed based on 
Chebyshev polynomials and Lagrange interpolation 
combined with Gauss-Lobatto-Legendre quadrature 
to improve computational efficiency of finite 
element methods. The use of the Gauss Lobatto 
quadrature approach leads to a diagonal mass matrix 
which greatly accelerates the convergence rate of 
the method [26]. It has been mostly used in many 
branches of science and engineering especially for 
linear and homogeneous problems. Komatitsch et al. 
[27] presented a spectral element solution of the 
wave propagation near fluid interface. Their study 
emphasized on the simplicity and the efficiency of 
the method to deal with strong topography at the 
fluid-solid interface. Shamsi [28] provided a 
methodology with the modified pseudo spectral 
scheme for accurate solution of Bang-Bang optimal 
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control problems. Ben-yu Guo et al. [29] considered 
the problem of Dirac equation and provided a 
solution with Hermite pseudo-spectral approach. 
Chen et al. [30] solved the problem of free surface 
viscous flows using Pseudospectral element model. 
Dehghan and Sabouri [31] presented a solution to 
the predator-prey system with interacting 
populations. El-Baghdady et al. [32] also studied the 
convection-diffusion equation, one dimensional 
parabolic advection-diffusion equation with constant 
parameter subject to a given initial and boundary 
conditions. Minjeaud and Pasquetti [33] 
demonstrated the development of the spectral 
element schemes for high order partial differential 
equations. The SEM has been shown to be very 
attractive in terms of accuracy, computational 
efficiency, and suitability to parallel computation. A 
number of software packages such as Semtex, 
Nektar++, have been developed [34] to facilitate the 
application of the SEM technique in solving 
problems. Although these solvers cover an 
important range of application areas, they are 
limited with the issue of estimating the parameters 
of equations.  Despite the prominence use of the 
method in physical and industrial context, the 
developments of the SEM have been mostly applied 
to resolve problems with constant and linear 
coefficients of permeability.  

The focus of the present work is the development 
of the SEM to one-dimensional transient water flow 
in unsaturated soil with variable coefficients, which 
to the best of the authors’ knowledge has never been 
formulated before in the literature. Nonlinear 
problems are generally solved by iterative schemes, 
and the standard SEM does not support directly 
adaptive polynomial order during time 
advancement. The present study, managed to 
provide an accurate, efficient and robust solution 
method that guarantees convergence rate and mass 
balance. Overall, the one-dimensional pressure head 
form of the Richards flow equation is considered for 
the study. The analysis has been limited to one-
dimensional transient water flow in unsaturated soils 
in order to focus attention on the efficiency of the 
SEM for a physical model general used for soil 
moisture prediction. The computational expense and 
risk of non-convergence of the numerical strategy 
due to nonlinearity of capacity and hydraulic 
conductivity terms, and the presence of both 
diffusion and advection are the major difficulty 
presented in the moisture flow equation. The 
capability of the spectral element method to rapidly 
conserve mass is investigated for different soil 
types, flow orientations, initial and boundary 
conditions, and for three time steps discretization: 

two-level with and without the standard chord slope 
(SCS) and three- level finite difference schemes.  
 
 
2 Mathematical modeling 
The computational complexity in analyzing multi-
dimensional transient water flow in unsaturated soil 
with variable coefficients is enormous.  For this 
reason, idealized transport models have been 
constructed which include simplifying assumptions. 
The one-dimensional transient water flow in 
unsaturated soil with variable coefficients is 
considered in this study.  This problem is of great 
interest in many soil sciences, civil engineering and 
remote sensing problems [35-37]. In addition, 
accurate predictions of the one-dimensional 
transient water flow in unsaturated soil with variable 
coefficients using improved method as dedicated in 
this work may be useful for non-soil mechanics 
experts such as biologist, physiologist and 
agronomist in designing remote sensing models for 
a better knowledge of soil characteristics. It can also 
set the basis to help guide the development of more 
comprehensive models and codes of the complete 
unsaturated flow problem. 
 
 
2.1 Water flow in unsaturated soil 
The one-dimensional pressure equation used in this 
study was derived by considering the hydraulic 
properties such as the hydraulic conductivity and the 
specific water capacity that depend strongly on the 
water content. However, the fluid is assumed to be 
incompressible and stable. The Darcy’s law [38] and 
the continuity equation are further considered in the 
development of the model. Thus, assuming that the 
air phase and the vapor transfer have negligible 
effects on the net water transfer, the equations for 
incompressible vapor flow and liquid flow can be 
combined and reduced to a generalized equation. 
Therefore, the one-dimensional water flow in 
isothermal unsaturated soil may be written in terms 
of the pressure head as [15] 

  𝐶𝐶(𝛹𝛹)
𝜕𝜕𝛹𝛹
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾(𝛹𝛹)

𝜕𝜕𝛹𝛹
𝜕𝜕𝜕𝜕
� + 𝜆𝜆

𝜕𝜕𝐾𝐾(𝛹𝛹)
𝜕𝜕𝜕𝜕

         (1) 
where 𝛹𝛹 is the pressure head (𝑐𝑐𝑐𝑐), 𝜕𝜕 is the time (𝑠𝑠), 
z denotes the distance from the soil surface 
downward (cm), 𝐶𝐶 is the specific water content 
capacity (𝑐𝑐𝑐𝑐−1), 𝐾𝐾 is the hydraulic conductivity 
(𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠−1). The parameter 𝜆𝜆 is the unitless 
parameter which determines the direction of soil 
moisture flow; its value taken -1, 0 and 1 for 
downward, horizontal and upwards flow directions, 
respectively.  
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Boundary conditions for the solution of the 
unsaturated water flow equation, Eq. (1), are given 
by 
𝛹𝛹(𝜕𝜕 = 0, 𝜕𝜕) = 𝛹𝛹0                                                   (2) 
𝛹𝛹(𝜕𝜕 = 𝐿𝐿, 𝜕𝜕) = 𝛹𝛹𝐿𝐿                                                   (3) 

and the initial condition is  
𝛹𝛹(𝜕𝜕, 𝜕𝜕 = 0) = 𝛹𝛹𝑖𝑖                                                    (4) 

 
 
2.1 Hydraulic properties of unsaturated soil 
The specific water content capacity and the 
conductivity are needed to solve the water flow 
equation. The specific water content capacity is 
linked to the soil moisture content by  

  𝐶𝐶(𝛹𝛹) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝛹𝛹

                                                         (5) 
where 𝑑𝑑 is the soil moisture content (𝑐𝑐𝑐𝑐3 𝑐𝑐𝑐𝑐3⁄ ). 
Several models of the hydraulic conductivity and 
soil moisture content have been proposed in the 
literature for the hydraulic conductivity including: 
 
2.1.1 Gardner [39] model  
This author proposed soil characteristics suitable for 
analytical solution of the water flow in saturated and 
unsaturated soils. The soil moisture content and the 
soil hydraulic conductivity are expressed, 
respectively, as [39,40]  
𝑑𝑑 = 𝑑𝑑𝑟𝑟 + (𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑟𝑟)𝑒𝑒𝜈𝜈𝛹𝛹                                        (6) 
𝐾𝐾(𝛹𝛹) =  𝐾𝐾𝑠𝑠𝑒𝑒𝜈𝜈𝛹𝛹                                                      (7) 

where 𝐾𝐾𝑠𝑠 is the saturated hydraulic conductivity 
(𝑐𝑐𝑐𝑐 𝑠𝑠)⁄ , 𝑑𝑑𝑠𝑠  is the saturated water content 
(𝑐𝑐𝑐𝑐3 𝑐𝑐𝑐𝑐3)⁄ , 𝑑𝑑𝑟𝑟  is the residual water content 
(𝑐𝑐𝑐𝑐3 𝑐𝑐𝑐𝑐3)⁄ , and 𝜈𝜈 is the pore size distributed 
parameter. 
 
2.1.2 Haverkamp et al. [41] model 
The soil moisture content and the soil hydraulic 
conductivity are expressed in term of soil pressure 
head using empirical relations  

𝑑𝑑(𝛹𝛹) =
𝛼𝛼(𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑟𝑟)
𝛼𝛼 + |𝛹𝛹|𝛽𝛽 + 𝑑𝑑𝒓𝒓                                         (8) 

𝐾𝐾(𝛹𝛹) = 𝐾𝐾𝑠𝑠
𝜌𝜌

𝜌𝜌 + |𝛹𝛹|𝛾𝛾                                                   (9) 

where 𝛼𝛼,  𝛽𝛽,  and ã are fitting parameters while 𝜌𝜌 is 
the soil bulk density (𝑔𝑔 𝑐𝑐𝑐𝑐3)⁄ . 
 
2.1.3 van Genuchten [42] model 
The soil properties were approximated as follow 
𝑑𝑑(𝛹𝛹) =

𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑟𝑟
[1 + (𝛼𝛼|𝛹𝛹|)𝑛𝑛 ]𝑐𝑐 + 𝑑𝑑𝒓𝒓                               (10) 

𝐾𝐾(𝛹𝛹)
𝐾𝐾𝑠𝑠

=
{1 − (𝛼𝛼|𝛹𝛹|)𝑛𝑛−1[1 + (𝛼𝛼|𝛹𝛹|)𝑛𝑛 ]−𝑐𝑐 }2

[1 + (𝛼𝛼|𝛹𝛹|)𝑛𝑛 ]𝑐𝑐/2     (11) 

 
 

3 Spectral element discretization 
The spectral element method is a numerical method 
used to discretize ordinary or partial differential 
equations. The general procedure for the spectral 
element analysis follows three major steps [27,33]: 
i) transformation of the partial differential equation 
to an integral equation with appropriate orthogonal 
basis functions, ii) division of the computational 
domain into a series of spectral elements and 
approximate the field variables over each sub-
domain, iii) assemblage of the contribution of each 
sub-domain into a global system of first order 
ordinary differential equations which should then be 
discretized in time. In the present work, the spectral 
element method combines the Galerkin weighted 
formulation with Gauss-Lobatto quadrature and 
Gauss-Lobatto Lagrange (GLL) basis functions that 
uses the quadrature points as nodes. The integration 
over an element using the Legendre-Gauss-Lobatto 
integration rule generates the exact diagonal mass 
matrix which greatly simplifies the implementation 
algorithm. The governing partial differential 
equation of water flow in unsaturated soil, Eq. (1) is 
then solved using the spectral element method. In 
this method, the pressure head is represented as 
high-order orthogonal polynomials for interpolation 
points as follows [26,43]  

𝛹𝛹(𝜕𝜕, 𝜕𝜕) ≈ � 𝛹𝛹𝑖𝑖

𝑁𝑁+1

𝑖𝑖=1

(𝜕𝜕)𝛷𝛷𝑖𝑖(𝜕𝜕)                                  (12) 

where 𝑁𝑁 is the total number of elements in the 
spectral element domain, 𝛷𝛷𝑖𝑖(𝜕𝜕) are the Lobatto 
polynomials and 𝛹𝛹𝑖𝑖(𝜕𝜕) are the values of the pressure 
head at node 𝑖𝑖 which are obtained by the Galerkin 
weighting formulation. The Galerkin weighting 
formulation of Eq. (1) over the entire solution 
region can be written as 

� �𝐶𝐶
𝜕𝜕𝛹𝛹
𝜕𝜕𝜕𝜕

−
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾

𝜕𝜕𝛹𝛹
𝜕𝜕𝜕𝜕
� − 𝜆𝜆

𝜕𝜕𝐾𝐾
𝜕𝜕𝜕𝜕

 �𝛷𝛷𝑖𝑖(𝜕𝜕) 
𝐿𝐿

0
𝑑𝑑𝜕𝜕

= � 𝑅𝑅(𝛹𝛹)𝛷𝛷𝑖𝑖(𝜕𝜕)𝑑𝑑𝜕𝜕
𝐿𝐿

0
            (13) 

where 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and 𝑅𝑅(𝛹𝛹) is the residual that 
measures the error introduced during the spectral 
discretization. The integral of Eq. (13) can be 
broken into a sum of elemental integrals and it is 
rewritten as 

�� �𝐶𝐶𝑙𝑙
𝜕𝜕𝛹𝛹𝑙𝑙

𝜕𝜕𝜕𝜕
−
𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝐾𝐾𝑙𝑙 𝜕𝜕𝛹𝛹
𝑙𝑙

𝜕𝜕𝜕𝜕 �
− 𝜆𝜆

𝜕𝜕𝐾𝐾𝑙𝑙

𝜕𝜕𝜕𝜕

𝜕𝜕2
𝑙𝑙

𝜕𝜕1
𝑙𝑙

𝑁𝑁

𝑙𝑙=1

− 𝑅𝑅�𝛹𝛹𝑙𝑙��𝛷𝛷𝑖𝑖(𝜕𝜕) 𝑑𝑑𝜕𝜕 = 0       (14) 

where 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 , 𝜕𝜕2
𝑙𝑙  and 𝜕𝜕1

𝑙𝑙  are the boundary points 
of the 𝑙𝑙th element of size ℎ𝑙𝑙 = 𝜕𝜕2

𝑙𝑙 − 𝜕𝜕1
𝑙𝑙 . The pressure 
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head in the 𝑙𝑙th element local approximation is next 
represented as high-order Lobatto polynomials for 
interpolation points as  

𝛹𝛹𝑙𝑙(𝜉𝜉, 𝜕𝜕) ≈�𝛹𝛹𝑗𝑗𝑙𝑙
𝑁𝑁𝑒𝑒

𝑗𝑗=1

(𝜕𝜕)𝛷𝛷𝑗𝑗 (𝜉𝜉)                                     (15) 

where Ø𝑗𝑗𝑙𝑙(𝜕𝜕) is the 𝑗𝑗th local time dependent 
unknown coefficients, 𝛷𝛷𝑗𝑗 (𝜉𝜉) are the jth Lobatto 
polynomial and 𝑁𝑁𝑒𝑒  is the number of nodes per 
element. The map function from the 𝑙𝑙th element to 
the reference interval [-1, 1] and its inverse are 
given by affine transformations [28]  
𝜕𝜕(𝜉𝜉) = ��𝜕𝜕2

𝑙𝑙 + 𝜕𝜕1
𝑙𝑙 � + �𝜕𝜕2

𝑙𝑙 − 𝜕𝜕1
𝑙𝑙 �𝜉𝜉� 2⁄  ,     𝜉𝜉(𝜕𝜕)

= 2 �𝜕𝜕 − 𝜕𝜕1
𝑙𝑙 � ℎ𝑙𝑙⁄ − 1,              (16) 

with 𝜉𝜉 ∈ [−1,1]. Considering Eqs. (16) for the 𝑙𝑙th 
element of Eq. (14) yields the following integral  

� �
ℎ𝑙𝑙
2
𝐶𝐶𝑙𝑙
𝜕𝜕𝛹𝛹𝑙𝑙

𝜕𝜕𝜕𝜕
−

2
ℎ𝑙𝑙

𝜕𝜕
𝜕𝜕𝜉𝜉 �

𝐾𝐾𝑙𝑙 𝜕𝜕𝛹𝛹
𝑙𝑙

𝜕𝜕𝜉𝜉 �
1

−1

− 𝜆𝜆
𝜕𝜕𝐾𝐾𝑙𝑙

𝜕𝜕𝜉𝜉
 �𝛷𝛷𝑖𝑖(𝜉𝜉) 𝑑𝑑𝜉𝜉

=
ℎ𝑙𝑙
2
� 𝑅𝑅�𝛹𝛹𝑙𝑙�𝛷𝛷𝑖𝑖(𝜉𝜉)𝑑𝑑𝜉𝜉

1

−1
                           (17) 

The problem is reduced to determine the unknown 
vector such that the residual 𝑅𝑅�𝛹𝛹𝑙𝑙� is minimized. 
Mathematically, the residual 𝑅𝑅�𝛹𝛹𝑙𝑙� must be 
orthogonal to the weighting functions. Introducing 
Eq. (15) into Eq. (17) and applying the Green 
transformation of the second term of the left hand 
side, the discrete Galerkin weighting formulation for 
internal nodes of the 𝑙𝑙th element obtained by 
canceling the boundary nodes term is 

�𝛹𝛹𝑗𝑗𝑙𝑙(𝜕𝜕)
𝑁𝑁𝑒𝑒

𝑗𝑗=1

2
ℎ𝑙𝑙
� 𝐾𝐾𝑙𝑙 𝜕𝜕𝛷𝛷𝑗𝑗 (𝜉𝜉)

𝜕𝜕𝜉𝜉

1

−1

𝜕𝜕𝛷𝛷𝑖𝑖(𝜉𝜉)
𝜕𝜕𝜉𝜉

𝑑𝑑𝜉𝜉

+ �
𝜕𝜕𝛹𝛹𝑗𝑗𝑙𝑙(𝜕𝜕)
𝜕𝜕𝜕𝜕

𝑁𝑁𝑒𝑒

𝑗𝑗=1

ℎ𝑙𝑙
2
� 𝐶𝐶𝑙𝑙𝛷𝛷𝑗𝑗 (𝜉𝜉)𝛷𝛷𝑖𝑖(𝜉𝜉)𝑑𝑑𝜉𝜉 

1

−1

= 𝜆𝜆�
𝜕𝜕𝐾𝐾𝑙𝑙

𝜕𝜕𝜉𝜉

1

−1
𝛷𝛷𝑖𝑖(𝜉𝜉)𝑑𝑑𝜉𝜉                  (18) 

Finally, the discrete Galerkin weighting formulation 
for internal nodes of the flow equation at any time 
can be written in a compact matrix form as 

[𝑨𝑨] + [𝑩𝑩]
𝑑𝑑𝜳𝜳
𝑑𝑑𝜕𝜕

𝜳𝜳 = 𝑭𝑭                                             (19)  
where 𝜳𝜳 is the vector of local pressure head, [𝑨𝑨] is 
the conductance matrix, [𝑩𝑩] is the storage matrix, 𝑭𝑭 
is the global force vector. The element diffusion 
matrix, the stiffness mass matrix and the driving 
vector force are given respectively, by  

𝐴𝐴𝑖𝑖𝑗𝑗𝑙𝑙 =
2
ℎ𝑙𝑙
� 𝐾𝐾𝑙𝑙 𝜕𝜕𝛷𝛷𝑗𝑗 (𝜉𝜉)

𝜕𝜕𝜉𝜉

1

−1

𝜕𝜕𝛷𝛷𝑖𝑖(𝜉𝜉)
𝜕𝜕𝜉𝜉

𝑑𝑑𝜉𝜉              (20𝑎𝑎)  

𝐵𝐵𝑖𝑖𝑗𝑗𝑙𝑙 =
ℎ𝑙𝑙
2
� 𝐶𝐶𝑙𝑙𝛷𝛷𝑗𝑗 (𝜉𝜉)𝛷𝛷𝑖𝑖(𝜉𝜉)𝑑𝑑𝜉𝜉

1

−1
                      (20𝑏𝑏)  

𝐹𝐹𝑖𝑖𝑙𝑙 = 𝜆𝜆�
𝜕𝜕𝐾𝐾𝑙𝑙

𝜕𝜕𝜉𝜉
𝛷𝛷𝑖𝑖(𝜉𝜉)𝑑𝑑

1

−1
𝜉𝜉                             (20𝑐𝑐) 

The degenerate parabolic Richards equation is well 
known to have solutions with low regularity. In such 
case, low order finite elements are suitable for its 
discretization and consequently the integrals of Eqs. 
(20), are computed with a number of nodes 𝑁𝑁𝑒𝑒 = 2 
per element and using the Gauss-Lobatto quadrature 
rule. This leads to the use of linear interpolation 
shape functions 𝛷𝛷𝑖𝑖(𝜉𝜉) = (1 − 𝜉𝜉) 2⁄       and 𝛷𝛷𝑗𝑗 (𝜉𝜉) =
(1 + 𝜉𝜉) 2⁄  at the first and the end-nodes, 
respectively [28,31]. The Eqs. (20) are performed 
efficiently if the capacity and conductivity are 
written in discretized forms as  

𝐶𝐶𝑙𝑙(𝜉𝜉) ≈�𝐶𝐶𝑖𝑖𝑙𝑙
𝑁𝑁𝑒𝑒

𝑖𝑖=1

𝛷𝛷𝑖𝑖(𝜉𝜉)                                          (21𝑎𝑎) 

𝐾𝐾𝑙𝑙(𝜉𝜉) ≈�𝐾𝐾𝑖𝑖𝑙𝑙
𝑁𝑁𝑒𝑒

𝑖𝑖=1

𝛷𝛷𝑖𝑖(𝜉𝜉)                                          (21𝑏𝑏) 

Upon computing of the global diffusion matrix 
[𝑨𝑨], the global mass matrix [𝑩𝑩] and the global force 
vector 𝑭𝑭 by assembling the elemental values defined 
in Eq. (19), a semi-discrete tridiagonal head-based 
system of N nonlinear algebraic equations is 
obtained. In general, the mass matrix [B] in the 
discretized head-based equation causes a major 
problem such as a possible numerical oscillation and 
convergence problem when the distributed mass 
matrix is used to approximate Eq. (19). Moreover, it 
has been demonstrated that the diagonal mass 
cumulative results are superior to the mass 
distributed one in the pressure-based equation. In 
fact, the lumped mass scheme converges rapidly. 
The mass lumping formulation provides an excellent 
mass balance error compares to the solution 
obtained using the mass distributed matrix in 
pressure based which can provide different 
numerical solutions [15, 44]. Therefore, the mass 
lumping approach is used in this study. Different 
temporal discretization schemes of Eq. (19) can be 
adopted and discuss in the literature [45, 46]. Three 
temporal discretization schemes will be considered 
in this study: two level finite difference scheme with 
and without standard chord slope (SCS) and three- 
level finite difference scheme. These finite 
differential schemes will be coupled with the Picard 
iteration method which involves sequential 
prediction of parameter and variables at the latest 
known. For the two-level forward finite difference 
scheme also referred in the literature as the Euler or 
the tangent scheme, the finite differential of Eq. (19) 
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gives 

[𝑨𝑨]𝜳𝜳𝑘𝑘+1,𝑐𝑐+1 + [𝑩𝑩] �
𝜳𝜳𝑘𝑘+1,𝑐𝑐+1 −𝜳𝜳𝑘𝑘

∆𝜕𝜕 � = 𝑭𝑭      (22) 

where 𝑘𝑘 represents the time level, 𝑐𝑐 is the previous 
iteration level and ∆𝜕𝜕 = 𝜕𝜕𝑘𝑘+1 − 𝜕𝜕𝑘𝑘  is the time step 
between the latest and the old time. For two-level 
finite difference scheme which presents a first order 
truncation error, two formulations of the element 
specific moisture capacity are considered. In the 
first formulation designed as two-level scheme, the 
specific moisture capacity is computed analytically 
and evaluated at the latest time and old Picard 
iteration. For the second formulation designed as the 
standard chord slope (SCS), the specific moisture 
capacity at the latest time and old Picard iteration is 
evaluated by the relation  

𝐶𝐶𝑘𝑘+1,𝑐𝑐 =
𝑑𝑑𝑘𝑘+1,𝑐𝑐 − 𝑑𝑑𝑘𝑘

𝛹𝛹𝑘𝑘+1,𝑐𝑐 − 𝛹𝛹𝑘𝑘                                       (23) 
It can be noted that the standard chord slope uses 
moisture content 𝑑𝑑𝑘𝑘+1,𝑐𝑐  and pressure-head 𝛹𝛹𝑘𝑘+1,𝑐𝑐  
at the latest time and previous Picard iteration. For 
the three- level finite difference scheme known as 
the second order truncation error, the specific 
moisture capacity is evaluated at the latest time and 
previous Picard iteration. The implicit discretized 
equation is then expressed as 

[𝑨𝑨]{𝜳𝜳}𝑘𝑘+1,𝑐𝑐+1

+ [𝑩𝑩] �
3𝜳𝜳𝑘𝑘+1,𝑐𝑐+1 − 4𝜳𝜳𝑘𝑘 + 𝜳𝜳𝑘𝑘−1

2∆𝜕𝜕 � = 𝑭𝑭      (24) 

In order to solve Eqs. (22) and (24) using the 
Picard iteration method, the pressure head variable 
is transformed using the dependent variable 
 𝛿𝛿𝑗𝑗
𝑘𝑘 ,𝑐𝑐 = 𝛹𝛹𝑗𝑗

𝑘𝑘+1,𝑐𝑐+1 −𝛹𝛹𝑗𝑗
𝑘𝑘+1,𝑐𝑐  and the obtained 

equations can be written in the matrix form 
  𝑴𝑴𝑐𝑐𝛿𝛿𝑐𝑐 = 𝑹𝑹𝑐𝑐                                                          (25) 

where 𝑴𝑴 is the tridiagonal matrix and 𝑹𝑹 the residual 
vector. In the computation procedure, known 𝛹𝛹𝑗𝑗𝑘𝑘  or 
𝛹𝛹𝑗𝑗
𝑘𝑘+1,𝑐𝑐  is assigned to the unknown pressure head 

 𝛹𝛹𝑗𝑗
𝑘𝑘+1,1 and Eq. (25) is solved to obtain 𝛹𝛹𝑗𝑗

𝑘𝑘+1,𝑐𝑐+1. 
Then, the moisture content 𝑑𝑑𝑗𝑗

𝑘𝑘+1,𝑐𝑐+1 can be 
calculated using the fitting procedure. The pressure 
head 𝛹𝛹𝑗𝑗

𝑘𝑘+1,𝑐𝑐+1 is iteratively updated using the 
formula Ø𝑗𝑗

𝑘𝑘+1,𝑐𝑐+1 = 𝛹𝛹𝑗𝑗
𝑘𝑘+1,𝑐𝑐 +𝜛𝜛𝛿𝛿𝑗𝑗

𝑘𝑘 ,𝑐𝑐 , where 𝜛𝜛  is 
the weighting factor which is taken equal to 1 in this 
study. The convergence is achieved when the 
difference between pressure head values at two 
consecutive iteration levels satisfies a given 
criterion max� 𝛹𝛹𝑘𝑘+1,𝑐𝑐+1 −𝛹𝛹𝑘𝑘+1,𝑐𝑐� < 0.01 𝑐𝑐𝑐𝑐. 
The mass balance error of the proposed spectral 
element method is evaluated by 

𝑀𝑀𝐵𝐵𝑀𝑀(𝜕𝜕) = 100|1−𝑀𝑀𝐵𝐵(𝜕𝜕)|                            (26) 

where 𝑀𝑀𝐵𝐵(𝜕𝜕) is the mass balance which can be 
expressed as [15, 18]  
𝑀𝑀𝐵𝐵(𝜕𝜕) = (𝑀𝑀𝜕𝜕 −𝑀𝑀0) �𝐹𝐹∆𝜕𝜕

∆𝜕𝜕

�                             (27) 

Here 𝑀𝑀𝜕𝜕  is the mass storage at time 𝜕𝜕, 𝑀𝑀0 represents 
the initial mass storage at the initial time, and 𝐹𝐹∆𝜕𝜕  
defined the mass entering the computation domain 
during the time step ∆𝜕𝜕. 
 

  
4 Result and discussion 
The cases studied consist of water flow through soil 
layers full of heterogeneities which can be 
approximated to one-dimensional transient flow 
processes. The flow can be oriented in the 
horizontal (𝜆𝜆 = 0), the vertical upward (𝜆𝜆 = 1), and 
the vertical downward (𝜆𝜆 = −1) directions. The 
initial and boundary conditions are assumed to be 
constant pressure head. This problem can be 
characterized by Eqs. (1-4) and the spectral element 
method as formulated in section 3 was used for the 
analysis. The integrations over an element were 
accomplished using two end-nodes upon the 
Legendre Gauss-Lobatto quadrature rule that 
generates the exact diagonal mass matrix which 
greatly simplifies the implementation algorithm. 
The spectral element method spatial domain was 
discretized in 𝑁𝑁 = 41 nodes and numerical 
predictions were implemented in MATLAB 
computer language in a machine equips with an 
Intel(R) Core™ i3, 2.40 GHz system. 

For the primary problem, the moisture content 
and the hydraulic conductivity of unsaturated soil 
are given by Gardner [39] hydraulic characteristics 
defined by Eqs. (6) and (7). The soil is composed of 
sand and the corresponding data of this problem are 
 𝛼𝛼 = 1.611 × 106, 𝛽𝛽 = 3.96, 𝜌𝜌 = 1.175 × 106, 𝛾𝛾 =
4.74, 𝑑𝑑𝑠𝑠 = 0.368, 𝑑𝑑𝑟𝑟 = 0.102, and 𝐾𝐾𝑠𝑠 =
0.00944𝑐𝑐𝑐𝑐/𝑠𝑠. The initial condition for a 40 cm soil 
depth was considered 𝛹𝛹(𝜕𝜕, 𝜕𝜕 = 0) = 𝛹𝛹𝑖𝑖 =
−61.5𝑐𝑐𝑐𝑐. The applied boundary conditions were 
inhomogeneous with the top of the soil column  
𝛹𝛹(𝜕𝜕 = 0𝑐𝑐𝑐𝑐, 𝜕𝜕) = 𝛹𝛹0 = −20.7𝑐𝑐𝑐𝑐 and the bottom of 
the soil level 𝛹𝛹(𝜕𝜕 = 40𝑐𝑐𝑐𝑐, 𝜕𝜕) = 𝛹𝛹𝐿𝐿 = −61.5𝑐𝑐𝑐𝑐. 
For this problem, an exact analytical solution of the 
pressure head distribution in the soil can be derived 
after the linearization of flow equation by 
performing the Kirchhoff transformation and using 
the method of separation of variables and the 
Fourier transform approach as  

𝛹𝛹 =  
1
𝜈𝜈
𝑙𝑙𝑛𝑛 �(𝑒𝑒𝜈𝜈𝛹𝛹𝐿𝐿 − 𝜀𝜀)𝑒𝑒−

𝜆𝜆𝜈𝜈
2

(𝜕𝜕−𝐿𝐿)Γ+ 𝜀𝜀�         (29) 
where 
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Γ =
sinh⁡�𝜆𝜆𝜈𝜈

2
𝜕𝜕�

sinh⁡�𝜆𝜆𝜈𝜈
2
𝐿𝐿�

+
2
𝐿𝐿𝑐𝑐
�

𝛽𝛽𝑘𝑘
𝜇𝜇𝑘𝑘

∞

𝑘𝑘=1

(−1)𝑘𝑘𝑠𝑠𝑖𝑖𝑛𝑛(𝛽𝛽𝑘𝑘𝜕𝜕)𝑒𝑒−𝜇𝜇𝑘𝑘𝜕𝜕  

𝜇𝜇𝑘𝑘 =  
1
𝑐𝑐 �

(𝜈𝜈𝜆𝜆)2

4
+ 𝛽𝛽𝑘𝑘2� , 𝑐𝑐 =

 𝜈𝜈(𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑟𝑟)
𝐾𝐾𝑠𝑠

 

𝜀𝜀 = 𝑒𝑒𝜈𝜈𝛹𝛹0 ,   𝛽𝛽𝑘𝑘 =
𝜋𝜋
𝐿𝐿
𝑘𝑘,    𝑘𝑘 = 0, 1, 2, 3, ….       

 
Fig.1. Comparison between spectral element and 
analytical results for three soil orientations and 
using a Gardner [39] hydraulic characteristics at 
𝜕𝜕 = 360𝑠𝑠 for 𝜈𝜈 = 0.04  and ℎ𝑙𝑙 = 1𝑐𝑐𝑐𝑐 
 
The distribution of pressure head versus the soil 
depth is shown in Fig. 1 for different time schemes 
at 𝜕𝜕 = 360 seconds and the pore distributed 
parameter  𝜈𝜈 = 0.04 for three soil water flow 
orientations: horizontal, vertical downward and 
upward. The current spectral element method 
predictions are compared to analytical results 
obtained with 5001 terms of the Fourier series. For 
numerical predictions, spatial domain discretized is 
constructed with a uniform spectral space ℎ𝑙𝑙 = 1𝑐𝑐𝑐𝑐 
and the constant time steps 𝛥𝛥𝜕𝜕 = 1𝑠𝑠 which will be 
used as dense grid for the three temporal schemes: 
two-level with and without SCS; and three-level 
scheme. Excellent agreement is achieved between 
the present spectral element solution and the 
analytical results using three time approaches. This 
demonstrates the good efficiency of the spectral 
element method and implies that the three different 
temporal discretization schemes can be conveniently 
used for water flows analysis in unsaturated soils 
using the pressure head form of the Richards flow 
equation. It can be concluded from Fig. 1 that the 
selected temporal schemes have similar results for 
dense grid temporal discretization. 

For the second problem, the soil hydraulic 
conductivity and moisture content are given by 
Haverkamp et al. [41] hydraulic characteristics of 
dry soil as defined by Eqs. (8) and (9). For soils 

with these characteristics, the problem is nonlinear 
and the development of an exact analytical solution 
is difficult. In such case, the prediction of the 
spectral element method using dense grid will be 
used for reference solution as is generally 
encountered in the literature for finite element and 
finite difference methods [15, 18, 47]. The pressure 
head profiles in case of vertical downward soil 
infiltration (𝜆𝜆 = −1) and for three time 
discretization schemes are presented in Fig. 2. This 
figure shows that the soil pressure distribution 
decreases with increasing the soil depth until the 
wetting front where it remains constant. It can be 
seen in Fig. 2 that the time step of the temporal 
discretization scheme influences the SEM accuracy. 
As the time step ∆𝜕𝜕 increases, the SEM pressure 
head predictions using the two- and three-levels 
schemes underestimate the soil water movement. It 
can be noted that the SEM pressure head predictions 
using SCS is less influence by the time step of the 
temporal discretization scheme: a time ∆𝜕𝜕 = 30𝑠𝑠 is 
sufficient for predictions with acceptable accuracy: 
the maximum deviation from the reference solution 
is less than 2%. This good behavior of the SCS is 
confirmed when compare the three temporal 
discretization schemes for horizontal and vertical 
upward and downward water flow curves at 
𝜕𝜕 = 360𝑠𝑠. For a time step ∆𝜕𝜕 = 10𝑠𝑠, the SCS 
numerical model gives good predictions of the soil 
pressure distribution for the three soil orientations 
considered while difference appears in the 
numerical predictions using two and three-levels 
schemes: the maximum deviation is 7% and 0.1% 
for predictions using two and three-levels schemes, 
respectively. The results of the present SEM 
formulation are also compared with the authors’ 
finite element method (FEM) results.  Two 
formulations of the FEM are considered: the finite 
element method (FEM) where standard formulation 
uses the simple two level finite difference temporal 
scheme and a modified finite element method 
(MFEM) with mass-lumped approximation. It 
should be noted that Celia et al. [15] have performed 
the MFEM for this problem. In Fig. 3, the predicted 
pressure head for ∆𝜕𝜕 = 10𝑠𝑠  using SEM and 
FEM/MFEM are compared with the dense grid 
prediction considered as reference solution.  Two 
observations are relevant. Firstly, predictions from 
the three numerical methods have a good qualitative 
agreement as all the three show the same trend of 
pressure head.   Secondly, unlike the excellent 
behavior between the SEM and MFEM/FEM 
results, the two-level scheme slightly underpredicts 
the dense grid reference solution. These indicate that 
for small time stepping, spatial discretization 
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Fig.2. SEM pressure head predictions for the two-
level, the three-level and the SCS temporal schemes 
for Haverkamp et al. [41] hydraulic characteristics 
at 𝜕𝜕 = 360𝑠𝑠 and ℎ𝑙𝑙 = 1𝑐𝑐𝑐𝑐. 

 
Fig.3. Comparison of FEM, MFEM and SEM 
solution using Two-level, Three-level and SCS 
approximations in case of vertical downward 
infiltration and for Haverkamp et al. [41] hydraulic 
characteristics. 
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scheme with high truncation order is suitable and 
that the evaluation of specific moisture capacity at 
the latest time and old Picard iteration as developed 
in the SCS scheme enhances the performance of low 
order truncation error scheme. This conclusion is 
supported by a far more comprehensive comparison 
between the three time discretization schemes based 
on the mass balance error and reported in the next 
subsection. 

The performance of the SEM for the second 
problem is further access by evaluating the mass 
balance error; the results are shown in Figs. 4 and 5. 
The mass balance error in the SEM using two- and 
three-level schemes for various time steps and for 
vertical downward (𝜆𝜆 = −1), horizontal (𝜆𝜆 = 0), 
and vertical upward (𝜆𝜆 = 1) infiltrations are 
illustrated in Fig. 4. It can be seen that mass balance 
errors for the predictions using two- and three-level 
schemes exhibited similar behavior. The greatest 
mass balance errors occurred early in the simulation 
and converged towards zero as the value of time 
increases. With an increase of the time step ∆𝜕𝜕, the 
error in the solution increases leading to a poor mass 
balance; and an underestimation of infiltration depth 
is noted. It is clear from Figs. 4 that SEM pressure 
head predictions using the two-level scheme are 
greatly influence by the value of time step of the 
temporal discretization scheme than in predictions 
using three-level scheme. The maximum error on 
mass balance observed for vertical upward and 
∆𝜕𝜕 = 30𝑠𝑠 is 12.6% for the two-level scheme while 
this error is less than 11.9% for the three-level 
scheme. This behavior is confirmed for prediction 
using dense grid that is ∆𝜕𝜕 = 1𝑠𝑠: the maximum 
errors are 1.9% and 0.4% for two- and three-level 
schemes, respectively. In fact, the magnitude of the 
mass balance correlates with the mass balance error 
and is generally influenced by both time and space 
meshes: The comparison of mass balance errors of 
the SEM using very small time and space 
discretization for vertical downward infiltration is 
presented in Fig. 5. This figure presents a better 
behavior of the prediction for three-level scheme to 
preserve mass balance error than in the case of two-
level scheme. Fig. 5 also shows that the mass error 
on SEM pressure head predictions using SCS is zero 
and therefore this scheme is mass conservative. In 
Fig. 6, the mass balance errors between SEM and 
FEM/MFEM for a time step ∆𝜕𝜕 = 10𝑠𝑠 are 
compared. Agreement is seen to be good between 
the SEM and the MFEM results. It is of interest to 
see that the mass balance error for these two 
methods for predictions using SCS is zero. This 
indicates that both SEM and MFEM using SCS 
scheme are mass conservative.  

Fig.4. Mass balance error in the spectral element 
solution using two- and three-level schemes for 
various time steps and for vertical downward 
(𝜆𝜆 = −1), horizontal (𝜆𝜆 = 0), and vertical upward 
(𝜆𝜆 = 1) infiltrations for Haverkamp et al. [41] 
hydraulic characteristics 
 

 
Fig.5. Mass balance error in the Spectral element 
solution for Haverkamp et al. [41] properties and 
using Two-level, Three-level and SCS 
approximations for dense grid and for vertical 
downward (𝜆𝜆 = −1) at 𝜕𝜕 = 360𝑠𝑠. 
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It can also be seen in Fig. 6 that for long times, 
numerical method using three-level scheme 
performed better than when using two-level scheme. 
In fact, high order schemes such as the three-level 
require previous knowledge on the lower scheme 
approximation and therefore improve solution 
accuracy. Still on Fig. 6, the FEM presents a better 
mass balance error that SEM and MFEM for 
predictions using the two-level scheme. However, 
this method is not conservative as the mass balance 
error is different from zero. The mass balance error, 
the cumulative error and the computational time for 
this second test problem using Haverkamp et al. 
[41] hydraulic soil characteristics is shown in Table 
1 for various time steps. It can be noticed from 
Table 1 that the three temporal discretization 
schemes contribute to an increase in the cumulative 
mass error with time step. The SEM with two-level 
scheme presents the highest cumulative mass error 
while the lowest error is obtained for SEM using 
SCS. This is in agreement with previous findings on 
the three spatial discretizations. It can be noted in 
Table 1 that the FEM is almost non-conservative. In 
fact, the accuracy the FEM decreases with increases 
time steps with the least mass balance error of 0.06 
for time steps equal 10𝑠𝑠.  However, FEM is more 
accurate than MFEM and SEM using the simple two 
level finite difference temporal scheme. Similar 
conclusions are noted for predictions using three-
level temporal scheme. In contrast, when standard 
chord slope is used for temporal discretization, the 
FEM did not converge while MFEM and SEM are 
mass-conservative. The maximum mass balance 
errors for MFEM and SEM are less than 3× 10−5 
and increases with increasing time step.  The 
capacity to distinguish between various methods is 
also analyzed in term of the time necessary to 
compute the pressure head of the flow equation. The 
so call CPU or computational time is evaluated in 
this study as the sum of pre-processing and 
processing simulation times. As presented in Table 
1, computational time for SEM standard chord slope 
scheme is less than for MFEM for small time steps. 
Therefore, the SEM appears to be more 
computational efficient than the finite element 
methods. Table 1 shown that computation was 
conducted in less than 1𝑠𝑠, meaning that the SEM 
presents a very small simulation time. Table 1 also 
shows that the difference in the simulation time 
between FEM and SEM/MFEM becomes smaller 
with increase of the time step numbers. This can be 
explained by the fact the FEM used the distributed 
mass matrix while the SEM/MFEM is implemented 
with the mass lumping matrix. The distributed mass 
matrix induced more iteration steps for the 

convergence and therefore more computational time 
for FEM as the time step is refined. 
 
Table 1. Mass balance errors and computational 
times in the SEM for various time discretization 
schemes at t = 360s and   ∆𝜕𝜕 = 1𝑐𝑐𝑐𝑐 for vertical 
downward infiltration using Haverkamp et al. [41] 
dry soil characteristics. 
 

 
 

For the third problem, an infiltration into an 
unsaturated and very dry soil column with hydraulic 
characteristics, given by van Genuchten [42] model 
as defined by Eqs. (10) and (11) was considered. 
The parameters used by this model are: 𝛼𝛼 = 0.0335, 
𝑑𝑑𝑠𝑠 = 0.368, 𝑑𝑑𝑟𝑟 = 0.102, 𝑛𝑛 = 2, 𝑐𝑐 = 0.5, 𝐾𝐾𝑠𝑠 =
0.00922 𝑐𝑐𝑐𝑐/𝑠𝑠. The initial condition was taken 
as 𝛹𝛹(𝜕𝜕, 𝜕𝜕 = 0) = 𝛹𝛹𝑖𝑖 = −1000𝑐𝑐𝑐𝑐. The Dirichlet 
boundary conditions were imposed at the top soil 
surface and at the bottom level as 𝛹𝛹(𝜕𝜕 = 0𝑐𝑐𝑐𝑐, 𝜕𝜕) =
𝛹𝛹0 = −1000𝑐𝑐𝑐𝑐 and 𝛹𝛹(𝜕𝜕 = 100𝑐𝑐𝑐𝑐, 𝜕𝜕) = 𝛹𝛹𝐿𝐿 =
−75𝑐𝑐𝑐𝑐. A similar numerical analysis as for the 
second problem is carried out. However, the total 
computational time is 86400s; the node constant 
spacing is assumed to be ℎ𝑙𝑙 = 2.5𝑐𝑐𝑐𝑐. The larger 
number of time nodes for this problem required 
more computational time. Fig. 7 shows the variation 
of the downward pressure head at 𝜕𝜕 = 86400𝑠𝑠 
versus soil depth using the three-level, the two-level 
with and without SCS temporal schemes 
discretization. A more pronounce variances are 
noted between in the three spatial time discretization 
schemes. The SCS converges for five time steps 
discretization having the following values: ∆𝜕𝜕 =
{20, 120, 144, 720, 3600}𝑠𝑠 and dense grid. This 
confirms a better performance of the SCS for 
pressure head flow in a very dry soil with hydraulic 
characteristics given by van Genuchten [41] model. 
As illustrated in Fig. 7, the SEM pressure head 
predictions using the two-level scheme for time step 
values greater than ∆𝜕𝜕 = 20𝑠𝑠 are found to be less 
accurate than prediction using dense grid scheme 
and did not converge for ∆𝜕𝜕 = 144𝑠𝑠 which is not 
represented. Still in Fig. 7, the SEM pressure head 
predictions using three-level scheme has been  
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Fig.6. Comparison of FEM, MFEM and SEM mass 
balance error using Two-level and Three-level 
approximations in case of vertical downward 
infiltration at 𝜕𝜕 = 360𝑠𝑠. 

 

 
Fig.7. SEM pressure head predictions for the two-
level, the three-level and the SCS temporal schemes 
for van Genuchten [42] hydraulic characteristics at 
 𝜕𝜕 = 86400𝑠𝑠and ℎ𝑙𝑙 = 2.5𝑐𝑐𝑐𝑐. 
illustrated only for ∆𝜕𝜕 = 20𝑠𝑠 since this scheme did 
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not converge for time steps greater than this value. 
This leads to conclude that the solution of 
unsaturated flow processes in very dry soil with 
hydraulic characteristics given by van Genuchten 
[42] model requires refined time meshes for 
accurate predictions. In addition of the effect of time 
step discretization on the accuracy of SEM, Fig. 7 
illustrates SEM pressure head predictions for 
vertical downward (𝜆𝜆 = −1), horizontal (𝜆𝜆 = 0), 
and vertical upward (𝜆𝜆 = 1) infiltrations at 𝜕𝜕 =
86400𝑠𝑠. For each case, the pressure head 
predictions are found to be accurate compared with 
the reference solution obtained using a dense grid 
discretization. The maximum deviations between 
predictions using two-level and three-level schemes 
are 2.2 × 10−1% and 3 × 10−2%, respectively for 
pressure head predictions in vertical downward 
(𝜆𝜆 = −1) infiltrations. This confirms the analysis 
presented for the second problem. Figs. 8 show a 
comparison of the SEM and FEM/MFEM 
predictions using two-level, three-level and SCS 
approximations at time t = 86400s. Computations 
have been carried out for a time step ∆𝜕𝜕 = 20𝑠𝑠 and 
in case of vertical downward infiltration. The 
agreements between SEM and MFEM predictions 
are excellent. As depicted in Figs. 8 and as were 
observed by Celia et al. [15], the FEM predictions 
presents numerical oscillations at the pressure head 
wetting front which is due to the highly nonlinear 
characteristics of moisture content capacity and 
hydraulic conductivity for this example. In fact, the 
spatial distribution of the time derivative term 
incorporated in the mass matrix when using the 
FEM for the discretized equation must be the major 
cause of this difference in numerical results.  

The mass balance error for the third problem is 
illustrated in Fig. 9. This figure shows that the mass 
balance error of the SEM using two-level scheme 
increases with time step discretization. It can be 
seen that for ∆𝜕𝜕 = 20𝑠𝑠, the maximum mass balance 
error is obtained for vertical upward infiltration 
while the minimum is for vertical downward 
infiltration. These figures also shown that SEM with 
three-level scheme is more accurate than SEM with 
two-level scheme: the maximum error is less than 
2% and 0.6% for two-level and three-level schemes, 
respectively. In addition, the SCS has better 
convergence than two-level and three-level 
schemes. The mass balance error for this scheme is 
zero meaning that this scheme is more mass 
conservative. Fig. 10 shows comparisons between 
the SEM and FEM/MFEM on the mass balance 
error at a time step ∆𝜕𝜕 = 20𝑠𝑠. As noted previously, 
a high order discretization scheme improves the  

 
Fig.8. Comparison of FEM, MFEM and SEM 
solution using Two-level, Three-level and SCS 
approximations in case of vertical downward 
infiltration at  𝜕𝜕 = 86400𝑠𝑠  
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solution accuracy whereas the evaluation of the 
specific moisture capacity at the latest time and old 
Picard iteration as use in SCS scheme enhances 
considerably the performance of low order time 
discretization. It can be seen in Fig. 10 that the SEM 
and MFEM present satisfactory mass balance errors 
for SCS scheme, whereas there are considerable 
errors in the FEM predictions. This disagreement is 
attributed to the fact that for this method, the 
specific moisture capacity cannot be evaluated at the 
latest time and old Picard iteration. This result is 
summarized in Table 2 where it can be seen that the 
SCS is more efficient than the two- and three-level 
schemes. 
 

 
Fig.9. Mass balance error versus the time in case of 
Two-level and Three-level schemes, respectively 
and for various soil flow orientations for van 
Genuchten [42] properties. 

 
Fig.10. Comparison of FEM, MFEM and SEM mass 
balance error using Two-level and Three-level 
approximations in case of vertical downward 
infiltration at  𝜕𝜕 = 86400𝑠𝑠. 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER

Ernest Léontin Lemoubou, 
Herve Thierry Tagne Kamdem, Jean Roger Bogning, 

Myriam Lazard, Edouard Henri Zefack Tonnang

E-ISSN: 2224-3461 33 Volume 14, 2019



Table 2. Mass balance errors and computational 
times in the SEM for various time discretization 
schemes at t = 86400s and    ∆𝜕𝜕 = 2.5𝑐𝑐𝑐𝑐 for 
vertical downward infiltration using van Genuchten 
[42] in very dry soil characteristics. 
 

 
 
For ∆𝜕𝜕 = 20𝑠𝑠, Table 2 shows that the three time 
discretization schemes computational times are 
comparable. However, the SCS scheme produces an 
excellent mass balance and mass balance errors 
equal to zero. The three-level scheme with a mass 
balance equal to 1.005 and mass balance error of 
5.45 × 10−3 performed better than the two-level 
scheme, where the mass balance is equal to 0.9857 
and the mass balance error is 0.0143. These 
observations confirm the analysis presented in the 
case of the second problem describing pressure head 
flow in a dry soil with hydraulic characteristics 
given by Haverkamp et al. [41] model. Comparisons 
between the results obtained from SEM and authors’ 
finite element methods results shows that the FEM 
is non-conservative for this test problem; the mass 
balance error is about 0.2 whereas, the mass balance 
error is about 0.01 for predictions using MFEM and 
SEM with the two-level time discretization scheme. 
A better accuracy of MFEM and SEM compare to 
FEM can also be observed when the standard chord 
slope is used for temporal discretization. As 
presented in Table 2, both MFEM and SEM with 
standard chord slope schemes are mass-
conservative. Comparison of Table 1 and 2 reveals 
that the SEM and FEM/MFEM performances are 
crucially affected by the soil characteristics. A great 
difference can be noted on mass balance errors for 
infiltration into dry and very dry soils characterized 
by Haverkamp et al. [41] and van Genuchten [42], 
respectively.  The mass balance error for FEM is 
generally similar to all other methods in Table 1, 
whereas in Table 2, SEM/MFEM has lower errors. 
The highly nonlinear and complex characteristics of 
the very dry soil considered in the third example 
combined to the distributed mass matrix considered 

in the FEM explained the great difference of the 
mass balance errors between the three numerical 
methods. The spatial distribution of the time 
derivative term generates a major problem such as a 
possible numerical oscillation and convergence of 
the FEM. Table 2 also shown that the simulation 
time in the FEM solutions increases drastically for 
infiltration into an unsaturated soil subjected to very 
dry conditions. The MFEM converges rapidly 
compare to the FEM method and the effect of 
diagonalization of the mass matrix is more evident. 
It can be seen in Table 2 that the computational time 
of the MFEM for the mass-conservation model 
using standard chord slope scheme is greater than 
for the SEM for small time steps. Hence, the SEM is 
more efficient than finite element methods for water 
flow in unsaturated porous soils where hydraulic 
characteristics are highly nonlinear. 
 
 
5 Conclusion 
A spectral element method for the analysis of flows 
in unsaturated soils is presented. The method is 
based on Legendre Gauss-Lobatto quadrature sets 
for spatial discretization while temporal 
discretization is achieved by the Picard iteration 
procedure for soil moisture linearization combined 
with fully implicit time two-level with and without 
standard chord slope and three-level discretization 
schemes. The analyses were performed for pressure 
head flow in horizontal, upward and downward 
vertical unsaturated soils and for various hydraulic 
characteristics. The numerical experiments 
demonstrate that the spectral element method can be 
used to achieve accurate mass balance predictions 
and is a rapid convergent algorithm with less 
computational time. The major conclusions are as 
follows: 
o the spectral element method agrees to exact 

result for hydraulic characteristics presented by 
the Gardner [39] model; 

o for unsaturated soils with highly nonlinear 
hydraulic characteristics given by Haverkamp et 
al. [41] and van Genuchten [42] models, the 
spectral element method using standard chord 
slope scheme is mass conservative, while using 
three-level scheme and standard two-level 
schemes is mass conservative for time steps 
refinement; 

o The spectral element method using three-level 
scheme is more accurate than using the standard 
two-level scheme. 

o The spectral element method is computational 
more efficient than finite element methods for 
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water flow in unsaturated porous soils where 
hydraulic characteristics are highly nonlinear. 

These improved transient water flow predictions for 
unsaturated soils with variable coefficients are 
significant for remote sensing of soil-plant- 
atmosphere as well as in soil pressure head 
modeling efforts. The limitations of the present 
study include its one-dimensionality. However, 
since the spectral element method has proven to be a 
robust, accurate, convergent and conservative 
numerical method of the one-dimensional transient 
water flow in unsaturated soil, it is expected that the 
method may be applied in the future in multi-
dimensional flow problem. Developing and 
implementing such multi-dimensional spectral 
element method will be useful for the investigation 
of the horizontal soil moisture heterogeneity and 
atmosphere boundary effects. The present study 
using the SEM for one-dimensional transient water 
flow in unsaturated soil sets the basis for such future 
investigations. 
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