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Abstract: - The solution for the magnetohydrodynamic flow, due to a linearly stretching sheet, has a 
simple form for the velocity field, with a companion simple form for the induced magnetic field. The 
associated thermal problem, including viscous dissipation and Joule heating, involves three 
temperature constituents, the solutions for two of which are obtained in terms of Kummer’s function. 
The solution for the third temperature constituent is obtained in a convergent series form. 
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1 Introduction 

Navier-Stokes equations are inherently nonlinear 
due to the presence of convection terms. When 
convection is absent, the equations become linear 
and exact (closed form ) solutions may be possible; 
e.g. Couette and Poiseuille flows [1]. 

With convection present, exact solutions to 
Navier-Stokes equations are rare. This is to the 
extent that reduction of order through self-similarity 
is regarded as exact solution [2,3].  

Crane’s simple exact solution [4] to the problem 
of the flow due to a linearly stretching sheet is one 
such rare solution. This invited researchers to apply 
the same form of solution to other related situations, 
which proved successful in cases involving surface 
feed [5], velocity slip [6], magnetohydrodynamic 
(MHD) flow (under the assumption of negligible 
induced magnetic field) [7], or combinations thereof 
[8].  

The thermal problem associated with Crane’s 
flow is a linear one. It was solved by Grupka and 
Bobba [9] neglecting viscous dissipation and 
streamwise heat diffusion. Neglecting Joule heating 
as well, Liu [10] solved the thermal problem 
associated with Andersson’s MHD flow [7], in cases 
of linear surface temperature and linear heat flux.  

It is shown here that the solution for the MHD 
flow with induced magnetic field has Crane’s 
simple form for the velocity field, with a companion 
simple form for the induced magnetic field. Both 
solutions tend to the leading order solutions 

obtained in [11], as the magnetic Prandtl number 
diminishes. The associated thermal problem, 
including viscous dissipation and Joule heating, 
involves quadratic streamwise variation in 
temperature with three temperature constituents, the 
solutions for two of which are obtained in terms of 
Kummer’s functions [12]. The solution for the third 
temperature constituent is obtained in convergent 
series form. 
 
 
2 Mathematical model 
An electrically conducting, incompressible, 
Newtonian fluid is driven by a non-conducting non-
porous sheet, which is stretching linearly in the 𝑥𝑥-
direction with rate 𝜔𝜔. At the surface, we consider 
cases of prescribed temperature or heat flux. In the 
farfield, the fluid is essentially quiescent under 
pressure 𝑝𝑝 = 𝑝𝑝∞  and temperature 𝑇𝑇 = 𝑇𝑇∞ , and is 
permeated by a stationary magnetic field of uniform 
strength 𝐵𝐵 in the transverse 𝑦𝑦-direction. The 
velocity components in the (𝑥𝑥,𝑦𝑦) directions are (𝑢𝑢,𝑣𝑣) 
and the corresponding induced magnetic field 
components are (𝑞𝑞,𝑠𝑠). Constants are the fluid 
density 𝜌𝜌, kinematic viscosity 𝜗𝜗, electric 
conductivity 𝜎𝜎, magnetic permeability 𝜇𝜇, specific 
heat 𝑐𝑐, and thermal conductivity 𝑘𝑘.  

The problem admits the similarity 
transformations [13] 
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𝑥𝑥 = �𝜗𝜗/𝜔𝜔𝜒𝜒, 𝑦𝑦 = �𝜗𝜗/𝜔𝜔𝜂𝜂, 𝑣𝑣 = −√𝜗𝜗𝜗𝜗𝑓𝑓(𝜂𝜂), 𝑢𝑢 = √𝜗𝜗𝜗𝜗𝜒𝜒𝑓𝑓′  (1a,b,c,d) 

𝑠𝑠 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜂𝜂), 𝑞𝑞 = −𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵′ (1e,f) 

𝑝𝑝 = 𝑝𝑝∞ − 𝜌𝜌𝜌𝜌𝜌𝜌[𝑓𝑓′ + 1
2
𝑓𝑓2(𝜂𝜂) − 1

2
𝑓𝑓2(∞)]− 1

2
𝐵𝐵2𝜎𝜎2𝜇𝜇𝜗𝜗2𝜒𝜒2𝑔𝑔′2 (1g) 

𝑇𝑇 = 𝑇𝑇∞ +
𝜗𝜗𝜗𝜗
𝑐𝑐

[𝜃𝜃0(𝜂𝜂) + 𝜒𝜒𝜃𝜃1(𝜂𝜂) + 𝜒𝜒2𝜃𝜃2(𝜂𝜂)] (1h) 

.
where primes denote differentiation with respect to 
the similarity coordinate 𝜂𝜂. 
The governing fluid flow continuity and Navier-
Stokes equations,  electromagnetic Maxwell’s and 

Ohm’s equations, and energy equation including 
heat dissipation and Joule heating take the similarity 
form [13]  

 

𝑓𝑓′′ ′ + 𝑓𝑓𝑓𝑓′′ − 𝑓𝑓′2 = 𝛽𝛽[Pm�𝑔𝑔𝑔𝑔′′ − 𝑔𝑔′2�+ 𝑔𝑔′′ ] (2) 

𝑔𝑔′′ = 𝑓𝑓′ + Pm (𝑔𝑔𝑔𝑔′ − 𝑓𝑓𝑓𝑓′) (3) 

𝜃𝜃2
′′ + Pr(𝑓𝑓𝜃𝜃2

′ − 2𝑓𝑓′𝜃𝜃2) = −Pr⁡(𝛽𝛽𝑔𝑔′′ 2 + 𝑓𝑓′′ 2)  (4) 

𝜃𝜃1
′′ + Pr(𝑓𝑓𝜃𝜃1

′ − 𝑓𝑓′𝜃𝜃1) = 0 (5) 

𝜃𝜃0
′′ + Pr𝑓𝑓𝜃𝜃0

′ = −2𝜃𝜃2 − 4Pr⁡𝑓𝑓′2 (6) 

 
where Pm = 𝜎𝜎𝜎𝜎𝜎𝜎 is the magnetic Prandtl number, 
𝛽𝛽 = 𝜎𝜎𝐵𝐵2/𝜌𝜌𝜌𝜌 is the magnetic interaction number, 
Pr = 𝜌𝜌𝜌𝜌𝜌𝜌/𝑘𝑘 is the Prandtl number.  
In the right-hand-sides of Eqs. (4) and (6), the terms 
involving 𝑓𝑓′′ 2 and 𝑓𝑓′2 are due to viscous 

dissipation, the term involving 𝑔𝑔′′ 2 is due to Joule 
heating, and the term involving 𝜃𝜃2 is due to the 
streamwise heat diffusion. 
The boundary conditions, in the absence of velocity 
and thermal slip, are [13] 

 

𝑓𝑓(0) = 0, 𝑓𝑓′(0) = 1, 𝑓𝑓′(∞) = 0 (7) 

𝑔𝑔(∞) = 0, 𝑔𝑔′(∞) = 0 (8) 

𝜃𝜃2(0) = Θ2 or 𝜃𝜃2
′ (0) = −𝑄𝑄2, 𝜃𝜃2(∞) = 0 (9) 

𝜃𝜃1(0) = Θ1 or 𝜃𝜃1
′ (0) = −𝑄𝑄1, 𝜃𝜃1(∞) = 0 (10) 

𝜃𝜃0(0) = Θ0 or 𝜃𝜃0
′ (0) = −𝑄𝑄0, 𝜃𝜃0(∞) = 0 (11) 

 
where Θ0, Θ1 and Θ2 are prescribed constituents of 
the surface temperature, while 𝑄𝑄0, 𝑄𝑄1 and 𝑄𝑄2 are 
prescribed constituents of the heat flux from the 
surface.  
Conditions (8) on 𝑔𝑔 translate the physical 
requirement of the absence of the current density in 
the farfield, and indicate that 𝐵𝐵 stands for the 

farfield total magnetic field imposed and induced 
[11]. 
3 Exact solution for the velocity and 
magnetic fields 
We attempt solutions of the form 
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𝑓𝑓 = (1 − 𝑒𝑒−𝛾𝛾𝛾𝛾 )/𝛾𝛾  (12) 

𝑔𝑔 = 𝜆𝜆𝑒𝑒−𝛾𝛾𝛾𝛾  (13) 
 
which satisfy the boundary conditions, provided 
𝛾𝛾 >0.  
Substitution in Eqs. (2) and (3) gives the following 
relations between 𝛾𝛾 and 𝜆𝜆. 

𝛾𝛾2 − 1 = 𝛽𝛽𝛾𝛾2𝜆𝜆 (14) 

𝛾𝛾2𝜆𝜆 = 1 + Pm𝜆𝜆 (15) 

Elimination of 𝜆𝜆 results in 

𝛾𝛾4 − (𝛽𝛽 + 1 + Pm )𝛾𝛾2 + Pm = 0 (16) 
 
with the solutions 

 

𝛾𝛾2 = 1
2
[(𝛽𝛽 + 1 + Pm ) ±�(𝛽𝛽 + 1 + 𝑃𝑃𝑚𝑚 )2 − 4Pm ] (17) 

The plus sign is chosen, so that 𝛾𝛾2 ≠ 0 when 
Pm = 0, leading to 

 

𝛾𝛾 = �1
2
[(𝛽𝛽 + 1 + Pm ) + �(𝛽𝛽 + 1 + Pm )2 − 4Pm ] (18) 

and, consequently, 
 

𝜆𝜆 = 2[(𝛽𝛽 + 1 − Pm ) + �(𝛽𝛽 + 1 + Pm )2 − 4Pm ]−1 (19) 

 
Note that both 𝛾𝛾 and 𝜆𝜆 are real, since the 
discriminant (𝛽𝛽 + 1 + Pm )2 − 4Pm  manipulates to 
(𝛽𝛽 + 1 − Pm )2 + 4𝛽𝛽Pm > 0. Moreover, 𝛾𝛾 > 1 and 
𝜆𝜆 > 0. 
The solution for 𝑓𝑓 reduces to Andersson’s solution 
[7] in the case of negligible induced magnetic field 
(Pm = 0), and to Crane’s solution [4] in the 
hydrodynamic case (𝛽𝛽 = Pm = 0). In either case, 
Eq. (3) merely defines 𝑔𝑔′′ = 𝑓𝑓′. 
 
 
4 Exact solutions for the temperature 
constituents 
 
Upon substitution for 𝑓𝑓 and 𝑔𝑔, Eqs. (4)-(6) 
combine as 

𝜙𝜙𝑛𝑛′′ + 𝑟𝑟�1 − 𝑒𝑒−𝜁𝜁�𝜙𝜙𝑛𝑛′ − 𝑛𝑛𝑛𝑛𝑒𝑒−𝜁𝜁𝜙𝜙𝑛𝑛 = Λ𝑛𝑛  (20) 

where  𝑟𝑟 = Pr/𝛾𝛾2,  𝜁𝜁 = 𝛾𝛾𝛾𝛾, 𝜙𝜙𝑛𝑛(𝜁𝜁) = 𝜃𝜃𝑛𝑛(𝜂𝜂)/𝛾𝛾𝑛𝑛 , 
and 𝑛𝑛 = 2, 1 or 0, with 

Λ2 = −𝑟𝑟(1 + 𝛽𝛽𝛾𝛾2𝜆𝜆2)𝑒𝑒−2𝜁𝜁  (21) 

Λ1 = 0 (22) 

Λ0 = −2𝜙𝜙2 − 4𝑟𝑟𝑒𝑒−2𝜁𝜁  (23) 

and a prime denoting differentiation with respect to 
𝜁𝜁. Henceforth,  it is assumed that  𝑟𝑟 > 0 is not an 
integer. 
It is realized that Eq. (20) can be transformed into 
Kummer’s equation [12] with a source term. The 
solution can, thus, be expressed as the sum of a 
particular part due to the source term and a 
homogeneous part in terms of Kummer’s function 

𝑀𝑀(𝑎𝑎, 𝑏𝑏, 𝑧𝑧) = �
𝑎𝑎(𝑚𝑚)

𝑚𝑚!𝑏𝑏(𝑚𝑚)

∞

𝑚𝑚=0

𝑧𝑧𝑚𝑚  

where 𝑎𝑎(𝑚𝑚) = 𝑎𝑎(𝑎𝑎 + 1) … (𝑎𝑎 + 𝑚𝑚 − 1) with 
𝑎𝑎(0) = 1.  
In particular, the solution for 𝜙𝜙2 takes the form 

 

𝜙𝜙2(𝜁𝜁) = 𝑐𝑐0 + 𝑐𝑐1𝑒𝑒−𝜁𝜁 + 𝐴𝐴2𝑀𝑀�−2,1 − 𝑟𝑟,−𝑟𝑟𝑒𝑒−𝜁𝜁� + 𝐵𝐵2𝑒𝑒−𝑟𝑟𝑟𝑟𝑀𝑀(−2 + 𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟𝑒𝑒−𝜁𝜁) (24) 
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where 𝐴𝐴2 and 𝐵𝐵2 are arbitrary constants of 
integration, while 𝑐𝑐0 and 𝑐𝑐1 are undetermined 
coefficients of the particular solution.  

 For the satisfaction of the farfield condition (9c), 
 𝐴𝐴2 = −𝑐𝑐0. On the other hand, the surface condition 
(9a) gives 

 

Θ2/𝛾𝛾2 = 𝑐𝑐0[1 −𝑀𝑀(−2,1 − 𝑟𝑟,−𝑟𝑟)] + 𝑐𝑐1 + 𝐵𝐵2𝑀𝑀(−2 + 𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟) (25a) 

while condition (9b) gives 
 

𝑄𝑄2/𝛾𝛾2 = 𝛾𝛾𝑐𝑐1 − 𝛾𝛾𝑐𝑐0
2𝑟𝑟

1 − 𝑟𝑟
𝑀𝑀(−1,2− 𝑟𝑟,−𝑟𝑟) + 𝐵𝐵2𝛾𝛾𝛾𝛾[𝑀𝑀(−2 + 𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟)

+
2 − 𝑟𝑟
1 + 𝑟𝑟

𝑀𝑀(−1 + 𝑟𝑟, 2 + 𝑟𝑟,−𝑟𝑟)] 
(25b) 

Either Eq. (25a) or Eq. (25b) can be solved for 𝐵𝐵2 in 
terms of 𝑐𝑐0 and 𝑐𝑐1. These two coefficients are 
determined by the satisfaction of Eq. (20) for 𝑛𝑛=2, 
which gives 

𝑐𝑐1 = 1 + 𝛽𝛽𝛾𝛾2𝜆𝜆2 and 𝑐𝑐0 = 1−𝑟𝑟
2𝑟𝑟

𝑐𝑐1 (26) 

The solution for 𝜙𝜙1 is 

𝜙𝜙1(𝜁𝜁) = 𝐵𝐵1𝑒𝑒−𝑟𝑟𝜁𝜁𝑀𝑀(−1 + 𝑟𝑟, 1
+ 𝑟𝑟,−𝑟𝑟𝑒𝑒−𝜁𝜁) (27) 

where 𝐵𝐵1 satisfies  

Θ1/𝛾𝛾 = 𝐵𝐵1𝑀𝑀(−1 + 𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟) (28a) 

or  

𝑄𝑄1/𝛾𝛾 = 𝐵𝐵1𝛾𝛾𝑟𝑟[𝑀𝑀(−1 + 𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟)

+
1 − 𝑟𝑟
1 + 𝑟𝑟

𝑀𝑀(𝑟𝑟, 2 + 𝑟𝑟,−𝑟𝑟)] (28b) 

The solution for 𝜙𝜙0 is  

𝜙𝜙0(𝜁𝜁) = 𝐵𝐵0𝑒𝑒−𝑟𝑟𝜁𝜁𝑀𝑀�𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟𝑒𝑒−𝜁𝜁�
+ 𝜑𝜑0(𝜁𝜁) (29) 

where the particular solution 𝜑𝜑0 is given by 

 

𝜑𝜑0 = −[4𝑐𝑐0
(−𝑟𝑟)2

(−𝑟𝑟)(2) + 2𝑐𝑐1]�
(−𝑟𝑟)𝑘𝑘

𝑘𝑘(−𝑟𝑟)(𝑘𝑘+1)

∞

𝑘𝑘=1

𝑒𝑒−𝑘𝑘𝜁𝜁  

+[2𝑐𝑐0
(−𝑟𝑟)3

(−𝑟𝑟)(3) − 4𝑟𝑟]�
(−𝑟𝑟)𝑘𝑘−2

𝑘𝑘(2 − 𝑟𝑟)(𝑘𝑘−1)

∞

𝑘𝑘=2

𝑒𝑒−𝑘𝑘𝜁𝜁  

+2𝐵𝐵2𝑒𝑒−𝑟𝑟𝜁𝜁 �
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)

∞

𝑘𝑘=1

𝑒𝑒−𝑘𝑘𝜁𝜁 �
𝑟𝑟(3𝑟𝑟 + 3𝑚𝑚 − 7) + (𝑚𝑚 − 2)2

(𝑟𝑟 + 𝑚𝑚)(𝑟𝑟 + 𝑚𝑚− 1)(𝑟𝑟 + 𝑚𝑚 − 2)

𝑘𝑘

𝑚𝑚=1

 

+2𝐵𝐵2𝜁𝜁𝑒𝑒−𝑟𝑟æ �
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)

∞

𝑘𝑘=0

𝑒𝑒−𝑘𝑘𝜁𝜁  

(30) 

and 𝐵𝐵0 satisfies  

Θ0 = 𝐵𝐵0𝑀𝑀(𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟) + 𝜑𝜑0(0) (31a) 

or  

 

𝑄𝑄0 = 𝐵𝐵0𝛾𝛾𝑟𝑟 �𝑀𝑀(𝑟𝑟, 1 + 𝑟𝑟,−𝑟𝑟) −
𝑟𝑟

1 + 𝑟𝑟
𝑀𝑀(1 + 𝑟𝑟, 2 + 𝑟𝑟,−𝑟𝑟)� − 𝛾𝛾𝜑𝜑0

′ (0) (31b) 
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The convergence of the summations in Eq. (30) 
is established in Appendix A. 
It is noted that, when the Θ𝑛𝑛 ’s are given, the 
𝑄𝑄𝑛𝑛 ’s in Eqs. (25b), (28b) and (31b) determine 
the constituents of the rate of heat transfer from 
the surface to the fluid. Conversely, when the 
𝑄𝑄𝑛𝑛 ’s are given, the Θ𝑛𝑛 ’s in Eqs. (25a), (28a) 
and (31a) determine the constituents of the 
surface temperature. Sample results are given in 
Appendix B. 
 

5 Conclusion 

It is shown that Crane’s simple form of exact 
solution, for the hydrodynamic problem of the flow 
due to a linearly stretching sheet, extends to the 
current MHD problem with a companion simple 
form for the induced magnetic field. Moreover, an 
exact solution for the energy equation including 
viscous dissipation, Joule heating, and streamwise 
heat diffusion is obtained. The obtained exact 
solutions tend regularly to previously published 
solutions of degenerate problems [4,7,9,10]. 
The inclusion of the traditionally ignored physical 
processes of magnetic induction, viscous dissipation 
and Joule heating cause streamwise variations in the 
pressure and temperature. As Eq. (1g) indicates, the 
induced magnetic field instigates a favorable 
pressure gradient proportional to the streamwise 
coordinate 𝜒𝜒. Even when the surface temperature or 
heat flux is streamwise uniform, viscous dissipation 
and (or) Joule heating bring(s) about temperature 
variations proportional to 𝜒𝜒2.  
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Appendix A 
For the summation   

 

𝑆𝑆 = �
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)

∞

𝑘𝑘=1

𝑒𝑒−𝑘𝑘𝜁𝜁 �
𝑟𝑟(3𝑟𝑟 + 3𝑚𝑚 − 7) + (𝑚𝑚 − 2)2

(𝑟𝑟 + 𝑚𝑚)(𝑟𝑟 + 𝑚𝑚− 1)(𝑟𝑟 + 𝑚𝑚 − 2)

𝑘𝑘

𝑚𝑚=1

 

 
which appears in Eq. (30), we note that   
  

𝑏𝑏𝑚𝑚 =
𝑟𝑟(3𝑟𝑟 + 3𝑚𝑚− 7) + (𝑚𝑚 − 2)2

(𝑟𝑟 +𝑚𝑚)(𝑟𝑟 + 𝑚𝑚 − 1)(𝑟𝑟 + 𝑚𝑚 − 2) 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Tarek M. A. El-Mistikawy

E-ISSN: 2224-3461 17 Volume 14, 2019



 

 

and  

𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑚𝑚+1 =
(𝑚𝑚 − 2)(𝑚𝑚− 3) + 6𝑟𝑟2 + 4(𝑚𝑚− 3)𝑟𝑟

(𝑟𝑟 + 𝑚𝑚 + 1)(𝑟𝑟 + 𝑚𝑚)(𝑟𝑟 + 𝑚𝑚− 1)(𝑟𝑟 + 𝑚𝑚 − 2) 

 
indicate that, for integer 𝑚𝑚 ≥ 3 

𝑏𝑏𝑚𝑚 > 𝑏𝑏𝑚𝑚+1 > 0 

regardless of the value of 𝑟𝑟. Moreover,  

lim
𝑚𝑚→∞

𝑏𝑏𝑚𝑚 = 0 

With 

𝐶𝐶𝑘𝑘 = � 𝑏𝑏𝑚𝑚

𝑘𝑘

𝑚𝑚=3

> 0 

we have 

lim
𝑘𝑘→∞

𝐶𝐶𝑘𝑘+1

𝐶𝐶𝑘𝑘
= lim

𝑘𝑘→∞
(1 +

𝑏𝑏𝑘𝑘+1

𝐶𝐶𝑘𝑘
) = 1 

and we can write 
 

𝑆𝑆 = −
(3𝑟𝑟 − 1)
(𝑟𝑟 + 1)2 𝑒𝑒

−𝜁𝜁 +
𝑟𝑟(3𝑟𝑟 − 1)
(𝑟𝑟 + 2)2 𝑒𝑒−2𝜁𝜁 +

2(3𝑟𝑟 − 1)
(𝑟𝑟 + 2)𝑟𝑟

�
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)

∞

𝑘𝑘=3

𝑒𝑒−𝑘𝑘𝜁𝜁 + �
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)

∞

𝑘𝑘=3

𝐶𝐶𝑘𝑘𝑒𝑒−𝑘𝑘𝜁𝜁  

 
Thus, the infinite summations included in Eq. (30) 
have the forms 
 

�
(−𝑟𝑟)𝑘𝑘

𝑘𝑘(−𝑟𝑟)(𝑘𝑘+1)
𝑘𝑘

𝑒𝑒−𝑘𝑘𝜁𝜁 ,�
(−𝑟𝑟)𝑘𝑘−2

𝑘𝑘(2 − 𝑟𝑟)(𝑘𝑘−1)
𝑘𝑘

𝑒𝑒−𝑘𝑘𝜁𝜁 ,�
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)
𝑘𝑘

𝑒𝑒−𝑘𝑘𝜁𝜁 ,�
(−𝑟𝑟)𝑘𝑘

𝑘𝑘! (𝑟𝑟 + 𝑘𝑘)
𝑘𝑘

𝐶𝐶𝑘𝑘𝑒𝑒−𝑘𝑘𝜁𝜁  

 
whose convergence can be easily established 
through the ratio test. 
 
 
Appendix B 
The exact solutions for the thermal problem are used 
to produce sample numerical values, in order to 
demonstrate their usefulness.  
In Table 1, we compare the present results to 
previously published results. The problem under 
consideration is one with linearly varying surface 

temperature (Θ0 = 0, Θ1 = 1, Θ2 = 0). The 
physical processes of viscous dissipation and 
streamwise diffusion are ignored in [9] and in [10], 
which ignores magnetic induction and Joule heating, 
as well. Only one heat transfer constituent, 𝑄𝑄1, is 
involved. Retaining the ignored processes, revives 
the other two constituents 𝑄𝑄0 and 𝑄𝑄2. Further, 
comparison with the numerically obtained results in 
[13] indicates the high accuracy of the numerical 
method adopted in [13]. This illustrates one benefit 
of exact solutions. 

Table 1 Comparison of present results to literature results.  

Case Ref. 𝑄𝑄0 𝑄𝑄1 𝑄𝑄2  𝑄𝑄0 𝑄𝑄1 𝑄𝑄2 

𝛽𝛽 = 0, Pm = 0 
Pr = 0.72 [9] 0 0.8086 0  -1.49116 0.80863 -0.25635 

𝛽𝛽 = 1, Pm = 0 
Pr = 0.7 [10] 0 0.689699 0  -1.52369 0.689699 -0.59691 

𝛽𝛽 = 1, Pm = 0.1 
Pr = 0.72 

 

[13] 
 

-1.56122 0.69997 -0.63757  -1.56119 0.69997 -0.63758 

 Present 
 
The effect of neglecting one or all of the 
abovementioned thermal processes is presented in 
Tables 2a,b for Case 1 when the surface is 
maintained at the freestream temperature, and in 

Tables 3a,b for Case 2 when the surface is thermally 
insulated. In either case, 𝜃𝜃1 is governed by a 
homogeneous problem, obviating its contribution. 
Moreover, profiles for the temperature gradients 𝜃𝜃0

′  
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and 𝜃𝜃2
′  in Case 1, and for the temperature 

constituents 𝜃𝜃0 and 𝜃𝜃2 in Case 2 are shown in Figs. 
1 and 2, respectively. 
The following is reported. 

• The contribution of the induced magnetic 
field is minor, even at the high value of the 
magnetic Prandtl number Pm = 0.1, invoked 
throughout. 

• Heat generated within the fluid, through 
viscous friction and Joule heating, results in 

heat flux to the surface in Case 1, and in rise 
in surface temperature in Case 2. 

• The streamwise diffusion, which is ignored 
in boundary layer formulations, is of 
appreciable effect, increasing as the 
magnetic interaction number 𝛽𝛽 increases 
and as the Prandtl number Pr decreases.  

• Contributions of the constituent 𝜃𝜃2 magnify 
downstream, being multiplied by χ2.  

 
Results for Case 1: Constant Surface Temperature 

Table 2 Effect of magnetic induction, viscous dissipation, Joule heating and streamwise diffusion. 
a. Pr = 0.72 

Case 
Neglecting 

All 
Effects 

Neglecting 
Magnetic 
Induction 

Neglecting 
Viscous 

Dissipation 

Neglecting 
Joule 

Heating 

Neglecting 
Streamwise 
Diffusion 

Retaining 
All 

Effects 
𝛽𝛽 

𝑄𝑄0 0 -1.48466 -0.02879 -1.45805 -1.19353 -1.48684 0.1 𝑄𝑄2 0 -0.29860 -0.02997 -0.27540 -0.30537 
𝑄𝑄0 0 -1.54337 -0.22394 -1.33725 -0.92158 -1.56119 1 𝑄𝑄2 0 -0.61143 -0.22323 -0.41435 -0.63758 
𝑄𝑄0 0 -3.09839 -1.29233 -1.83132 -0.42373 -3.12365 10 𝑄𝑄2 0 -2.15077 -1.03905 -1.13172 -2.17077 

b. Pr = 7.0 

Case 
Neglecting 

All 
Effects 

Neglecting 
Magnetic 
Induction 

Neglecting 
Viscous 

Dissipation 

Neglecting 
Joule 

Heating 

Neglecting 
Streamwise 
Diffusion 

Retaining 
All 

Effects 
𝛽𝛽 

𝑄𝑄0 0 -8.71366 -0.02238 -8.67228 -8.4666 -8.69466 0.1 𝑄𝑄2 0 -1.62865 -0.16367 -1.50397 -1.66764 
𝑄𝑄0 0 -7.42052 -0.15854 -7.22010 -6.92583 -7.37864 1 𝑄𝑄2 0 -3.62323 -1.32751 -2.46403 -3.79155 
𝑄𝑄0 0 -5.28842 -0.77206 -4.52084 -3.67993 -5.29290 10 𝑄𝑄2 0 -16.14890 -7.81008 -8.50665 -16.31674 

 

 

Fig. 1 Temperature Gradients. 𝛽𝛽 = 1, Pm = 0.1, Pr = 0.72. 
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Results for Case 2: Thermally Insulated Surface 

Table 3 Effect of magnetic induction, viscous dissipation, Joule heating and streamwise diffusion.  
a. Pr = 0.72 

Case 
Neglecting 

All 
Effects 

Neglecting 
Magnetic 
Induction 

Neglecting 
Viscous 

Dissipation 

Neglecting 
Joule 

Heating 

Neglecting 
Streamwise 
Diffusion 

Retaining 
All 

Effects 
𝛽𝛽 

Θ0 0 4.38432 0.17596 4.25335 2.63645 4.42930 0.1 Θ2 0 0.27786 0.0 2792 0.25659 0.28452 
Θ0 0 8.02607 2.10342 6.29289 2.38869 8.39631 1 Θ2 0 0.62938 0.23097 0.42871 0.65967 
Θ0 0 157.40217 75.90184 84.75464 2.08323 160.65647 10 Θ2 0 3.71306 1.79966 1.96016 3.75982 
b. Pr = 7.0 

Case 
Neglecting 

All 
Effects 

Neglecting 
Magnetic 
Induction 

Neglecting 
Viscous 

Dissipation 

Neglecting 
Joule 

Heating 

Neglecting 
Streamwise 
Diffusion 

Retaining 
All 

Effects 
𝛽𝛽 

Θ0 0 4.69997 0.01960 4.67477 4.49464 4.69437 0.1 Θ2 0 0.41139 0.04135 0.38001 0.42136 
Θ0 0 4.30634 0.15985 4.14265 3.84595 4.30251 1 Θ2 0 0.93778 0.34401 0.63853 0.98255 
Θ0 0 5.79220 1.53860 4.29908 2.62325 5.83768 10 Θ2 0 4.83854 2.34280 2.55175 4.89454 

 

 

Fig. 2 Temperature Constituents. 𝛽𝛽 = 1, Pm = 0.1, Pr = 0.72. 
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