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PORTUGAL
flc@u vora.pt

RICARDO CONCEICAO
Universidade de Évora
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Abstract: The three-dimensional model associated with blood fl w where viscosity depends on shear-rate, such
power-law type dependence, is a complex model to study in terms of computational optimization, which in many
relevant situations becomes infeasible. In order to simplify the three-dimensional model and as an alternative to
classic one-dimensional models, we will use the Cosserat theory related with flui dynamics to approximate the
velocity fiel and thus obtain a one-dimensional system consisting of an ordinary differential equation depending
only on time and on a single spatial variable, the fl w axis. From this reduce system, we obtain the unsteady
equation for the mean pressure gradient depending on the volume fl w rate, Womersley number and the fl w
index over a finit section of the tube geometry. Attention is focused on some numerical simulations for constant
and non-constant mean pressure gradient using a Runge-Kutta method and on the analysis of perturbed fl ws.
In particular, given a specifi data we can get information about the volume fl w rate and consequently we can
illustrate the three-dimensional velocity fiel on the constant circular cross-section of the tube. Moreover, we
compare the three-dimensional exact solution for steady volume fl w rate with the corresponding one-dimensional
solution obtained by the Cosserat theory.

Key–Words:Cosserat theory, blood fl w, shear-thinning fluid one-dimensional model, power-law model, volume
fl w rate, mean pressure gradient.

1 Introduction

The study of blood fl w in the cardiovascular system
has always fascinated scientists, particularly mathe-
maticians, physicists, biologists, chemists and engi-
neers. Also, the fascination for the subject demon-
strated by the artists is relevant, where the anatomi-
cal drawings of the genius of Leonardo Da Vinci are
highlighted. The earliest records of this study date
back to 3500 BC in the Egyptian period, later becom-
ing somewhat more elaborate in the Greek, Roman
and Islamic periods. After that, in the seventeenth
century, the European scientist William Harvey was
the firs to present an accurate explanation on blood
fl w in the cardiovascular system in his work enti-
tled Exercitatio anatomica de motu cordis et sangui-
nis in animalibus, see [1]. In our days, we know that
blood is a very complex flui and the mathematical
modelling of blood fl w is a difficul and challenging
problem. The human circulatory system is a closed
network of vessels carrying blood. Blood is a suspen-
sion of particles (mainly red blood cells, white blood
cells and platelets) in a flui called plasma and the
vessels can be regarded as hollow tubes with differ-

ent scales. Generally, blood may be considered as a
homogeneous fluid In large arteries, blood may ex-
hibit a standard behavior of a Newtonian flui and the
wall may be considered elastic (or mildly viscoelas-
tic). The small arteries are characterized by a strong
branching and may, in general, be considered rigid.
Here, blood exhibits non-Newtonian phenomenon due
to shear-thinning viscosity (see e.g. Chien et al. [2, 3])
and viscoelasticity effects, mainly stress relaxation
and normal stress difference effects, see Thurston [4].
Moreover, when we consider arterioles, capillaries
and venules, the microstructure and rheological be-
havior of blood cannot be avoided since the dimension
of the blood particles are now of the same order of
that of the vessel. Here, phenomena like aggregation
and deformability of red blood cells have great influ
ence on the rheological behavior of blood, especially
on its viscosity at low shear-rates, and blood must be
considered as a shear-thinning and viscoelastic fluid
see e.g. Chien et al. [2, 3] and, Baskurt and Meisel-
man [5]. Modelling blood fl w through the human
circulatory system is certainly a very complex prob-
lem. Among others, we refer to the following difficul
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ties: the complex geometry of the vessels, complex
rheological behavior of blood, pulsatility of the fl w
fiel and consequently pulsatility of the walls, com-
plex inelastic permeable walls, different deformabil-
ity of the red cells at different shear-rates and the lack
of boundary data to close the corresponding mathe-
matical models. As a consequence of all these com-
plex aspects related to the three-dimensional model to
study blow fl w the idea in this article is to present
an alternative theory to reduce the three-dimensional
model to a one-dimensional model. In historical point
of view, Euler in the eighteenth century was the firs to
introduce one-dimensional models to study blood fl w
in the human circulatory system, see [6]. The classi-
cal one-dimensional models governing equations can
be obtained by firs integrating the incompressibility
condition and the axial component of linear momen-
tum for the blood fl w fiel over the circular cross-
section of the tube and introducing some assumptions
related with the nonlinear convective acceleration and
the viscous dissipation terms. These closure approxi-
mations are typically based on assuming a purely ax-
ial fl w with a fi ed dependence on axial variables,
for more detail, see e.g. [7, 8, 9]. As an alterna-
tive, we consider one-dimensional models obtained by
the Cosserat theory (also called director theory) as-
sociated with flui dynamics (see Caulk and Naghdi
[10]), where the only approximation in account is re-
lated with the three-dimensional velocity field The
reduce model is obtained by integrating the linear mo-
mentum equation over the circular cross-section of the
tube, taking a velocity fiel approximation provided
by the Cosserat theory. This procedure yields a one-
dimensional system, depending only on time and a
single spatial variable. The velocity fiel approxima-
tion satisfie exactly both the incompressibility condi-
tion and the kinematic boundary condition. A detailed
discussion about this director theory can be found in
the work of Naghdi et al. [11, 12]. The relevance
of using a director theory is not in regarding it as
an approximation to three-dimensional equations, but
rather in their use as independent theories to predict
some of the main properties of the three-dimensional
problems. Advantages of the director theory include:
the theory incorporates all components of the linear
momentum; it is a hierarchical theory, making it pos-
sible to increase the accuracy of the model; there is
no need for closure approximations; the fl w fiel is
not assumed to be uni-directional; invariance under
superposed rigid body motions is satisfie at each or-
der and the wall shear stress enters directly in the for-
mulation as a dependent variable. Here we are inter-
ested in studying the initial boundary value problem
for incompressible homogeneous power-law fluid to
model blood fl w in a straight circular rigid and im-

permeable walled vessel with constant radius. Us-
ing this director theory, we can intend to predict the
main properties of a three-dimensional given problem,
where the flui three-dimensional velocity fiel 1

ϑ = ϑ(x, t) = ϑiei

is approximated by2 (see [10]):

ϑ = v +
k

∑

N=1

xα1
. . . xαN

W α1...αN
, (1)

with

v = vi(z, t)ei, W α1...αN
= W i

α1...αN
(z, t)ei.

(2)
This velocity fiel approximation (1) satisfie both the
incompressibility condition and the kinematic bound-
ary condition exactly. In condition (1), v represents
the velocity along the axis of symmetry z at time t,
xα1

. . . xαN
are the polynomial weighting functions

with order k (this number identifie the order of the
hierarchical theory and is related to the number of di-
rectors), the vectors W α1...αN

are the director veloci-
ties which are symmetric with respect to their indices
and ei are the associated unit basis vectors. The se-
lection of such weighting functions represents an im-
portant aspect of the formulation of our problem. A
good choice of these weighting functions can reduce
the complexity of the system of ordinary differential
equations in the director formulation of the theory.
This choice should be consistent with the hierarchi-
cal structure of the basic theory so that the equations
for each level of the hierarchy include the equations
of all lower orders. The vectors W α1...αN

are re-
lated to physical features of the fluid Using this ap-
proach with nine directors (i.e., k = 3 at condition
(1)) and integrating the equations for the conservation
of linear momentum over a circular cross-section of
the flui domain, we obtain the unsteady equation for
the mean pressure gradient depending on the volume
fl w rate, Womersley number and the fl w index over
a finit section of the tube geometry. Attention is fo-
cused on some numerical simulations for constant and
non-constant mean pressure gradient using a Runge-
Kutta method and on the analysis of perturbed fl ws.
In particular, given a specifi data we can get informa-
tion about the volume fl w rate and consequently we
can illustrate the three-dimensional velocity fiel on

1Let x = (x1, x2, x3) be the rectangular space cartesian coor-
dinates (for convenience we set x3 = z) and t is the time variable.

2In the sequel, latin indices subscript take the values 1, 2, 3;
greek indices subscript 1, 2, and the usual summation convention
is employed over a repeated index.
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the constant circular cross-section of the tube. More-
over, we compare the three-dimensional exact solu-
tion for steady volume fl w rate with the correspond-
ing one-dimensional solution obtained by the Cosserat
theory. Recently, a director theory approach for mod-
eling blood fl w in the arterial system, as an alterna-
tive to the classical one-dimensional models, has been
introduced by Sequeira et al. [13, 14]. At work [13]
blood is considered as a Newtonian flui and in the
work [14], blood is considered as a non-Newtonian
fluid where viscosity depends on the shear-rate. This
article is a review work based on [14] where new re-
sults will be presented. This new results are concern-
ing to the behavior of the three-dimensional velocity
fiel in the circular cross-section of a tube with con-
stant radius along the axis of the fl w and on the anal-
ysis of perturbed fl ws.

2 Governing equations

Let us model blood as a homogeneous shear-thinning
flui moving within a straight and impermeable rigid
tube of constant circular cross-section, the vessel do-
main Ω, see Figure 1. The boundary ∂Ω is composed

Figure 1: Fluid domain Ω with normal and tangential
components of the surface traction vector pe and τ1,
τ2 with constant circular cross-section along the axis
of symmetry z.

by the proximal cross-section Γ1, by the distal cross-
section Γ2 and by the lateral wall of the tube Γw, de-
fine by the constant scalar function3 φ, which is re-
lated to the circular cross-section of the tube by the
following relationship

φ2 = x21 + x22. (3)

For our haemodynamics problem, the equations
of axisymmetric motion, stating the conservation of
linear momentum without body forces and mass are

3In the general case when the scalar function φ depends on the
spatial variable z and time t we have a fluid-structur interaction
problem.

given, in Ω× (0, T ), by


























ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)

= ∇ · T ,

∇ · ϑ = 0,

T = −pI + µ
(

|γ̇|
)

A1, tw = T · η,

(4)

with the initial condition

ϑ(x, 0) = ϑ0(x) in Ω, (5)

and the homogeneous Dirichlet boundary condition

ϑ(x, t) = 0 on Γw × (0, T ), (6)

where ρ is the constant flui density, p is the pres-
sure, −pI is the spherical part of the stress due to
the constraint of incompressibility, µ

(

|γ̇|
)

is the shear-
dependent viscosity function and

A1 = ∇ϑ+
(

∇ϑ
)T (7)

is the firs Rivlin-Ericksen tensor, ∇ϑ is the spatial
velocity gradient and

(

∇ϑ
)T is the transpose of ∇ϑ.

Equation (4)1 represents the balance of linear mo-
mentum without body forces and (4)2 is the incom-
pressibility condition. In equation (4)3, T is the con-
stitutive equation associated a an generalized Newto-
nian flui and tw denotes the stress vector on the sur-
face whose outward unit normal vector is η(x, t) =
ηi(x, t)ei. The components of the outward unit nor-
mal vector to the surface of the vessel domain Ω are
given by

η1 =
x1
φ
, η2 =

x2
φ
, η3 = 0. (8)

Concerning the shear-dependent viscosity function

µ
(

|γ̇|
)

: R+ → R
+,

γ̇ is a scalar measure of the rate of shear define by
|γ̇| =

√
2D : D with

D :=
1

2

(

∇ϑ+
(

∇ϑ
)T )

being the rate of deformation tensor. The particular
functional dependence on shear-rate is generally cho-
sen in order to fi experimental data. In this work, we
consider a power-law flui model, i.e.,

µ(|γ̇|) = k|γ̇|n−1 (9)

where the parameters k and n are positive constants
called the consistency and the fl w index, respec-
tively. If n = 1 in (9), the viscosity is a constant k
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and blood is modeled as a Newtonian fluid If n < 1
at (9) then

lim
|γ̇|→+∞

µ(|γ̇|) = 0, lim
|γ̇|→0

µ(|γ̇|) = +∞,

and we have a shear-thinning flui behavior, i.e.,
the viscosity decreases monotonically with shear-rate.
For n > 1 at (9), we get

lim
|γ̇|→+∞

µ(|γ̇|) = +∞, lim
|γ̇|→0

µ(|γ̇|) = 0,

and the flui shows a shear-thickening behavior, i.e.,
the viscosity increases with shear-rate. This theoreti-
cal model has limited applications to real fluid due
to the unboundedness of the viscosity function, but
is widely used and can be accurate for specifi fl w
regimes. The theoretical study of the model (4)− (6)
with (9), namely existence, uniqueness and regularity
of classical and weak solutions still poses some diffi
culties. In this work we are interested in the numerical
study of the model (4)− (6) with (9), using the direc-
tor approach related to flui dynamics. Since equation
(3) define a material surface, the three-dimensional
velocity fiel ϑ must satisfy the kinematic condition4

d

dt

(

φ2 − x21 − x22
)

= 0

i.e.,
−x1ϑ1 − x2ϑ2 = 0 (10)

on the boundary define by (3). Averaged quantities
such as volume fl w rate and pressure are needed to
study one-dimensional models. Consider S = S(z, t)
a generic axial section of the domain Ω at time t de-
fine by the spatial variable z, bounded by the circle
define by (3), and let A(z, t) be the area of this sec-
tion S(z, t). Then, the volume fl w rate Q is define
by

Q(z, t) =

∫

S(z,t)
ϑ3(x, t)da, (11)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)
p(x, t)da. (12)

Starting with representation (1) it follows (see [10])
that the approximation of the three-dimensional ve-
locity fiel ϑ = ϑi(x, t)ei using nine directors, is
given by

ϑ =
[

x1(ξ + σ(x21 + x22))− x2(ω + η(x21 + x22))
]

e1

+
[

x1(ω + η(x21 + x22)) + x2(ξ + σ(x21 + x22))
]

e2

+
[

v3 + γ(x21 + x22)
]

e3, (13)

4The material time derivative is given by d

dt

(

·
)

= ∂

∂t

(

·
)

+
ϑ · ∇

(

·
)

.

where ξ, ω, γ, σ, η are scalar functions of the spatial
variable z and time t. The physical significanc of
these scalar functions in (13) is the following: γ is
related to tranverse shearing motion, ω and η are re-
lated to rotational motion (also called swirling mo-
tion) about e3, while ξ and σ are related to trans-
verse elongation. We use nine directors because it is
the minimum number for which the incompressibility
condition and the kinematic boundary conditions on
the lateral surface of the tube are satisfie pointwise.
Using the velocity approach (13), the kinematic con-
ditions (10) on the lateral boundary reduce to

−φ2(ξ + φ2σ) = 0 (14)

and the incompressibility condition given by equation
(4)2 becomes

(v3)z + 2ξ + (x21 + x22)(γz + 4σ) = 0, (15)

where the subscripted variable denotes partial differ-
entiation. For equation (15) to hold at every point in
the fluid the velocity coefficient must satisfy the sep-
arate conditions

(v3)z + 2ξ = 0, γz + 4σ = 0. (16)

Hence the boundary condition (10) and the incom-
pressiblity condition given by equation (4)2 are satis-
fie exactly by the velocity fiel (13) if we impose the
conditions (14) and (16). On the wall boundary of the
rigid tube we impose the no-slip boundary condition
requiring that the velocity fiel (13) vanishes identi-
cally on the surface (3), i.e., condition (6) is satisfied
Thus, it follows that

ξ+φ2σ = 0, ω+φ2η = 0, v3+φ2γ = 0. (17)

Therefore, equation (14) is satisfie identically and
the two incompressiblity conditions (16) reduce to

(v3)z + 2ξ = 0, (φ2v3)z = 0. (18)

Considering the fl w in a rigid tube with constant
circular cross-section given by surface (3) without
swirling motion (i.e., ω = η = 0), conditions (11),
(13), (17) and (18) then, the volume fl w rate Q is
just a function of time t, given by

Q(t) =
π

2
φ2v3(z, t) (19)

and, consequently, the velocity fiel (13) can be
rewritten as

ϑ(x, t) =
2Q(t)

πφ2

(

1− x21 + x22
φ2

)

e3, (20)
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and the initial condition (5) is satisfied when we con-
sider in applications Q(0) = cts. To simplify our
study, it is convenient to resolve the stress vector tw
on the lateral surface in terms of it is outward unit nor-
mal η and in terms of the components of the surface
traction vector τ1, τ2 and pe in the form

tw = τ1λ− peη + τ2eθ, (21)

where τ1 is the wall shear stress, while λ and eθ are
the unit tangent vectors define by

λ = η × eθ, eθ = (xα/φ)eαβeβ , (22)

with e11 = e22 = 0 and e12 = −e21 = 1 (see [10]).
Using conditions (8) and (22), the expression for the
stress vector (21) can be rewritten in terms of it is rect-
angular Cartesian components as

tw =
1

φ
(−pex1−τ2x2)e1+

1

φ
(−pex2+τ2x1)e2+τ1e3.

(23)
Now, instead of the momentum equation (4)1 be

verifie pointwise in the fluid we impose the follow-
ing integral conditions (see [10])

∫

S

[

∇ · T − ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)]

da = 0, (24)

∫

S

[

∇ · T − ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)]

xα1
. . . xαN

da = 0,

(25)
where N = 1, 2, 3. Using the divergence theorem and
a form of Liebnitz rule, equations (24) and (25) for
nine directors, can be reduced to the following vector
equations:

∂n

∂z
+ f = a (26)

and

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (27)

where n, kα1...αN , mα1...αN are resultant forces de-
fine by

n =

∫

S
T 3da, kα =

∫

S
T αda, (28)

kαβ =

∫

S

(

T αxβ + T βxα

)

da, (29)

kαβγ =

∫

S

(

T αxβxγ + T βxαxγ + T γxαxβ

)

da

(30)
and

mα1...αN =

∫

S
T 3xα1

. . . xαN
da. (31)

The quantities a and bα1...αN are inertia terms define
by

a =

∫

S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)

da, (32)

bα1...αN =

∫

S
ρ
(∂ϑ

∂t
+ϑ · ∇ϑ

)

xα1
. . . xαN

da (33)

and f , lα1...αN , which arise due to surface traction on
the lateral boundary, are define by

f =

∫

∂S
tw ds, (34)

lα1...αN =

∫

∂S
tw xα1

. . . xαN
ds. (35)

The equation for the mean pressure gradient will be
obtained using the resulting quantities from (28) to
(35) on equations (26) − (27). On equations (34) −
(35) we will apply the stress vector tw given by (23).
Now, using the velocity fiel (20), the surface (3),
the volume fl w rate (19), the incompressiblity con-
trains (16), no-slip conditions (17)1,3 and the stress
vector (23) in equations (28) to (35), we can explic-
itly calculate the forces n, kα1...αN , mα1...αN , the
inertia terms a, bα1...αN and the surface tractions f ,
lα1...αN . Hence, plugging these solutions into equa-
tions (26) − (27) and using equation (12), we get by
solving a linear system the unsteady equation for the
average pressure gradient, given by

p̄z(z, t) = −4ρQt(t)

3πφ2
− 4k

(

2
5n+1

2

)

Qn(t)

(n+ 3)πnφ3n+1
. (36)

Integrating equation (36), over a finit section of the
tube with z1 < z2, we get the mean pressure gradient
over the interval [z1, z2] at time t, given by

G(t) =
p̄(z1, t)− p̄(z2, t)

z2 − z1

=
4ρQt(t)

3πφ2
+

4k
(

2
5n+1

2

)

Qn(t)

(n+ 3)πnφ3n+1
. (37)

Now, let us consider the following dimensionless vari-
ables

t̂ = ω0t, Q̂ =
2ρ

πφk
Q, Ĝ =

ρnφ2n+1

kn+1
G, (38)

where ω0 is the characteristic frequency for unsteady
fl ws. In the cases where a steady volume fl w rate is
specified the nondimensional volume fl w rate Q̂ is
identical to the classical Re (Reynolds number) used
for fl w in tubes. Substituting the new variables (38)
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in equation (37), we obtain the nondimensional mean
pressure gradient

Ĝ(t̂) =
2

3
W2

o Q̂t̂(t̂) +
2

3n+5

2

n+ 3
Q̂n(t̂), (39)

where Wo = φn
√

ρnω0/kn is the Womersley num-
ber, which is the most commonly used parameter to
reflec the pulsatility of the fl w. Using (38)2 and

x̂1 =
x1
φ
, x̂2 =

x2
φ
, ẑ =

z

φ
, ϑ̂ =

φρ

k
ϑ (40)

at the velocity equation (20), we get the nondimen-
sional three-dimensional velocity fiel

ϑ̂(x̂, t̂) = Q̂(t̂)
(

1− (x̂21 + x̂22)
)

e3. (41)

From equation (39), the volume fl w rate in the steady
case is given by

Q̂ = n

√

n+ 3

2
3n+5

2

Ĝ. (42)

In order to evaluate the fl w predictions of the one-
dimensional theory developed here, we next consider
the exact three-dimensional volume fl w rate of an ax-
isymmetric steady fl w through a straight tube with
constant circular cross-section, given by (see Bird et
al. [15])

Q̃ =
n

3n+ 1

n
√

2n−1Ĝ. (43)

Next, we present numerical simulations associ-
ated with equations (39), (41), (42) and (43) for spe-
cifi fl w regimes.

3 Numerical results

In this session we will present numerical results as-
sociated to equation (39) where the mean pressure
gradient will be given and we will check the evolu-
tion of the volume fl w rate for specifi fl w regimes.
Consequently, we present the behavior of the three-
dimensional velocity fiel (41) in the circular cross-
section of the tube. Finally, considering the steady
case, we will compare the exact solution (43) with
the approximate solution (42), validating in this way
and for specifi data the Cosserat theory as a valid al-
ternative for the three-dimensional study of a specifi
physical model associated to the fl w of a fluid

3.1 Steady problem
In the steady case, let us compare the exact volume
fl w rate solution (43) with the volume fl w rate ap-
proximate solution (42). In Figure 2, we can see
the steady volume fl w rate (42) behavior for a fi ed
value of the mean pressure gradient as a function of
the fl w index, concluding that the solution converges
to a certain value as we increase the fl w index for
a given mean pressure gradient. Comparing the ap-

Q̂

n

Figure 2: Variation of the steady volume fl w rate
(42) as a function of fl w index with fi ed mean pres-
sure gradient.

proximate solution for volume fl w rate with the ex-
act solution we can conclude that the approximation is
excellent for the case of shear-thinning fluid which is
the relevant case in this work, see Figure 3. Consider-
ing this comparation, we can state that in this case the
Cosserat theory is valid for fl w index values such that
0 << n < 1 with small range of mean pressure gradi-
ent, the situation n → 0 is neglected because it has no
physical meaning in this work. In the case of shear-
thickening fluid the comparison is no longer relevant
as the fl w index increases, see Figure 3. Also, we
can conclude that the approximation solution (42) is
not relevant when we increase the mean pressure gra-
dient, see Figure 3 and Figure 4. For blood fl w the
range of the mean pressure gradient is very small.

Next, we will illustrate the behavior of the three-
dimensional steady velocity fiel (41) where the
steady volume fl w rate (42) is given with Ĝ and fl w
index fi ed. In the case of Ĝ = 1.75, Figure 5
and Figure 6 shown us very small variation on the in-
tensity of the steady velocity (41) for shear-thinning
flui and shear-thickening fluid respectively. Next,
we consider the behavior of the steady velocity (41)
when we increase the constant mean pressure gradient
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n

Figure 3: Comparison between the exact solution (43)
and the approximate solution (42) for the steady vol-
ume fl w rate as a function of fl w index with small
mean pressure gradient Ĝ = 0.5.

n

Figure 4: Comparison between the exact solution (43)
and the approximate solution (42) for the steady vol-
ume fl w rate as a function of fl w index with mean
pressure gradient Ĝ = 1.8.

Ĝ = 2.75, see Figure 7 and Figure 8. This results are
in excellent agreement with the behavior of the steady
volume fl w rate shown in Figure 2.

3.2 Unsteady problem

In Figure 9, we can observe the behavior of the un-
steady volume fl w rate solution given by (39) ob-
tained using a Runge-Kutta method with constant
mean pressure gradient Ĝ(t̂) = Ĝ = 1 in the case of

(a) Re ≃ 0.36 (b) Re ≃ 0.41

Figure 5: Three-dimensional steady velocity fiel
(41) with steady volume fl w rate (42), where Re ≃
0.36 (Ĝ = 1.75, n = 0.25) and Re ≃ 0.41 (Ĝ =
1.75, n = 0.5)

(a) Re ≃ 0.43 (b) Re ≃ 0.44

Figure 6: Three-dimensional steady velocity fiel
(41) with steady volume fl w rate (42), where Re ≃
0.43 (Ĝ = 1.75, n = 0.75) and Re ≃ 0.44 (Ĝ =
1.75, n = 1.25).

(a) Re ≃ 2.20 (b) Re ≃ 1.02

Figure 7: Three-dimensional steady velocity fiel
(41) with steady volume fl w rate (42), where Re ≃
2.20 (Ĝ = 2.75, n = 0.25) and Re ≃ 1.02 (Ĝ =
2.75, n = 0.5)

shear-thinning flui when we increase the Womersley
number. We note that while the fl w index n increases
the amplitude of the solution in the initial transient
phase increases and becomes less pronounced as the
Womersley number increases. In this particular case
of a constant mean pressure gradient, the system (39)
converges toward a steady state solution. When we
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(a) Re ≃ 0.78 (b) Re ≃ 0.63

Figure 8: Three-dimensional steady velocity fiel
(41) with steady volume fl w rate (42), where Re ≃
0.78 (Ĝ = 2.75, n = 0.75) and Re ≃ 0.63 (Ĝ =
2.75, n = 1.25).

move from a situation of shear-thinning flui to shear-
thickening fluid the behavior of the volume fl w rate
solution is similar, i.e., as we increase the fl w in-
dex the amplitude of the solution in the initial tran-
sient phase increases, see Figure 10. Consequently,
we can see that the behavior of the volume fl w rate
solution is similar for shear-thinning flui and shear-
thickening fluid respectively. But, in the case shear-
thinning flui the volume fl w rate solution presents
amplitudes of lower value in comparison with the case
of a shear-thickening fluid such situation may be rel-
evant in certain physical applications. Now, with the
information of the volume fl w rate (39) obtained
for certain fl w regimes we can return to the three-
dimensional situation to obtain the behavior of the ve-
locity fiel (41) in time in the circular cross-section of
the tube.

The Figure 11 and Figure 12, illustrate the three-
dimensional velocity fiel (41) behavior in the circu-
lar cross-section of the tube in the initial transition
phase, and we can see the increase of the velocity in-
tensity as we increase the fl w index in a situation of
shear-thinning fluid Also, we can see that the velocity
field needs a very short time to stabilize at a constant
intensity, and this is due to the initial transition phase.
In our study, the shear-thinning flui situation is taken
into account for blood fl w. In the case of shear-
thickening fluid see Figure 13 and Figure 14, we can
verify that the increase of the fl w index from shear-
thinning flui to the shear-thickening flui increases
the velocity fiel intensity for the same initial transi-
tion phase with the same fl w regimes. Next, we
consider non-constant mean pressure gradient, given
by equation (44)

Ĝ(t̂) = 1 +
sin2(t̂)

et̂
, (44)

which shows an interesting behavior, see Figure 15.
More specificall it shows a strong variation in the

Q̂

t̂

(a) Flow index n = 0.6.

Q̂

t̂

(b) Flow index n = 0.8.

Figure 9: Unsteady volume fl w rate (39) with con-
stant mean pressure gradient Ĝ(t̂) = Ĝ = 1 where
Q̂(0) = 0, Wo = (0.2, 0.4, 0.6, 0.8) for shear-
thinning fluid

initial stage and after the initial transient phase has
small fluctuations which tend to decrease with time.
Considering the mean pressure gradient (44) on equa-
tion (39) and using a Runge-Kutta method for specifi
fl w regimes we can get information about the vol-
ume fl w rate behavior. Shown in Figure 16, results
for volume fl w rate in the case of shear-thinning flui
and we can see the amplitude of the volume fl w rate
increase with the fl w index in the initial transition
phase, which tends to follow the behavior of the mean
pressure gradient function (44), the fluctuation in the
solution decreases in time.

Figure 17, shows us that in the initial transition
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Q̂

t̂

(a) Flow index n = 1.4.

Q̂

t̂

(b) Flow index n = 1.8.

Figure 10: Unsteady volume fl w rate (39) with con-
stant mean pressure gradient Ĝ(t̂) = Ĝ = 1 where
Q̂(0) = 0, Wo = (0.2, 0.4, 0.6, 0.8) for shear-
thickening fluid

phase the amplitude of the volume fl w rate tries to
increase with the increase of the fl w index. There-
fore, Figure 16 and Figure 17 shows us the evolution
of the volume fl w rate as we move from a shear-
thinning flui situation to a shear-thickening flui sit-
uation. Next, we will see the behavior of the three-
dimensional velocity field

The Figure 18 and Figure 19, shows us the three-
dimensional velocity fiel (41) intensity for specifi
fl w regimes in the case of shear-thinning flui during
the initial transition phase. In comparison with the
constant mean pressure gradient case, we can see that
in this case where the mean pressure gradient is non-

Figure 11: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient Ĝ(t̂) = Ĝ = 1, Q̂(0) = 0,
Wo = 0.8 and n = 0.75 (shear-thinning fluid) Time
parameters: t̂ = 0.1, t̂ = 0.2.

Figure 12: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient Ĝ(t̂) = Ĝ = 1, Q̂(0) = 0,
Wo = 0.8 and n = 0.75 (shear-thinning fluid) Time
parameters: t̂ = 0.3, t̂ = 0.6.

Figure 13: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient Ĝ(t̂) = Ĝ = 1, Q̂(0) = 0,
Wo = 0.8 and n = 1.25 (shear-thickening fluid)
Time parameters: t̂ = 0.1, t̂ = 0.2.

constant, the velocity fiel intensity increases during
the initial transition phase. The same conclusions for
the case of shear-thickening fluid see Figure 20 and
Figure 21.
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Figure 14: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient Ĝ(t̂) = Ĝ = 1, Q̂(0) = 0,
Wo = 0.8 and n = 1.25 (shear-thickening fluid)
Time parameters: t̂ = 0.3, t̂ = 0.6.

Ĝ

t̂

Figure 15: Non-constant mean pressure gradient
given by (44).

4 Perturbations flows
In many physical applications involving flui fl ws
in specifi domains it is important to determine the
changes in fl w characteristics induced by perturba-
tions in the initial or boundary data, body forces or
pressure drop. In fact, since it is virtually impossi-
ble to maintain an exactly constant pressure drop, one
should be able to predict how much a perturbation of
given magnitude in pressure drop will affect the vol-
ume fl w rate. Therefore, let us consider a uniform
perturbation of magnitude ε at the function (44) (see
Figure 22). For each ε > 0, definin the quantities,

Ĝ+
ε (t̂) = (1+ε)Ĝ(t̂), Ĝ−

ε (t̂) = (1−ε)Ĝ(t̂), (45)

we denote by Q̂+
ε and Q̂−

ε the perturbed volume
fl w rates corresponding to Ĝ+

ε and Ĝ−
ε , respectively.

Next, we will consider a perturbation in the approxi-
mate solution obtained by the Cosserat theory and we
will verify the stability of the one-dimensional solu-
tion.

Q̂

t̂

(a) Flow index n = 0.6.

Q̂

t̂

(b) Flow index n = 0.8.

Figure 16: Unsteady volume fl w rate (39) with non-
constant mean pressure gradient (44) where Q̂(0) = 0
and Wo = (0.2, 0.4, 0.6, 0.8) for shear-thinning fluid

4.1 Steady problem

Considering the perturbation

Ĝ±
ε = (1± ε)Ĝ,

where Ĝ is a constant mean pressure gradient, for suf-
ficientl large t̂, after the initial transient phase, we
can use the characterization of the steady solution de-
duced in (42), and explicitly compute the perturbed
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Q̂

t̂

(a) Flow index n = 1.4.

Q̂

t̂

(b) Flow index n = 1.8.

Figure 17: Unsteady volume fl w rate (39) with non-
constant mean pressure gradient (44) where Q̂(0) =
0 and Wo = (0.2, 0.4, 0.6, 0.8) for shear-thickening
fluid

volume fl w rate, using (45), as follows:

Q̂±
ε = n

√

n+ 3

2
3n+5

2

Ĝ±
ε = n

√

n+ 3

2
3n+5

2

(1± ε)Ĝ

= n

√

n+ 3

2
3n+5

2

Ĝ(1± ε)1/n

= Q̂(1± ε)1/n. (46)

Normalizing the above perturbeded volume fl w rate
Q̂±

ε by the unperturbed volume fl w rate Q̂, we get

Q̂±
ε

Q̂
= (1± ε)1/n, (47)

Figure 18: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient (44), Q̂(0) = 0, Wo = 0.8
and n = 0.75 (shear-thinning fluid) Time parame-
ters: t̂ = 0.2, t̂ = 0.5.

Figure 19: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient (44), Q̂(0) = 0, Wo = 0.8
and n = 0.75 (shear-thinning fluid) Time parame-
ters: t̂ = 1, t̂ = 2.

Figure 20: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient (44), Q̂(0) = 0, Wo = 0.8
and n = 1.25 (shear-thickening fluid) Time parame-
ters: t̂ = 0.2, t̂ = 0.5.

which means that in the steady case, this kind of mul-
tiplicative perturbation acts linearly. Changing the
mean pressure gradient by a factor of (1 ± ε), we
changes the unperturbed volume fl w rate by a fac-
tor of (1 ± ε)1/n. In particular this shows that the
steady state solution is linearly stable. Perturbations
will be negligible if (1 ± ε)1/n ≃ 1, which happens
when ε → 0 (i.e., for small changes in the mean pres-
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Figure 21: Three-dimensional velocity fiel (41)
where the volume fl w rate is obtained by (39) with
mean pressure gradient (44), Q̂(0) = 0, Wo = 0.8
and n = 1.25 (shear-thickening fluid) Time parame-
ters: t̂ = 1, t̂ = 2.

Ĝ+
ε

Ĝ

Ĝ−

ε

t̂

Figure 22: Multiplicative perturbation of the mean
pressure gradient (44), with magnitude ε = 0.1.

sure gradient) or when the fl w index related with the
viscosity goes to infinit , i.e., shear-thickening fluid
with high fl w index.

4.2 Unsteady problem
In the case of non-constant mean pressure gradient the
same ideas hold, apart from the fact that it is no longer
possible to deduce exact expressions for the perturbed
volume fl w rates. However, we can compute the time
evolution of the perturbation volume fl w rate Q̂±

ε . In
Figure 23, we illustrate the time evolution of the vol-
ume fl w rate with mean pressure gradient (44), to-
gether with the perturbed fl w rates Q̂±

ε of magnitude
ε = 0.1, forming a strip around Q̂ containing all per-
turbations of magnitude less or equal to ε. Figure 24,
shows the amplitude of this strip

|Q̂+
ε − Q̂−

ε | (48)

for several values of fl w index n with fi ed Womer-
sley number, showing that increasing the fl w index

Q̂+
ε

Q̂

Q̂−

ε

t̂

(a) Flow index n = 0.75.

Q̂+
ε

Q̂

Q̂−

ε

t̂

(b) Flow index n = 1.25.

Figure 23: Time evolution of the unperturbed volume
fl w rate Q̂, and perturbed volume fl w rate Q̂±

ε , with
magnitude ε = 0.1 and Wo = 0.5 for shear-thinning
and shear-thickening fluids respectively.

n reduces sensitivity to the perturbations, as already
mentioned in the case of a constant mean pressure gra-
dient.

5 Conclusion
In this work, the Cosserat theory has been used
to derive a one-dimensional power-law flui model
in a straight, rigid and impermeable tube with uni-
form circular cross-section, as an alternative ap-
proach, to predict some of the main properties of as-
sociated three-dimensional models. Unsteady non-
dimensional equation for the mean pressure gradient
depending on the volume fl w rate, Womersley num-
ber and the fl w index over a finit section of the tube
geometry has been obtained. Taking into account the
volume fl w rate approximate solution for certain fl w
regimes we obtained relevant information about the
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n = 0.5

n = 0.75

n = 1.25

n = 1.75

t̂

Figure 24: Time evolution of perturbation (48) for dif-
ferent values of fl w index (n = 0.5, n = 0.75, n =
1.25, n = 1.75), with Wo = 0.5 and magnitude
ε = 0.1.

behavior of the intensity of the three-dimensional ve-
locity fiel in the circular cross-section of the tube.
The predictive capability of this approach theory to
study the unsteady fl w behavior has been evaluated
by comparing its one-dimensional solution with the
three-dimensional exact solution for steady fl ws. We
have a good match of the results for shear-thinning
flui situation, which is related to the study of blood
fl w in the human circulatory system. This theory
has strong limitations for sufficientl low and/or high
fl w index n to real fluid due to the unboundedness
of the viscosity asymptotic limits, but can be widely
used and accurate for specifi fl w regimes. Also, we
conducted numerical results for perturbed fl ws, ob-
taining an exact expression for the perturbed volume
fl w rates in the steady case, providing a firs step to-
wards stability analysis of the model. One of the pos-
sible extensions of this work is the application of this
one-dimensional approach theory to study the same
power-law fl w model in curved tubes, fluid-structur
interaction and tubes with branches or bifurcations.
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