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Abstract: - The search of dimensionless groups in engineering problems ruled by partial differential equations 
presents many problems whereby it is an untreated topic in the scientific literature. The main difficulties arise 
in the suitable choice of the reference quantities needed to define the dimensionless variables which must also 
be normalized, i.e., extended to the range of values (0,1). After setting the steps for a correct 
nondimensionalization protocol in this kind of problems, its application is illustrated by studying the soil 
consolidation problem, a process in which the constitutive dependences between the physical parameters and 
the dependent variables are strongly non-linear. Results are verified by numerical simulations.  
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1 Introduction 
The nondimensionalization of the mathematical 
model (governing equations and boundary 
conditions) is a known method currently used for 
extracting the dimensionless groups that influence 
the solution of a large variety of complex problems 
in physics or engineering. This process rests on the 
properties of homogeneous functions, long time ago 
set by Buckingham in his paper of 1914 [1]. His 
famous pi-theorem, applied in the same manuscript 
to problems of different fields of physics, can be 
stated as follows: ‘any equation or system of 
equations that contains mathematical formulation of 
laws that determine a physical phenomenon can be 
represented as a r elation between dimensionless 
quantities’. From that date, a lot of papers have been 
published in the search for those relations or 
dimensionless numbers, a basic information for 
modelling [2].   

Among the clearly differentiated protocols for 
the search of these numbers is, firstly, the 
dimensional analysis. This procedure, very extended 
in the literature despite its poor results in complex 
problems, does not part of the governing equations 
but a list of relevant variables from which a number 

of independent monomials of zero dimension can be 
set [3]. The difficulty of obtaining accurate results 
with this technique is the cause of its strong 
rejection by the majority of researchers. Secondly, 
the dimensionless groups may be obtained by 
writing, whether for theoretical reasoning – for 
which a deep understanding of the phenomena 
involved in the problem is required – or laboratory 
tests, the ratios between magnitudes that balance 
each other in the problem. Many famous numbers, 
such as R eynolds [4], were deduced in this way. 
Finally, the sought dimensionless numbers may be 
derived by relatively simple mathematical 
manipulation from the dimensionless-normalized 
form of the governing equations, for which a correct 
deduction of the same is required. This last 
procedure, called nondimensionalization process, 
leads to the most precise solution and is the one we 
will follow in this work. 

However, the use of this technique in the 
scientific literature – both journals and specialized 
books – to obtain the dimensionless groups has been 
reduced to linear processes. Thus, lots of works 
devote to apply the method in various engineering 
problems ruled by partial differential equations – 
such as heat transfer [5], fluid dynamics [6], fluid 
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flow and solute transport [7] and geothermic [8] – or 
by ordinary differential equations – such as 
mechanical engineering [9]. In all of them, the 
authors do not distinguish the potentially anisotropic 
character of the medium which causes a l ack of 
discrimination and leads inexorably to a less precise 
solution. Discrimination [10] assumes as different 
quantities those of the same nature but with an 
inherent vector character – for example, two 
perpendicular velocities in 2D problems are 
assumed to be dimensionally different quantities 
with discrimination – and joins classical non-
discriminated dimensionless numbers in the new, 
more precise, independent groups that really rule the 
solution of the problem.  

As regards non-linear problems, very few works 
can be found in which the nondimensionalization 
procedure is applied to derive dimensionless groups, 
whether in isotropic or anisotropic domains [7,8]. 
The reasons for this absence may be several but, 
undoubtedly, the most important is that non-linear 
problems generally involve non pr oportional 
dependences between one or more parameters and 
the dependent or, eventually, independent variables. 
The result is that the non-linear terms within the 
governing equations cannot turn into dimensionless 
terms in a direct way, doing so that this equation is 
very difficult to manage in order to derive the 
sought dimensionless groups.   

From the point of view of its performance, 
nondimensionalization is a simple method that may 
– indeed sometimes should – precede or even 
supplant rigorous mathematical analysis. To set an 
equation in its dimensionless form we must firstly 
select the reference quantities, explicit or implicit in 
the statement, that normalize the dimensionless 
dependent and independent variables, for which a 
deep understanding of the physical processes 
involved is required. This normalization allows to 
average to an order of magnitude unity the changes 
of these variables and their derivatives. Once the 
governing equation is simplified the dimensionless 
numbers are the independent ratios between two 
addends of the equation.  

After summarize the steps of the procedure in the 
next section, nondimensionalization is applied to the 
non-linear soil consolidation problem. The derived 
groups provided by the nondimensionalization are 
verified by a set of numerical simulations using the 
network method [11]. 
 
 
2 Procedure of nondimensionalization  
The steps to apply the nondimensionalization 
procedure are summarized as follows:  

i) To choice the references (explicit or not in the 
problem statement) to make dimensionless and 
normalized both the dependent and independent 
variables. References do not given in the statement 
are treated as unknowns of the problem.   

ii) To define the dimensionless and normalized – 
dependent and independent – variables. According 
to an appropriate choice of references, the range of 
values of these variables should be extended to the 
interval (0,1) or very close to it.  

iii) To yield the dimensionless governing 
equations. To do this, each term of the equation is 
averaged so that the factors of such term related to 
the dimensionless normalized variables and their 
changes are assume to be of order of magnitude 
unity in first approximation. Very sharp non-
linearities in the problem may eventually move 
away from this assumption leading to dimensionless 
numbers of an order of magnitude larger or smaller 
than unity, accordingly. Also, the existence of 
complex mathematical expressions of the dependent 
variables that come from the constitutive relations 
should be studied in a particular way.  

iv) To get the dimensionless numbers as the 
quotients formed by the groupings of the parameters 
of the problem. There are as many dimensionless 
groups as terms of the equation minus one. 
However, the number of terms may be less than 
expected since some numbers would appear in more 
than one equation. Again, non-linearities could 
make it advisable to separate a complex group into 
two for easier management for the engineer. In 
addition, the set of independent final dimensionless 
groups can be established in different forms by 
simple mathematical manipulation. For 
convenience, the final set can be chosen in such a 
way that each unknown appear in a single group.     

v) If there are m+n dimensionless groups from 
which each of πm contains a different unknown and 
the rest (πn) does not contain unknowns, the solution 
for πm is an arbitrary function (ψ) of the πn groups: 
πi,1≤i≤m = ψ(πj,m+1≤j≤m+n)    (1) 

If all the groups are of the order of magnitude 
unity, it is evident that the arbitrary function also 
has this property. From the m-relations (1), the order 
of magnitude of each unknown can be obtained.  
 
 
3 Nomenclature  
cv,1 initial coefficient of consolidation (m2/s) 
e void ratio (dimensionless) 
eo initial void ratio (dimensionless) 
H1 initial thickness (m) 
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H2 final thickness (m) 
k hydraulic conductivity (m/s) 
k1 initial hydraulic conductivity (m/s) 
mv coefficient of volumetric compressibility 

(m2/N) 
mv,1 initial coefficient of volumetric 

compressibility (m2/N) 
qo surface applied load (N/m2) 
t time (s) 
u excess pore water pressure (N/m2) 
Ūσ′   average degree of pressure dissipation 

(dimensionless) 
V volume (m3) 
z vertical spatial coordinate (m) 
γk nonlinear coefficient of change of 

permeability with effective pressure 
(dimensionless) 

γv non-linear coefficient of compressibility 
(dimensionless) 

γw specific weight of water (N/m3) 
πi  dimensionless group or number 

(dimensionless) 
σ′   effective pressure (N/m2) 
σ1
′   initial effective pressure (N/m2) 

σ2
′   final effective pressure (N/m2) 

σm
′   mean value of the effective pressure (N/m2) 

τo,σ′  characteristic time which takes the excess 
pore pressure to dissipate until 
approximately the value of zero (s) 

Ψ  arbitrary mathematical function 
 
Subscripts 
I, II… denote different numbers 
 
Superscripts 
′ denote dimensionless magnitude 
 
 
4 The soil consolidation problem  
A physical scheme of this problem is depicted in 
Fig.1. When a layer of clay soil saturated with water 
suddenly submits to loads on its surface, the initial 
excess pore water pressure gradually dissipates until 
all the load is supported by the soil skeleton. It is a 
typically asymptotic diffusion process whose 
duration (or characteristic time) depends on t he 
hydrological and mechanical soil properties.  
 

 
Figure 1. Physical scheme of 1D consolidation 

 
The non-linearities of this civil engineering 

problem [12,13] relate to the constitutive 
dependences of the parameters void ratio (e) and 
hydraulic conductivity (k) on the effective pressure, 
generally of potential or logarithmic type. Since the 
formal procedure of nondimensionalization does not 
depend on the constitutive dependences, we will 
assume those of the model of Juárez-Badillo [14].    

 
 
4.1 Mathematical model 
Under the conditions imposed by the oedometer test 
∂u
∂z

= − ∂σ′

∂z
 ,    ∂u

∂t
= − ∂σ′

∂t
 

the constitutive dependences 
dV
V

= −γv
dσ′

σ′
 ,     dk

k
= −γk

dσ′

σ′
    (2) 

and some mathematical manipulation, the governing 
equation  

dσ′

dt
= − 1

γw mv

∂
∂z
�k ∂u

∂z
�    (3) 

can be written in terms of an only dependent 
variable, the effective pressure σ′    

∂σ′

∂t
= k1σ1

′

γw γv
� σ

′

σ′ 1
�

1−γk
�− γk

σ′
�∂σ

′

∂z
�

2
+ ∂2σ′

∂z2 � (4) 

where 

k1σ1
′

γw γv
= k1

γw mv ,1
= cv,1     (5) 

is the initial coefficient of consolidation. 
 
 
4.2 Dimensionless groups  
To make dimensionless equation (4), the 
dimensionless variables (σ′)′ = σ′ − σ1

′

σ2
′ − σ1

′ , t′ = t
τo ,σ′

  

and z′ = z
H1

 are defined, with τo,σ′  the characteristic 

z = 0

z = H2

qo

t = 0

t = h

∆H

z = 0

z = H1

qo
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time – an unknown reference. Thus, equation (4) 
writes in its dimensionless form as 

�σ2
′ − σ1

′ �
σm
′ τo ,σ′

∂�σ′ �
′

∂t′
= − cv ,1γk

σ1
′ 2

H1
2 �

σm
′

σ1
′ �

−γk−1
(σ2

′ −  σ1
′ )2 �∂�σ

′ �
′

∂z′
�

2

+  

+ cv ,1
σ1
′ H1

2 �
σm
′

σ1
′ �

−γk
(σ2

′ −  σ1
′ ) ∂2�σ′ �

′

∂z′2
    (6) 

with σm
′  a mean value for the effective pressure. By 

averaging the above equation and deleting the terms 
whose order of magnitude is unity – dimensionless 
variables and their derivative expressions –, the 
three emergent coefficients 

1
τo ,σ′

 ,  �k1σ1
′

γw γv
� γk

H1
2 �

σ2
′

σ1
′ − 1� �σm

′

σ1
′ �

−γk
, 

 �k1σ1
′

γw γv
� 1 

H1
2 �

σm
′

σ1
′ �

1−γk
   (7) 

give rise to two dimensionless independent groups:  

�
πI =  � γw γv H1

2

τo ,σ′ k1σ1
′ � �

σm
′

σ1
′ �

γk−1

πII = γk �
σ2
′ −σ1

′

σm
′ �

�    (8) 

The complex expression of πII , dependent on σm
′ , 

makes understandable the partition of this group 
into two more simple groups, γk  and  σ2

′

σ1
′ , giving to 

σm
′  the value of any of the ends of its range since 

they are of the same order of magnitude. Thus, the 
groups πI and πII  disclose in three groups 

�
π1 = �

τo ,σ′ k1σ1
′

γw γv H1
2 �

π2 = �γk�

π3 = �σ2
′

σ1
′ � ⎭

⎪
⎬

⎪
⎫

     (9) 

Doing this, from pi theorem π1 = ψ(π2, π3), the 
order of magnitude of τo,σ′  is given by 

τo,σ′  = �γw γv H1
2

k1σ1
′ �Ψτ �γk , σ2

′

σ1
′ �                         (10) 

As regards Ūσ′ , since it also depends on time, the 
solution is given by 

Ūσ′ = ΨU �
t

τo ,σ ′
, γk , σ2

′

σ1
′ �                           (11) 

with Ψτ and ΨU  unknown functions of their 
arguments. 
 
 
5 Verification of the results  

This section is devoted to check the solutions found 
in the above section, i.e., the dependences for τo,σ′  
and Ūσ′ , expressions (10) and (11) respectively. 
Eight sets of simulations have been run; in each one, 
some of the particular parameters or initial values of 
the problem have been changed to give, as 
appropriate, the same or different values to the 
dimensionless groups in the search of the same or 
different solutions. Changes in the values of the 
individual parameters are enough to cover much of 
the real scenarios. 

First, a reference set is established with all the 
rest referred to it or compared to each other. The 
physical and geometrical characteristics that change 
are: γv, γk, eo, H1 (m), σ1

′  (N/m2), σ2
′  (N/m2) and k1 

(m/year), Table 1. The values of π2 and π3 are 
derived from them while π1 is obtained once the 
characteristic time τo,σ′  is read from the simulation, 
Table 2. The criterion for the choice of τo,σ′  is the 
time required by the soil to reach 90% of the total 
excess pore pressure dissipation. 

set γv γk eo H1 σ1
′  σ2

′  k1 
1 0.10 0.5 1 1 30000 60000 0.020 
2 0.10 0.5 1 1 60000 120000 0.020 
3 0.10 0.5 3 2 30000 60000 0.040 
4 0.20 0.5 1 1 30000 60000 0.020 
5 0.40 0.5 1 1 30000 60000 0.020 
6 0.10 1.5 1 1 30000 60000 0.020 
7 0.10 0.5 1 1 30000 120000 0.020 
8 0.16 0.2 1 1 30000 46265 0.032 

Table 1. Physical and geometrical parameters 
 

set τo,σ′  π1 π2 π3 
1 1.118 0.684 0.5 2.00 
2 0.559 0.684 0.5 2.00 
3 2.236 0.684 0.5 2.00 
4 2.236 0.684 0.5 2.00 
5 4.472 0.684 0.5 2.00 
6 2.219 1.358 1.5 2.00 
7 0.875 0.536 0.5 4.00 
8 1.067 0.65 0.2 1.54 

Table 2. Characteristic time and dimensionless 
groups 

 
In view of the results, Tables 1 and 2, the 

characteristic time (τo,σ′ ) is different for each 
problem, depending on the parameters and 
geometric characteristics of the same. However, the 
dimensionless form of the characteristic time (π1) 
remains invariant as long as the values of π2 and π3 
are kept constant, monomials on which we have 
already seen it depends (10). 

As for Ūσ′  (11), two representations of this 
variable are given, Fig. 2 and Fig. 3. In the first, Ūσ′  
is represented as a function of time, so that for each 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER García-Ros G., Alhama I., Cánovas, M.

E-ISSN: 2224-3461 75 Volume 12, 2017



 

 

of the 8 sets studied a different curve of Ūσ′  is 
obtained. In the second graph, when we make its 
representation as a function of the dimensionless 
time, t/τo,σ′ , we see that the curves are arranged very 
close to each other. In addition, all cases with equal 
values of π2 and π3, and therefore of π1, are 
represented by a single curve, as in our case for sets 
1 to 5. This is a sign that the nondimensionalization 
process has been applied successfully, providing the 
most precise solutions to the non-linear 
consolidation problem. 

 
Figure 2. Ūσ′  as a function of time 

 
Figure 3. Ūσ′  as a function of dimensionless time 

 
 
6 Conclusion 
For the first time, as far as we know, the 
nondimensionalization procedure has been applied 
to a non-linear diffusion problem in order to 
determine the independent dimensionless groups 
that rule its solution. It has been demonstrated that 
the difficulties that emerge in the treatment of the 
nondimensionalization protocol can be surpassed 
what justifies the application of the method to such 
an important objective. The non-linearities inherent 
to soil consolidation are mainly related to the 

constitutive dependences between the parameters or 
coefficients of the governing equations and the 
dependent variable (they are potential type 
functions). These non-linearities are, perhaps, not 
very sharp, but undoubtedly complex in relation 
with the nondimensionalization protocol. In contrast 
to linear problems, attention should be paid to the 
choice of the references – to normalize the 
dependent and independent variables –, as well as 
the data averaging – needed to make unity the order 
of magnitude of the variables and their derivatives 
thus deleting them in the dimensionless governing 
equation –, allowing the coefficients of the averaged 
equation to be of the same order of magnitude.  

Once the dimensionless number are derived, they 
can be organized in the best way for the 
management of the engineer and, as o ccurs in 
consolidation, separated in new groups (although it 
supposes a greater number), more familiar to the 
field in which the problem is involved. 

To check the solutions provided by the 
nondimensionalization process applied to soil 
consolidation a set of simulations has been carried 
out by using a reliable numerical method. In these 
simulations, when the individual parameters are 
modified in such a way that the dimensionless 
groups do not  change their value, the solutions 
remains unchanged.  
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