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Abstract – This paper describes the application of the potent Method Of Lines (MOL) to the classical one-
dimensional Stefan problem. The mathematical model of the Stefan problem experiences unique features, 
such as structural changes in the ordinary differential equation that describes the solid-liquid interface of a 
half-space region. To overcome these obstacles, MOL was implemented with the ordinary differential 
equation solver of the MATLAB code, using the unique event location property. The feasibility of MOL for 
treating the Stefan problem was validated upon comparing the obtained semi-numerical results against the 
exact analytical results available in the archival literature. Using a wide variety of Stefan numbers for 
engineering applications, it was realized that the Method Of Lines (MOL) coupled with the event location 
property tracked the temperature-time history and the moving liquid-solid interface in the half-space region 
admirably.  

 
Keywords: Stefan problem, Moving solid-liquid boundary,  Method  Of  Lines (MOL),  MATLAB  
code, Event location property.   
 
 
 
Nomenclature 

 
c     specific heat 
k     thermal conductivity  
l     characteristic length 
 N     number of lines 
 L     latent heat 
 x     space variable 
 x*   dimensionless x, eq. (6) 
S(t) position of moving front 
S* dimensionless S, eq. (7) 
Ste Stefan number, eq. (9) 
t     time 
t*  dimensionless t, eq. (6) 
T  temperature 
T* dimensionless T, eq. (5) 
To  high temperature 
Tm fusion temperature 
 
Greek letters 
α  thermal diffusivity  

λ    eigenvalues of eq. (8)  
ρ     density  
 
Subscripts 
l     liquid 

1 Introduction 
    Heat conduction problems involving change of 
phase in materials due to melting or freezing 
(solidification) are very important in engineering 
and science. Referred as moving boundary 
problems, these problems occur in industrial 
applications, such as casting of metals and plastics, 
melting and solidification of alloys, crystal growth, 
ice production, freezing/thawing of foods, thermal 
energy storage, aerodynamic ablation, etc.  

In complex problems on phase-change heat 
conduction, the bounding surface separating the 
frozen and unfrozen regions of the material changes 
with time. Herewith, this aspect revolves around the 
mathematical determination of the interface 
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location as a function of time. In order to solve 
these problems, two objectives need to be pursued: 
one is the solution of the heat conduction equation 
and the other is the position of the unknown solid-
liquid boundary, which has to be tracked as part of 
the solution. The existence of a moving boundary 
generally means that the phase-change heat 
conduction problem does not admit a closed form, 
exact analytical solution and consequently much 
research has focused on approximate solution 
techniques, both analytical and numerical. 

The study of heat conduction in a medium with 
solid-liquid phase changes was initiated by Jožef 
Stefan [1,2], the Slovene physicist who published 
six treatises on deciphering the ice formation in the 
polar seas between 1889 and 1891. Stefan 
considered first the problem of a semi-infinite half-
space 0 ≤ x < ∞ containing a pure material, which 
can exist in either liquid or solid phase. A detailed 
biography of J. Stefan was provided by Crepeau 
[3]. 

In applied mathematics, the Stefan problem 
literally relates to moving boundary value 
problems; a special type of a boundary value 
problem highlighting a phase boundary that moves 
with time (Cannon and Hill [4]). The two phases 
(solid and liquid) are merely regions in which the 
coefficients of the heat conduction equation are 
continuous and differentiable up to the order of the 
PDE. In thermal physics, such coefficients 
represent thermal properties of the medium for each 
phase. The moving boundaries (or interfaces) are 
infinitesimally thin surfaces that separate the two 
adjacent phases. In view of this, the coefficients of 
the heat conduction equation and its derivatives 
may suffer discontinuities across the interfaces. 
Issues related to the existence, uniqueness, and 
stability in the Stefan problem have been discussed 
in [4].In addition, there is a book written by Gupta 
[5] and a state-of-the art review article assembled 
by Tarzia [6]. There are several solution procedures 
for the Stefan problem that are not included in Refs. 
[5,6]. A peculiar numerical method based on an 
integro-differential formulation of the one-
dimensional Stefan problem was proposed by Ang 
[7]. The numerical results indicated that accurate 
solutions are obtainable offering a viable alternative 
method. Javierre et al. [8] presented a critical 
comparison on the suitability of several numerical 
methods, level set, moving grid and phase field 
model to address the Stefan problem in phase 
transformation studies. The comparison showed 

that the type of phase transformation determines the 
convenience of the numerical technique.  

The main goal in this work is to address the 
classical one-dimensional Stefan problem with a 
potent analytical-numerical method, the so-called 
Method Of Lines (MOL), which is conveniently 
framed in the platform of the MATLAB code with 
event location property. As evidenced in the 
detailed literature review, the combined 
computational procedure to be implemented in the 
present work has never been explored before. 

 
 
2 Problem Description 
 
    Consider a semi-infinite, half-space region 0 ≤ x 
< ∞ made with a homogeneous solid. The initial 
temperature of the solid coincident with the fusion 
temperature, mT , was scaled to be zero for 
convenience. At time 0t = , the temperature at the 
exposed surface of the solid 0x =  was suddenly 
raised to the scaled value of 1oT = , and maintained 
subsequently for all time 0t > . Consequently, the 
solid starts to melt at x = 0 and the solid-liquid 
interface moves in the positive x-direction. After a 
certain time t, the problem boils down to 
determining the temperature distribution and the 
thickness s(t) of the solid layer. The sketch of the 
Stefan problem in the proper Cartesian coordinates 
is illustrated in Figure 1. 
   Under the assumption of constant thermal 
properties, the mathematical formulation of the 
Stefan problem begins with the 1-D heat conduction 
equation (Luikov [9], Özişik [10], Poulikakos [11]): 
 

2

2 0 ( ) 0l
T T x s t t
t x

α∂ ∂
= , < < , >

∂ ∂                   (1)
   

 
subject to the initial condition  
 

( 0) mT x t T, = =                                             (2)   
 
and the two boundary conditions  
 

 ( 0 ) 1 ( ( ) ) 0T x t T x s t t= , = , = , =                   (3)  
 
In the preceding equations (1)-(3), T is the 
temperature, lα  is the thermal diffusivity of the 
liquid and ( )s t  is the position of the moving front.  
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Figure 1. Sketch of the Stefan problem and 
coordinate system 

      After the first boundary condition is applied at 
0x = , melting of the solid begins at this location. 

Immediately thereafter, the liquid-solid interface 
penetrates into the solid and moves in the positive 
x-direction, x > 0 to reach the moving second 
boundary condition at x = s (t).  
       Owing that the underlying heat conduction 
equation (1) is not valid at the phase change 
interface and s(t) is an unknown variable, an 
additional equation is required for its 
determination. The new equation for closure is 
known as the Stefan condition.  Fundamentally, the 
Stefan condition states that the freezing front moves 
in a special way, such that the front velocity is 
proportional to the jump in heat flux across the 
front.  
      In general, pure substances change phases 
isothermally and there is a latent heat associated 
with the phase change. In general, the latent heat of 
a given phase change is the quantity of heat 
liberated when a unit mass undergoes that phase 
change completely and isothermally. In particular, 
the latent heat of fusion is the quantity of heat 
liberated when a unit mass of pure liquid 
completely freezes at its fusion temperature. 
Conversely, the latent heat of fusion is the quantity 
of heat, which must be added to melt a unit mass of 
pure solid at its fusion temperature. The latent heat 
has dimensions of [energy]/[mass] and is usually 
given in units of Joule/gram. Essentially, the Stefan 
condition is derived from a physical constraint, 
which comes from the conservation of energy at the 
liquid-solid interface, so that the local interface 
velocity depends on the heat flux discontinuity 
there. Accordingly, the Stefan condition is 
expressed by the nonlinear boundary condition 
 

l
ds TL k
dt x

ρ ∂
= −

∂
                                                    (4)  

 
along with the initial condition s(0) = 0. The 
participating properties are: ρ the density of the 
liquid, kl the thermal diffusivity of the liquid and L  
the latent heat of the phase change material. 

 

3 Exact Analytical Solution 
 Exact analytical solutions of equations (1)-(4) 

are usually found in Refs. [9-11]. From here, the 
dimensionless temperature distribution T* has the 
form  

 

2
1

( )
m

o m

erf x tT TT
T T erf λ

 ∗ ∗ 
 ∗  

/−
= = −

−                        (5)
                     

 
where erf  is the Gaussian error function. In 
addition, the dimensionless coordinate x∗  and the 
dimensionless time t*   are written as  
                                                                                                    

                                          (6)                                                                  
where l  is the characteristic length.  
 
   The dimensionless displacement of the melt 
interface S* is expressed by  
 

2S tλ∗ ∗=                                                               (7)   
 
In the pair of eqs. (5) and (7), λ  stands for the 
positive roots of the transcendental equation 
 

                                   (8) 
 
Herein, the Stefan number (or the phase change 
parameter), Ste, defines  the  ratio of  the  sensible  
heat of  the solidifying phase to the latent heat L as 
 
Ste = ρc(To –Tm)/L  
                                                                           (9)  
Named after J. Stefan, the Stefan number, Ste, is an 
important dimensionless group in solid-liquid phase 
change phenomena [9-11]. 
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Figure 2. Discretization mesh 

4 Approximate Analytical/Numerical            
Solution: The Method Of Lines (MOL) 

 Unquestionably, the two most commonly used 
approximate methods for the solution of phase-
change heat conduction problems are the integral 
method (Goodman  [12]) and the numerical method 
cited by Tarzia [6]. In this work, the heat 
conduction equation (1) with the boundary 
conditions in eqs. (2) and (3) is analyzed with the 
potent Method Of Lines (MOL), a general 
procedure for solving time-dependent partial 
differential equations of parabolic type (Liskovets 
[13]). When applied to the 1-D heat conduction 
equation (1), MOL discretizes the second order 
space derivative with a second-order centered 
formulation, while leaving the first order time 
derivative continuous. In essence, the MOL 
procedure transforms the partial differential 
equation (1) into a system of ordinary differential 
equations of first order. The pioneering work on 
MOL for solving the heat conduction equation was 
carried out by Ivanov [14]. Depending on the size, 
the resulting systems of ordinary differential 
equations of first order may be integrated 
analytically or numerically. For analytical 
techniques, several papers by Sarmin and Chudov 
[15], Zafarullah [16] and Verwer and Sanz-Serna 
[17] have dealt with the stability, convergence and 
accuracy of MOL. For the numerical treatment of 
MOL, the fourth/fifth order Runge-Kutta method is 
considered the most popular (Wouwer et al. [18]). 
There is a book written by Schiesser and Griffiths 
[19] linking  MOL with the MATLAB code 
Deviating from the direct heat conduction problems 
(DHCP), Campo and Ho [20] combined MOL with 
numerical differentiation for solving an inverse heat 
conduction problem (IHCP) in  a plane wall 
receiving variable surface heat flux. 

In the present work, the discretization procedure 
follows the footsteps of the one suggested by Chun 
and Park [21] and Furenes and Lie [22] in which 
the spatial domain is divided into 1N −  uniform 
step size x∆ . With the interface located between 

lines i  and 1i +  as shown in Fig. 2, the line 
temperatures Tk are determined from the following 
system of first order differential equations: 

 
1 1

2

2 2 1
( )

k k k k
l

dT T T T for k i
dt x

α + −− +
= , = ,... −

∆  
                                                                                   (10) 
and 
 

  

1
2

2 (1 )
( )

i m i i l
l

l

dT T T T L ds
dt x k x dt

α δ ρα −− + −
= +

∆ ∆
   

                                                                                   (11)  
where the subscript i indicates 
 
 ( ) 1 1k mi max T T k N= ≥ , = ,..., − .                      (12)   
 
Turning the attention to eq. (11), the symbol 
 

( )s i x xδ = − ∆ /∆   
 
represents the dimensionless distance from the line 
i  to the interface.  In  this  regard, the  location  for 
i  can  be  found  by comparing the line temperature 
Tk against the melting temperature mT  implicating 
that 
 

 
( )

l

x s t

kds T
dt L xρ =

∂
= −

∂
                                            (13)

   

 
To contend with the singularity that arises when the 
solid/fluid interface gets very close to the grid line, 
Verma [23] recommended to calculate the 
temperature gradient at the interface x = s(t) with a 
truncated Taylor series. Adopting this simple 
approach, and retaining two terms, the temperature 
gradient can be written as 
 

2 2 1

( )

2(1 )
2

i i i i i

x s t

T T T T TT
x x x

δ− − −

=

− − +∂
= + +

∂ ∆ ∆
  (14)

   

 
Next, merging eqs. (13) and (14) gives rise to the 
differential equation for the prediction of the 
interface velocity  
 

2 2 12(1 )
2

l i i i i ik T T T T Tds
dt L x x

δ
ρ

− − −− − + = − + + ∆ ∆ 
  

                     (15) 
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To summarize, the system of ordinary differential 
heat equations of first-order composed by eqs. (10), 
(11) and (15) will be solved numerically with an 
appropriate ODE solver algorithm, like the 
fourth/fifth order Runge-Kutta [19]. 

5 Event Location Property in MATLAB 
       In certain engineering problems modeled with 
ODEs, the times of specific events are important, 
such as the times at which the ODE solution 
reaches certain target values. While solving a 
certain problem, the MATLAB ODE solvers can 
locate transitions to, from, or through zeros of a 
vector of user-defined functions. The mathematical 
model experiences structural changes in the 
definition of the ordinary differential equations as 
indicated in equations (10) and (11). To overcome 
these difficulties, the model was implemented in the 
MATLAB platform [24] and right away the event-
function in the ODE solver was activated. The 
event location strategy to be employed was taken 
from Refs. [21,22].  
       The changes are examples of events, and two 
types of events exist. Time events are events, which 
occur at a given time, whereas state events are 
events, which occur when the subsystem reaches 
some pre-set conditions. Because most ODE solvers 
are structured on a hypothesis of smoothness in the 
continuous subsystem, integration along 
discontinuities without event location may cause 
severe inefficiency, simulation failures. As a 
consequence, incorrect event sequences can be 
generated. The points we need to find are given 
when event functions vanish, where y (t) is the state 
vector at a given time. The process of finding these 
points is called event location. Sometimes, the 
integration needs to be terminated at the time of the 
event, and possibly restart integrating the states 
with initial values and state definition depending on 
the termination time. 
      Most continuous simulation languages have 
capabilities of locating events. If an ODE solver has 
the capability of locating events, the step size may 
be adapted to hit the instants of time when the 
discontinuities occur. A specification of what kind 
of events need to be located, and what the solver 
must do when an event occurs, and the only 
additional program lines necessary. Numerical 
results have demonstrated that ODEs with event 
location has been solved accurately at a cost 
scarcely greater than when no events occur. 

       During a certain numerical integration step, it is 
important to ensure that the model not allowed to 
switch from one definition to another. Thus, we 
need to have the capability of terminating the 
integration temporarily each time the interface 
crosses a grid line. The syntax of the ODE solver in 
a MATLAB platform is expressed by 
 
 [t, y] = solver (@odefun, tspan, y0) 

 
where the solver is one of  ode45, ode23, ode113, 
ode 15s, ode23s,ode23t.The solvers are based on 
different recurrence algorithms and have different 
orders of comparable accuracy, for example 
‘odefun’ is a function that evaluates the right-hand 
side of the differential equation, tspan is a vector 
specifying the time interval of integration, and y0 is 
the vector of initial conditions. The ODE solver 
returns a column vector of time points (t), and a 
solution array (y) in which each arrow corresponds 
to the solution at the time points in t. 
     In some cases, the ODE solver performance can 
be improved by overriding these defaults. This 
improvement can be done by supplying the solvers 
with one or more property values in an options 
structure. The available integration properties 
depend on the ODE solver used. The argument is 
created with the ‘odeset function’ named 
‘process_events’. The events property is created 
with 

 
 options = odeset (‘ Évents’, @process_events) 

 
The ODE solver solves for the default case while 
also finding where the events functions of (t, y) are 
zero. The ODE solver has the syntax 

 
 [t, y, te, ie] = solver (@solid_process, tspan, y0, options) 

 
where ‘solid_process’ is the name of the ode 
function. If an events function is specified and 
events are detected, the ODE solver delivers three 
additional outputs. If an events function is specified 
and events are detected, the ODE solver delivers 
three additional outputs: a column vector of times 
at which events occurred (te), solution values 
corresponding to these times (ye), and the indices 
of the event that the solver detected (ie). For each 
event function, it is mandatory to specify whether 
the integration is to terminate at a zero and whether 
the direction of the zero crossing matters.  
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6 Presentation of Results 
         
    The assessment of MOL for solving the one-
dimensional Stefan problem with the MATLAB 
code is carried out by employing substances with 
Stefan numbers covering three different orders of 
magnitude, i.e., Ste = 0.1, 1 and 10 in Table 1. The 
first five substances possess Ste values that range 
between 0.37 and 0.65, which fall inside the 
interval 0.1 < Ste < 1. For instance, tin with a Ste = 
1.26 is slightly greater than 1 and water with a Ste 
value nearly 8 is close to 10. 
 
Table 1. Properties of selected substances 
 
   
Substance 

Latent 
heat 
L (J/g) 

    Fusion      
temperature 
    Tf (K) 

Specific 
heat 
c(J/g.K) 

Stefan 
number 
   Ste 

Aluminum 370   933 0.90 0.65 
Copper 204 1356 0.39 0.49 
Iron 251 1813 0.45 0.37 
Lead   23   600 0.13 0.59 
Nickel 307 1723 0.44 0.49 
Tin   60   505 0.23 1.26 
Water 333   273 4.20 7.93 
 
     For simplicity, the discretized system of first 
order heat equations was deduced for uniform grid 
spacings Δx. The accuracy of the numerical results 
is sensitive to the choice of the number of lines N in 
the computational domain. In this regard, a 
sensitivity analysis of the grid revealed that a 
reasonable number of lines is N = 51.  
      The comparison between the analytical and 
numerical solutions for the dimensionless position 
of the liquid-solid interface S* changing with the 
dimensionless time t* is showed in Fig. 3 for three 
Stefan numbers: Ste =  0.1, 1 and  10 under study 
here. It is observable in the figure that the 
agreement for the three curves is perfect.  
      Shown in Figs. 4 and 5 are the numerical and 
the analytical dimensionless temperature fields T* 
= f (x*, t*) for two limiting St values, the smallest 
Ste = 0.1 and the largest Ste = 10. Fig. 4 
corresponds to Ste = 0.1 for two pre-selected 
locations x* = 0.1 and 0.5, whereas Fig. 5 contains 
Ste = 1 for two pre-selected locations x* = 1 and  
5. The four curves in the pair of figures exhibited 
excellent parity when compared against the 
analytical results obtained originally by Stefan [1, 
9-11]. In view of this, it may be inferred that the 
comparison for T* = f (x*, t*) involving an 

intermediate Ste value should have precision of 
equal quality. 
 

 
Figure 3. Variation of the dimensionless interfacial 
position S* with the dimensionless time t* 
parameterized by three Stefan numbers: Ste = 0.1, 
1, 10. The exact, analytical temperatures are taken 
from Ref. [11]. 
 
 

 

Figure 4. Variation of the dimensionless 
temperature T* with the dimensionless time t* 
parameterized by the dimensionless coordinate x* = 
0.1 and 0.5 for Stefan number, Ste = 0.1. The exact 
analytical temperatures are taken from Ref. [11]. 
 

 
Figure 5. Variation of the dimensionless 
temperature T* with the dimensionless time t*.  
parameterized by the dimensionless coordinate x* = 
1 and 5 for a fixed Stefan number, Ste = 10. The 
exact, analytical temperatures are taken from Ref. 
[11]. 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Antonio Campo, Ulises Lacoa

E-ISSN: 2224-3461 24 Volume 9, 2014



7 Conclusions 
    A hybrid analytical/numerical study based on 
the Method Of Lines (MOL) for solving the 
classical 1-D Stefan problem has been developed 
for the first time in this study. The systematic 
implementation of MOL in a MATLAB platform 
with event location property has proven to be 
efficient, accurate and economical. The MOL 
outcome produces an oscillation-free solution, 
because the phase boundary is treated as a line 
rather than a control volume. With a reasonable 
number of lines N, MOL is able to accurately 
track: 1) the temperature-time history in the solid 
as well and 2) the moving liquid-solid interface. 
All numerical temperatures and numerical 
interfacial locations agree extremely well with 
the exact, analytical results across a wide 
spectrum of Stefan numbers for substances of 
interest in heat engineering applications. 
Extensions to more involved 1-D Stefan problems 
accounting for variable thermal properties seem 
to be straightforward. 
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