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Abstract: - Analysis of entropy generation rate for transient heat conduction, taking place in homogeneous solid 
slab with fixed temperature boundary conditions, is presented. The initial condition is defined as a constant 
temperature. The exact solution is solved and used to analyze the local and total entropy generation rates. Two 
cases, heating and cooling processes, are considered in this study. It is found that the local entropy generation 
rate dramatically changes at small time and slowly approaches the local entropy generation rate of steady state 
case. The location of minimum local entropy generation rate can be found in the slab for both heating and 
cooling cases. For the total entropy generation rate, it shows very high value at small time. This is due to high 
temperature gradient. It, then, sharply reduces and converges to the total entropy generation rate of steady state 
case. However, the minimum total entropy generation rate is found for heating case, while it cannot be detected 
for cooling case. The minimum total entropy generation rate, found in heating case, is observed that it is lower 
than that of steady state case. The boundary conditions clearly express the effect on the local and total entropy 
generation rates for transient heat conduction. However, the effect of initial condition on the entropy generation 
rates can be neglected, especially at large time.  
 
Key-Words: - Entropy Generation Rate, Second Law Analysis, Transient Heat Conduction, Steady State Heat 
Conduction, Boundary Condition of the First Type, Exact Solution 
 
1. Introduction 
Systems in thermal processes usually involve fluid 
flow and heat transfer phenomena. To analyze the 
energy transfer in thermal systems, the first law of 
thermodynamics is often used, for example, to find 
the efficiency of the system or to investigate the 
energy loss from the system. For the second law 
analysis, it evaluates the irreversibility, which 
destroys the available work of the system, and it can 
be quantified by exergy destruction or entropy 
generation (so called entropy production). In a 
thermal system, heat transfer process is one of the 
most important irreversibility sources. Therefore, it 
has been widely interested by researchers.   
 For steady state heat conduction, Kolenda et al. 
[1] investigated the entropy generation taking place 
in this system. They concluded that minimization of 
entropy generation in conduction process is always 
possible by introducing additional heat sources, 
which can be arbitrarily chosen as positive or 
negative. The entropy generation of steady state heat 
conduction was also studied by Ibanez et al. [2]. The 
system analyzed is a solid slab having uniform 
internal heating. The boundary condition of the third 
kind was applied to the system in both surfaces. 
They found that Biot numbers (Bi) has significant 

effect on the global (or total) entropy generation rate 
and the minimum point of this function can be 
found.  
 For transient heat conduction, Bautista et al. [3] 
have been shown that the only source of 
irreversibility in the system is the presence of 
thermal gradient. Moreover, the spatial average of 
the nondimensional entropy generation rate 
decreases with time. Strub et al. [4] analyzed the 
entropy generation of heat conduction through a 
wall which was submitted to periodic temperature 
fluctuation on one face and constant temperature on 
the other face. Moreover, they also analyzed the 
problem using ideal Carnot cycle. They found that 
the two approaches lead to different sometime 
opposite results. 
 Recently, the minimum entropy generation for 
steady state conduction with temperature dependent 
thermal conductivity and asymmetric thermal 
boundary conditions was studied by Aziz and Khan 
[5]. Three model geometries, a plane wall, a hollow 
cylinder, and a hollow sphere, were focused. They 
summarized that the dimensionless entropy rates for 
both classical as well minimum entropy generation 
(MEG) models were found to be higher in a hollow 
sphere compared with those in the hollow cylinder. 
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 As observed from Refs. [6 and 7], the entropy 
generation rate has been widely analyzed for 
combined heat and fluid flow system. However, for 
the entropy generation analysis of heat conduction, a 
few researches have been found.  
 In this study, the entropy generation of transient 
heat conduction with fixed temperature boundary 
conditions is investigated. Heating case (the 
boundary temperature is higher than the initial 
temperature) and cooling case (the boundary 
temperature is lower than the initial temperature) are 
assumed and the local and total entropy generation 
rates are investigated. The minimum points of local 
and total entropy generation rates are focused. The 
entropy generation rate of steady state heat 
conduction problem is analyzed and compared with 
that of transient heat conduction problem with the 
same boundary condition.  
 
 
2. Problem Formulation 
In this study, the one-dimensional transient 
conduction through a slab is investigated. The solid 
slab is a homogeneous material with a constant 
thermal conductivity, k. The temperatures of both 
surfaces of the slab are fixed at constants (boundary 
condition of the first type). The schematic diagram 
of the slab with boundary conditions is shown in Fig. 
1. The heat equation for this problem can be written 
as: 
 

 
 

Fig. 1 Schematic representation of the slab and 
boundary conditions 
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x α t
∂ ∂
∂ ∂

      (1) 

 
with the initial and boundary conditions as: 
 

oT(x,0) = T       (2) 
 

1T(0,t) = T       (3) 
 

2T(L,t) = T       (4) 
 
where α  is thermal diffusivity and t is time. To find 
the solution or the temperature distribution, the 
above problem can be separated into the steady state 
component and transient component with 
homogeneous boundary conditions [8]. The steady 
state component is defined as: 

 
2

S
2

T = 0
x

∂
∂

      (5) 

 
S 1T (0) = T       (6) 

 
S 2T (L) = T       (7) 

 
The steady state solution can be obtained by 
integrating and substituting the boundary conditions. 
It results: 
 

( )S 2 1 1
xT (x) = T -T +T
L

     (8) 

 
The transient solution, TT(x,t), satisfies: 
 

2
T T
2

T T1=
x α t

∂ ∂
∂ ∂

      (9) 

 
T o ST (x,0) = T -T (x)                (10) 

 
TT (0,t) =0                 (11) 

 
TT (L,t) = 0                 (12) 

 
This problem can be solved using separation of 
variables method and it gives: 
 

( )2
T n 2

n=1

nπx αtT (x,t) = A sin exp - nπ
L L

∞    
      

∑      (13) 

 
An can be obtained using orthogonality relation and 
the result is: 
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( )
L

n o 2 1 10

2 xA = T - T -T +T
L L
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L
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′  ′ 

 

∫
             (14) 

 
Therefore, the complete solution of investigated 
problem is: 
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      
× 


∑

∑

         (15) 

 
 
3. Entropy Generation Analysis 
The local entropy generation rate per unit volume 
(in W/m3K) of one-dimensional heat conduction 
without internal heat generation can be defined as [9, 
10]: 
 

( )2

gen 2

T
s = k

T
∇

′′′                 (16) 

 
It should be mentioned here that the local entropy 
generation rate per unit volume is often referred as 
the local entropy generation rate through this paper. 
For the temperature gradient, T∇ , it is obtained by 
finding derivative of Eq. (15) respect to x and the 
result is: 
 

( )

( )

( ) ( )

2 1 2 1

1

2
2

2o
2

1

T -T T cos(nπ)-T2T =
L L n

nπ αtcos x exp - nπ
L L
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L L L

n

n

∞

=

∞

=

∇ + ×


    +       
    

       

∑

∑
                 (17) 
 

If A is defined as the area normal to the direction of 
heat flow and it is assumed to be constant, the total 
entropy generation rate (in W/K) can be calculated 
by integrating Eq. (16) over the slab volume or: 
 

L

gen gen0
s = s Adx′′′∫                 (18) 

 
The nondimensional local entropy generation rate 
and the nondimensional total entropy generation rate 
can be formed, respectively, as: 
 

gen
loc 2

s
N

k/L
′′′

=


                (19) 

 
gen

tot

s L
N

kA
=


                (20) 

 
As well known that when time increases and 
approaches infinity, the transient heat conduction 
system can be approximately characterized by 
steady state conduction which has the same 
boundary conditions. Therefore, the entropy 
generation rate of steady state heat conduction is 
also interested in this study. The local entropy 
generation rate of steady state conduction problem 
can be obtained using Eqs. (16) and (8). 
 

( )

( )

2
2 1

gen,steady 22

2 1 1

T -Tks =
L xT -T +T

L

′′′
 
  

              (21) 

 
The nondimensional local entropy generation of 
steady state heat conduction matching with the 
above problem is: 
 

( )
( )( )

( )
( )( )

2 2
2 1

loc 2 2
2 1 1

T -T 1-θ
N = =

T -T x/L+T 1-θ x/L+θ
     (22) 

 
where 1 2θ =T /T . For A=1m2, the nondimensionless 
total entropy generation rate can be expressed as: 
 

2 2

1 2
tot

2 1

T T 1N = - = θ-
T T θ

   
     

  
             (23) 

 
It is worth to mentioned here that the local and total 
entropy generation rates shown in Eqs. (22) and (23) 
are away positive. Moreover, from Eq. (23), it can 
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be presented in terms of heat transfer rate, q , 
through the slab as: 
 

gen,steady
tot

1 2

s L qL 1 1N = =
kA kA T T

 
− + 
 





             (24) 

 
where 
 

( )1 2T -T
q = kA

L
                (25) 

 
From Eq. (24), the total entropy generation rate, 

gen,steadys , can be expressed as 

( )gen,steady 1 2s =q 1/T 1/T− +   
and this is the same as the entropy generation due to 
heat transfer, which can be found in 
thermodynamics textbooks [11, 12]. 
 
4. Results and Discussions 
The temperature distribution, observed from Eq. 
(15), was expressed as a series of summation. Even 
through the number of summation terms, n, should 
be infinity, it is not common practice to generate a 
computer code for infinite summation because it 
consumes a lot of calculation time without any 
significant accuracy improvement. However, the 
temperature shows fluctuation, especially at small 
time, if only a few terms are used. Fig. 2 illustrates 
that, at t=5s, the fluctuation of temperature value 
cannot be noticed when n is equal to 30. If the 
temperature distribution at t=1s is considered, using 
n=30 cannot provide the stable result. The 
fluctuation of temperature value is still observed 
when t is small. Therefore, to compromise between 
the accuracy of calculation and the calculation time 
consumed, the number of summation terms 
employed in this study is 200. Comparing to a 
similar problem discussed in Ref. [13], Hahn and 
Ozisik illustrated that for a transient heat conduction 
problem with symmetric boundary condition, at t=0s, 
the temperature at center of slab after summing 100 
terms causes the error of 0.29%. Moreover, they 
also mentioned that 200 summation terms is 
sufficient for convergence in their presented 
problem.  
 
 
4.1 Heating Case 
To study the local entropy generation rate in the 
mentioned problem, the initial temperature was set 
as 50oC (323K) and the surface temperatures at x=0 
and x=L are 200oC (473K) and 20oC (293K), 

respectively. The thermophysical properties, used in 
this analysis, are assumed to be constants. The 
thermal conductivity and thermal diffusivity of 
copper at 300K are adopted (k =401 W/m⋅K and 

-6α=117 10× m2/s) [14]. The temperature 
distribution and the local entropy generation rate per 
unit volume were computed and the results are 
presented in Figs. 2 and 3.  
 

 
 

Fig. 2 The effect of summation term on the 
temperature at t=5s 

 

 
 

Fig. 3 Temperature distribution for different times 
 
 From Fig. 3, it can be observed that, at small 
time, the temperature near the left surface (x=0) 
dramatically changes with x. It means that the 
absolute temperature gradient is high near the 
surface. At a specific location, where heat 
penetration still does not reach, the temperature 
remains at the initial temperature, which is a 
constant (323K). Therefore, the temperature 
gradient is zero. The absolute temperature gradient 
through the slab is observed to reduce with time and 
the temperature distribution slowly approaches a 
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uniform distribution, the steady state case, indicated 
by dash line.  
 In Fig. 4, the local entropy generation rate, 
presented in dimensionless form, is expressed as a 
function of distance, x, for different times. This 
figure reveals that the maximum nondimensional 
entropy generation rate takes place near the left 
surface and its value reduces with increase of time. 
This is because of high temperature gradient near 
the left surface. At a certain time, the dimensionless 
entropy generation rate reduces with x. For example, 
at t=100s, the dimensionless entropy generation rate 
is noticed that it is zero for x between 0.55 and 0.6. 
It can be explained that the temperature gradient is 
zero in this range due to the absence of heat 
penetration, as discussed before. Moreover, the 
temperature gradient near the right surface can be 
also observed. Consequently, the local entropy 
generation rate grows up again. As the time 
increases, the nondimensional local entropy 
generation rate finally approaches that of the steady 
state case.  
 

 
 

Fig. 4 Variation of nondimensional local entropy 
generation rates for heating case 

 
 There is an interesting issue obtained from Fig. 
4, that is the minimum point of the local entropy 
generation rate. Fig. 5 illustrates the nondimensional 
local entropy generation rate at 400s, 600s, 800s and 
1400s. In the figure, the circles mark the location of 
the minimum values of the local entropy generation 
rate at defined times. It can be found that the 
minimum entropy generation moves forward to the 
right surface. However, after a specific time, the 
location of minimum entropy generation, then, 
moves far from the right surface until it takes place 
at x=0 when time approaches infinity, as observed 
from steady state case. Moreover, the local entropy 
generation rate for small time is higher than that for 

large time. This is different when x increases. For 
example, the local entropy generation rate of 800s is 
being higher than that of 600s when x is higher that 
0.41 m. It is worth to notice that the area under the 
curve, called the total entropy generation rate, at the 
large time is possible to be higher than that of the 
small time.  
 

 
 

Fig. 5 Nondimensional local entropy generation 
rates and their minimum locations 

 
 To find the total entropy generation rate, the 
numerical integration method, called the trapezoidal 
rule [15], was used. If the local entropy generation 
rate at a specific time is defined as f(x), the total 
entropy generation rate can be figured by 
trapezoidal rule as: 
 

M-1b

a
i=1

b-a b-af(x)dx f(a)+2 f(a+i )+f(b)
2M M

 ≅   
∑∫    (26) 

 
where a and b are lower limit and upper limit of 
integration. For this study, a = 0 and b = 1. The local 
entropy generation rate was divided into M 
subintervals of equal length. The number of M was 
varied and the results were computed and compared 
in order to make sure that the number of M, used in 
this study, is large enough (or the subintervals are 
small enough) to do not significantly affect on the 
result. 
 Fig. 6 shows the nondimensional total entropy 
generation rate of the above case. It sharply 
decreases from 45.1 at t=0 (It is not presented in the 
range of Fig. 6) to 1.2 in 20s. From the calculation, 
the nondimensional total entropy generation rate can 
be found the minimum value, 0.2294 at t=1680s. 
This value is lower than the nondimensional total 
entropy generation rate of steady state case (see 
magnified figure), whose value is 0.2338, indicated 
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by dash line in Fig. 6. After t=1680s, the total 
entropy generation rate increases again and finally 
approaches the steady state value. As discussed 
before, even through the local entropy generation 
rate near the left surface significantly reduces with 
time, but it increases at the location far from the left 
surface. For large time, this possibly causes increase 
of the area under the curve or the total entropy 
generation rate if the reducing area at the front part 
is smaller that the increasing area at the rear part. 
Fig. 7 confirms the above discussion. In order to 
easily compare the minimum nondimensional total 
entropy generation rate with others, the trapezoidal 
rule was used again to find the nondimentional total 
entropy generation rates at t=1480s and t=1880s. At 
t=1480s, the area under the curve or the 
nondimensional total entropy generation rate is 
0.2297 while it is 0.2296 for t=1880s. Both 
nondimensional total entropy generation rates found 
higher than that at t=1680s. Consequently, the 
minimum total entropy generation rate is exist.  
 
 
4.2 Cooling Case 
In the previous section, the slab is heated. Even 
through it has the right boundary temperature lower 
than the initial temperature, the same trend of result 
can be obtained for the case that the right boundary 
temperature higher than the initial temperature. In 
this section, the cooling case, the boundary 
temperatures are lower than the initial temperature, 
is investigated. The initial temperature was set as 
500oC (973K) while the boundary temperatures are 
defined as the same as the heating case.  
 

 
 

Fig. 6 Nondimensional total entropy generation 
rates for heating case 

 

 
 
Fig. 7 Comparison of the minimum nondimensional 

total entropy generation rate with others 
 
 Fig. 8 shows that the nondimensional local 
entropy generation rate through the slab reduces 
with time and finally approaches to the steady state 
case. The minimum points of the local entropy 
generation rate at different times are clearly 
observed in the figure. It is also found that the 
minimum point of the local entropy generation rate 
shifts to the left surface, at which the initial-
boundary temperature different is smaller than that 
of right surface. When time tends to infinity, the 
lowest entropy generation rate can be, then, found at 
the left surface, as expressed in steady state case. 
Moreover, from Fig. 8, it can be implied that if the 
system is symmetric temperature boundaries, the 
minimum local entropy generation rate should take 
place at the middle of slab.  
 For the total entropy generation rate of cooling 
case, Fig. 9 presents this value in dimensionless 
form. In the figure, the minimum point of total 
entropy generation rate cannot be found during 
considered period. Although, the period of time is 
expanded, it also shows the same result. The total 
entropy generation rate monotonically decreases 
with increasing time. It tends to a fixed value that is 
the total entropy generation rate of steady state case, 
as indicated by a circle in Fig. 9.  
 
 
4.3 Effect of Boundary Temperatures 
To study the effect of boundary temperatures on the 
total entropy generation rate, the parameter θ , 
defined as the ratio of T1 and T2, is focused. For this 
section, the initial temperature was fixed at 2T2. The 
calculation was done and the result is demonstrated 
in Fig. 10. 
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Fig. 8 Variation of nondimensional local entropy 
generation rates for cooling case 

 

 
 

Fig. 9 Nondimensional total entropy generation 
rates for cooling case 

 

 
 

Fig. 10 Variation of nondimensional total entropy 
generation rates for different θ  

 

From the calculation, it is found that the 
nondimensional total entropy generation rate 
sharply increases when time approaches zero. 
However, the higher value of nondimensional total 
entropy generation rate was omitted to show. From 
the figure, it is observed that the nondimensional 
total entropy generation rate increases with θ . 
Although the minimum point of the nondimensional 
total entropy generation rate is difficult to find using 
analytically method because of the infinite 
summation. Fig. 10 shows that the minimum of the 
total entropy generation rate can be noticed during t 
=0 to 3000s when θ  is equal to 3.5 and higher. 
Moreover, the minimum point takes place at smaller 
time when θ  increases. In order to discuss more on 
the effect of boundary temperatures on the total 
entropy generation rate, the case of θ =4.5 is 
considered. For this case, the minimum point of 
nondimensional total entropy generation rate is 
2.333 and it is 14.3% lower compared to the 
nondimensional total entropy generation rate of 
steady state case. Comparing with θ =2.5, the 
nondimensional total entropy generation rate 
dramatically decreases and approaches that of 
steady state case without minimum value presented 
in the figure.  
 
 
4.4 Effect of Initial Temperature 
In this subsection, the effect of initial temperature 
on the total entropy generation rate is investigated. 
The initial temperature was varied from 323K to 
443K with increment of 30K. The nondimensional 
total entropy generation rates, associated with initial 
temperatures, were calculated and the results are 
shown in Fig. 11.  
 

 
 

Fig. 11 Effect of initial temperature on the 
nondimensional total entropy generation rate 
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In the figure, there are 5 nondimensional total 
entropy generation rates for 5 cases of initial 
temperature. However, it is difficult to notice the 
distinction between these nondimensional total 
entropy generation rates. Thus, it can be mentioned 
that the initial temperature has weak effect on the 
total entropy generation rate, especially, at large 
time. However, the effect of initial temperature can 
be detected at t=0. High value of initial temperature 
causes higher total entropy generation rate at staring 
time. Finally, the total entropy generation rates 
converge when time increases.  
 
 
4.5 Steady State Case 
According to the results discussed above, it can be 
mentioned that when time increases the effect of 
initial condition slowly disappears. Therefore, it can 
be proved that the total entropy generation rates for 
different initial temperature cases are not much 
difference, when time increases. Moreover, if time 
approaches infinity, the temperature distribution, the 
local entropy generation rate, and the total entropy 
generation rate of transient problem are approach 
those of steady state problem. Thus, this section 
contributes to discussion the steady state case that is 
asymptotic value of the transient problem. 
 Fig. 12 shows the relative percentage difference 
of temperature distributions between transient 
problem and steady state case (% Diff-T). The 
boundary and initial conditions, used in the 
calculated, are obtained from heating case. From the 
figure, the maximum % Diff-T can be found around 
the middle of slab. At t=2000s, the maximum % 
Diff-T is about 2% while the average value of % 
Diff-T at t=3000s is 0.4%. From the calculation, the 
average value of % Diff-T is less that 1% when t is 
higher that 2200s which is equal to 

2
oF =αt/L =0.2574 . 

 As presented in Eqs. (15) and (16), the local 
entropy generation rate can be rewritten as: 
 

( ) 2
S T

gen 2

2 2
S S T T

2 2 2

T T
s =k

T
T T T T= k +2k k

T T T

∇ +  ′′′

∇ ∇ ∇ ∇
+



             (27) 

 
From the right hand side of Eq. (27), it can be 
observed that the first and the third terms are 
positive. For the second term, it can be positive or 
negative value depending on the temperature 
gradient of steady and transient sub-problems. 

However, when time increases, the second and the 
third terms decrease and approximately become zero 
due to exponential terms (see Eqs. (15) and (17)). 
Therefore, only the first term provides significant 
value and it is approximately equal to the value 
obtained from steady stated case.  
 

 
 

Fig. 12 Relative percentage difference of 
temperature distributions between transient and 

steady state problems 
 

 Fig. 13 shows the relative percentage difference 
of the local entropy generation rate between 
transient and steady state problems (% Diff-sgen). It 
can be observed that the percentage difference is 
high even through it is at 3000s. The maximum % 
Diff-sgen at 3000s is about 8.9% and the average % 
Diff-sgen is 5.3%. However, it can be noticed 
that % Diff-sgen is about zero near the middle of 
slab because of that the local entropy generation 
rates cross each other at point (see Fig. 5).  
 

 
 

Fig. 13 Relative percentage difference of the local 
entropy generation rates between transient and 

steady state problems 
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 From Figs. 12 and 13, it can be summarized that, 
at a specific time, even through the temperature 
distribution of steady stat case can be employed to 
estimate that of transient case with acceptable error, 
the entropy generation rate of steady state case at 
that time may not be used to estimate that of 
transient case with low error. 
 As observed from Eq. (22), if θ→∞ , 

locN (x=0) 1→  while locN (x=L) →∞ . On the 
other hand, if θ 0→ , locN (x=0) →∞  and 

locN (x=L) 1→ . Fig. 14 shows the results 
discussed above. From the figure, the 
nondimensional local entropy generation sharply 
decreases from x =0 and approaches to 1 at x = 1 for 
θ=0.005 ( θ 0→ ). This variation is found, but it 
takes place in opposite boundary for  θ=300  
( θ→∞ ). The minimum point of local entropy 
generation rate cannot be investigated. This can be 
also confirmed by using basic calculus. The 
differentiation of Eq. (22) is done and set the result 
to be equal to zero. It gives: 
 

m
-θx =

(1-θ)
                (28) 

 
Considering Eq. (28), If θ >1, it can be implied that 
the location of xm is always higher than 1. Moreover, 
if the value of θ  is high, the result of xm is about 1. 
However, if θ <1, the result of xm is away negative. 
Therefore, it can be summarized that the minimum 
value of local entropy generation cannot be found. 
 

 
 

Fig. 14 The nondimensional total entropy generation 
rates for steady state case 

 

 For the nondimensionless total entropy 
generation rate, Eq. (23) expressed that if θ→∞ , 

totN θ→ . However, if θ 0→ , locN 1/θ→ .  
 
 
5. Conclusions 
In this study, the transient heat conduction in solid 
slab is analyzed based on the second law of 
thermodynamic. The local entropy generation rate is 
found the minimum value for heating and cooling 
cases. For the total entropy generation rate analyzed 
in heating case, it is also observed the minimum 
point during the considered period. Moreover, the 
minimum value is less than the total entropy 
generation rate of steady state case with the same 
boundary conditions. For cooling case, the 
minimum total entropy generation rate cannot be 
detected. The boundary conditions have significant 
effect on the entropy generation rate, while the 
effect of initial condition on the entropy generation 
rate can be neglected, especially at large time. 
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