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Abstract- A scale-invariant model of statistical mechanics is described and applied to introduce the 

invariant Boltzmann equation and the corresponding invariant Enskog equation of change.  The 

invariant modified as well as classical forms of mass, thermal energy, linear momentum, and angular 

momentum conservation equations are derived. Also, an invariant definition of reaction rate 

1 



    for any scale within the hierarchy of statistical fields is introduced.  Following Cauchy, the 

total stress tensor for fluids 
ij i ij i i ij

p ( / 3)
     
   P v   is introduced that is consistent with the fact that 

by definition fluids can only support compressive normal forces.  Solutions of modified forms of 

conservation equations are determination to describe hydro-thermo-diffusive structure of normal 

shock in pure gas.  Also, exact solution of modified form of equation of motion for the problems of 

laminar and turbulent flow over a flat plate are described and shown to be in close agreement with 

experimental data in literature.  Finally, the solution of the modified Helmholtz vorticity equation for 

the problem of flow within a droplet located at the stagnation point of opposed cylindrically-

symmetric gaseous finite jets is presented. 
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1 Introduction 
It is well known that the methods of statistical 

mechanics can be applied to describe  physical 

phenomena over a broad range of scales of 

space and time from the exceedingly large scale 

of cosmology to the minute scale of quantum 

optics as schematically shown in Fig. 1. 

Although the universality of statistical nature of 

problems of stochastic quantum fields [1-17] 

and classical hydrodynamic fields [18-33] is 

well known, the extent to which exact 

correspondence exists between the laws of 

nature amongst the diverse scales of space-time 

from cosmic to photonic is as yet not 

recognized.  Similarities between the statistical 

fields shown in Fig. 1 resulted in recent 

introduction of a scale-invariant model of 

statistical mechanics [34] and its application to 

the fields of thermodynamics [35], fluid 

mechanics [36], statistical mechanics [37] and 

quantum mechanics [38, 39].    
 In the present study, following the classical 

methods [18-22 ,  40-44]  an  invariant  model  of 

statistical mechanics is applied to introduce 

invariant Boltzmann equation and the corresponding 

invariant Enskog equation of change.  From the 

equation of change invariant forms of mass, energy, 

linear momentum, and angular momentum 

conservation equations are derived.  A modified 

form of the continuity equation is presented that in 

the absence of convection reduces to diffusion 

equation thus revealing the internal structure of 

normal shock wave in pure system. Also, a 

modified form of equation of motion is introduced  
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Fig. 1 A scale-invariant model of statistical mechanics. 
Equilibrium-()-Dynamics on the left-hand-side and 
non-equilibrium Laminar-()-Dynamics on the right-
hand-side for scales  = g, p, h, f, e, c, m, a, s, k, and t 
as defined in Section 2. Characteristic lengths of 
(system, element, “atom”) are (L, , 

) and  is the 
mean-free-path.    
 
 

with convective velocity distinguished from local 

velocity. Finally, a modified form of Helmholtz 

vorticity equation is introduced and its solution for 

the problem of laminar flow in a liquid droplet 

located at the stagnation point of gaseous counter 

flow finite jets is presented.  By application of 

integral methods invariant classical forms of 

conservation equations are derived and connected to 

the modified forms in the last Section. 

 
2 A Scale Invariant Model of 
Statistical Mechanics  
The scale-invariant model of statistical 

mechanics for equilibrium galactic-, planetary-, 

hydro-system-, fluid-element-, eddy-, cluster-, 

molecular-, atomic-, subatomic-, kromo-, and 

tachyon-dynamics corresponding to the scale 

g, p, h, f, e, c, m, a, s, k, and t is 

schematically shown in Fig. 1 [31]. The 

statistical fields of equilibrium eddy-, cluster-, 

and molecular-dynamics (EED, ECD, EMD) 

are shown in Fig. 2 in more details along with 

the corresponding non-equilibrium laminar flow 

fields (LED, LCD, LMD).  Each statistical field 

is identified as the "system" and is composed of 

a spectrum of "elements". Each element is 

composed of an ensemble of small particles 

called the "atoms" of the field that are governed 

by a distribution function 
i i i

( , , t )f
   

x u
 

and are 

viewed as point-mass. The most probable 

element (system) velocity of the smaller scale 

(j) becomes the velocity of the atom (element) 

of the larger scale (j+1) [38]. 

 Following the classical methods [18-22, 

40-44] the invariant definition of density , 

and velocity of atom
i

u , element
i

v , and system 


w  at the scale  are [38, 39] 

 

i i i i i iρ n m m duf                
i imp 1 
u v   (1) 

 

1

i i i i i i
m df



     
  v u u

          
 mp 1 w v   (2) 

 

Similarly, the invariant definition of the 

peculiar and diffusion velocities are introduced 

as   
 

i i i  
  V u v         ,      i i   V v w  3

 

such that 
  

 

i i 1 
V V  4

 

 As shown in Fig. 2, the statistical field of 

ECD at an intermediate scale separates LED 

from LMD fields. The evidence for the 

existence of the statistical field of ECD is the 

phenomena of Brownian motions as discussed 

in an earlier study [39]. 
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Fig. 2 Hierarchy of statistical fields for equilibrium 
eddy-, cluster-, and molecular-dynamic scales and the 
associated laminar flow fields. 
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 For the statistical fields of EED, ECD and 

EMD, typical characteristic atom, element, and 

system lengths are 
 

EED       5 3 1

e e e
( ,  , L ) (10 , 10 ,  10 ) m

  
 

    
(5a) 

ECD      7 5 3

c c c
( ,  , L ) (10 , 10 ,  10 ) m

  
 

     
(5b) 

EMD    9 7 5

m m m
( ,  , L ) (10 , 10 ,  10 ) m

  
 

     
(5c)  

 

The relative system sizes of these statistical 

fields are schematically shown in Fig. 3.   
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 m

  
 

 

 

Fig. 3 The system sizes Lof statistical fields EED, 
ECD, and EMD relative to a cup of water.  
 

If one applies the same (atom, element, system) 

= ( ,  , L )
  
  relative sizes in (5) to the entire 

spatial scale of Fig. 1 and considers the relation 

between scales as 
1 2

  L=
  
  then the 

resulting cascades or hierarchy of overlapping 

statistical fields will appear as schematically 

shown in Fig. 4.   
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Fig. 4 Hierarchy of statistical fields with ( ,  , L )
  
  

from cosmic to Planck scales [38].  
 
According to Fig. 4, starting from the 

hydrodynamic scale 3 1 1 3
(10 10 10 10,  ,  ,  )

   after 

seven generations of statistical fields one reaches 

the electro-dynamic scale with the element 

size
17

10


 and exactly after seven more generations 

one reaches Planck length scale 
353 1/2

( G / c 10) m , where h / 2  , h is 

Planck constant and G is the gravitational 

constant. Similarly, seven generations of 

statistical fields separate the hydrodynamic scale 
3 1 1 3

(10 10 10 10, , , )
   from the scale of planetary 

dynamics (astrophysics) 17

10 and the latter from 

galactic-dynamics (cosmology) 
35

10  m. Since 

invariant Schrödinger equation was recently 

derived from invariant Bernoulli equation [38], 

the entire hierarchy of statistical fields shown in 

Fig. 1 is governed by quantum mechanics. There 

are no physical or mathematical reasons for the 

hierarchy shown in Fig. 4 not to continue to 

larger and smaller scales ad infinitum.  Hence, 

according to Fig. 4 contrary to the often quoted 

statement by Einstein that God does not play 

dice; the Almighty appears to be playing with 

infinite hierarchies of embedded dice. 

 The left hand side of Figs. 1 and 2 

correspond to equilibrium statistical fields when 

the velocities of elements of the field are random 

since at thermodynamic equilibrium particles i.e. 

oscillators of such statistical fields will have 

normal or Gaussian velocity distribution. For 

example, for stationary homogeneous isotropic 

turbulence at EED scale, the experimental data of 

Townsend [45] confirms the Gaussian velocity 

distribution of eddies as shown in Fig. 5. 

  

 
 
Fig.  5 Measured velocity distribution in isotropic 
turbulent flow by Townsend [45].  
 
 The invariant model of statistical mechanics 

(1)-(4) suggests that all statistical fields shown in 

Fig. 1 are turbulent fields [37, 38]. First, let us 

start with the field of laminar molecular 

dynamics LMD when molecules, clusters of 
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molecules (cluster), and cluster of clusters of 

molecules (eddy) form the “atom”, the 

“element”, and the “system” with the velocities 

m m m
( ,  , )u v w .  Similarly, from (1)-(2) the fields 

of laminar cluster-dynamics LCD and eddy-

dynamics LED will have the velocities  

 

LED                 
e e e

( ,  , )u v w
   

(6a) 
 

LCD         
c c c

( ,  , )u v w  (6b) 
 

LMD                  
m m m

( ,  , )u v w  (6c) 

 

 With Gaussian velocity distribution as in 

Fig. 5, the same chain of reasoning as employed 

in the classical kinetic theory of Maxwell and 

Boltzmann [18-20] requires that the distribution 

of the speeds of oscillators (eddies) in stationary 

isotropic turbulence be given by the invariant 

Maxwell-Boltzmann distribution function [38-39]  

 

c m,mp
u v=

2
m u / 2kTu 3/ 2 2

dN m
4  ( ) u  e du

N 2 kT

   

 



 
   

(7) 

 
 

By (7), one arrives at a hierarchy of embedded 

Maxwell-Boltzmann distribution functions for 

ECD, EMD, and EAD scales shown in Fig. 6.  
 

 

 
 
 

 

 

 
 

Fig. 6 Maxwell-Boltzmann speed distribution viewed 
as stationary spectra of cluster sizes for ECD, EMD, 
and EAD scales at 300 K.  
 

According to (1)-(2) and as shown in Fig. 6, the 

“atomic” velocity of ECD field will be the most 

probable speed of the adjacent lower scale of 

EMD 
c m,mp

u v= .  Similarly, the “system” speed 

of EMD scale will be the most probable speed of 

ECD and “atomic” speed of EED fields such that 

m c,mp e
w v= = u . 

 Because at thermodynamic equilibrium 

particles’ velocity field is governed by a 

Gaussian profile (Fig. 5) namely Boltzmann 

distribution function and the particle speeds 

must follow Maxwell-Boltzmann distribution 

function, it was recently shown that the energy 

spectrum of particles will follow Planck 

spectrum of equilibrium radiation [37, 38, 46, 

47]. This correspondence between monatomic 

gas and photon gas becomes possible because 

of the recent closure of the gap between ideal 

gas theory on the one hand and Planck 

equilibrium radiation theory on the other hand 

[39]. For example, the field of isotropic 

homogeneous turbulence is identified as 

equilibrium eddy dynamics EED, Figs.1 and 2, 

with turbulent eddies defined as clusters of 

molecular clusters or super-clusters constituting 

the elements of the field. At thermodynamic 

equilibrium the energy spectrum of eddies in 

such isotropic stationary turbulent field will be 

governed by invariant Planck energy 

distribution law [37, 46-47]  
 
 

 

 

 

3

h / kT3

dN 8 h
d

u e 1
  



  





 
 

V
              (8) 

 

 

 
 

 

 

shown in Fig. 7.   
 

 

 

 

  
 
 

Fig. 7 Planck energy distribution law governing the 
energy spectrum of eddies at the temperature T = 300 
K. 
 

 The three-dimensional energy spectrum 

E(k) for isotropic turbulence measured by Van 

Atta and Chen [48, 49] and shown in Fig. 8 is in 

qualitative agreement with Planck energy 

spectrum shown in Fig. 7.   
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Fig. 8 Normalized three-dimensional energy spectra 
for isotropic turbulence [48]. 
 

In a more recent experimental investigation the 

energy spectrum of turbulent flow within the 

boundary layer in close vicinity of rigid wall 

was measured by Marusic et al. [50] and the 

reported energy spectrum have profiles quite 

similar to Planck distribution law. 

 To maintain stationary isotropic turbulence 

it is expected that both energy supply as well as 

energy dissipation spectrum should follow 

Planck law in (8).  The experimental data 

obtained for one dimensional dissipation 

spectrum [51] along with Planck energy 

distribution (8) as well as this same distribution 

shifted by a constant amount of energy are 

shown in Fig. 9.  

 

 
Fig. 9 One-dimensional dissipation spectrum [51] 
compared with (1) Planck energy distribution (2) 
Planck energy distribution with constant 
displacement.   
 

Similar comparison with Planck energy 

distribution as shown in Fig. 9 is obtained with 

the experimental data of Saddoughi and 

Veeravalli [52] for one-dimensional dissipation 

spectrum of isotropic turbulence.  Also, the 

normalized three-dimensional energy spectrum 

for homogeneous isotropic turbulence obtained 

from transformation of one-dimensional energy 

spectrum of Lin [53] by Ling and Huang [54] 

2

2

( ) exp(- )
3

E K K K
   


 

 


        (9) 

 

is in close agreement with Planck law (8).  

 An important aspect of Planck law (8) is 

that at a given fixed temperature the energy 

spectrum of equilibrium field is time invariant.  

Since one may view Planck distribution as 

energy spectrum of eddy cluster sizes [38] this 

means that cluster sizes are stationary. 

Therefore, even though the number of eddies 

jf
N  and their energy 

jf
  in different fluid 

elements (energy levels) are different their 

product that is the total energy of all energy 

levels is the same [38] 
 

 

j j j j j 1 mp

j

 N ...U U U U


                 (10a) 

 

Thus Boltzmann’s equipartition principle is 

satisfied in order to maintain time independent 

spectrum (Fig. 7) and avoid Maxwell’s demon 

paradox [37].  Therefore, in stationary isotropic 

turbulence, energy flux occurs between fluid 

elements by transition of eddies of diverse sizes 

while leaving the fluid elements stochastically 

stationary in time. A schematic diagram of 

energy flux across hierarchies of eddies from 

large to small size is shown in Fig. 10 from the 

study by Lumley et al. [55]. 

 

           
 

 

Fig. 10 A realistic view of spectral energy flux [55]. 
 
 According to Fig. 6, Maxwell-Boltzmann 

distribution could be viewed as a spectrum of 

particle-cluster sizes that are stochastically 

stationary [38, 39].  Hence one arrives at a new 

paradigm of the physical foundation of 

quantum mechanics according to which Bohr 

stationary states will correspond to the 

stochastically stationary sizes of particle 

clusters, de Broglie wave packets, which will 

be governed by Maxwell-Boltzmann 
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distribution function as shown in Fig. 6. 

Different energy levels of quantum mechanics 

could be identified as different size particle 

clusters (elements).  Transfer of particle from a 

small rapidly- oscillating cluster j to a large 

slowly-oscillating cluster i constitutes transition 

from the high energy level j to the low energy 

level i (see Fig. 6). A scale invariant description 

of such transitions between energy levels at 

arbitrary scale  is schematically shown in Fig. 

11. 

 

                

j

i

ji
2 ji

element-j

element-i

atom-ji
subatom-ji

 
 
Fig. 11 Transition of “atom” aij from element-j to 
element-i leading to emission of sub-atomic particle 
sij. 
 

Particle transitions will be accompanied with 

emission of a “sub-particle” that will carry 

away the excess energy 
 

ji j i j ih( )             (10b) 

 

in harmony with Bohr  theory of atomic spectra 

[38, 39].   
 
3 Scale Invariant forms of 
Conservation Equations for 
Chemically Reactive Fields 
Following the classical methods [18-22, 40-44], 

the scale-invariant forms of mass, thermal 

energy, linear and angular momentum 

conservation equations [38, 39] at scale  are 

given as 
 

 iβ

iβ iβ iβ

β

ρ
ρ

t


 


v  (11) 

 

 iβ

iβ iβ

β

ε
ε 0

t


 


v  (12) 

 

 iβ

iβ iβ ijβ

βt


  



p
p v P   (13) 

   

iβ

iβ iβ iβ β iβ

βt


  


v v


      (14) 

 

involving the volumetric density of thermal 

energy i i iρ h    , linear momentum i i iρ  p v , 

and angular momentum i i iρ    .  Also, 

i
 is the chemical reaction rate, h  is the 

absolute enthalpy [34] 

 
T

iβ piβ β
0

c dTh    (15)
 

 

 In the energy conservation equation (12) 

instead of the classical practice of considering 

the internal energy the total thermal energy 

i i iρ h     namely absolute enthalpy (15) is 

considered.  Therefore, the “potential” energy 

p/ of the moving fluid often referred to as “flow 

work” is also taken into account. Also, an 

important correction to invariant Helmholtz 

vorticity equation (14) is made herein by 

inclusion of Coriolis force that was neglected in 

earlier studies [38, 39] as discussed in Section 8.  

Finally, the scale dependence and quantum 

nature of physical “time” discussed in [38] is not 

addressed in the present study by taking t t  .    

 The partial stress tensor ijP  is [40] 

 

ijβ β iβ iβ jβ jβ β βm (  )(  )f du  P u v u v  (16) 
 
 

The derivation of (13) involves the definition of 

the peculiar velocity (3) along with the identity 

 

i j i i j j i j i j( )( )         
      V V u v u v u u v v  (17) 

 

Also, summation of (13) over all the species 

results in Cauchy equation of motion at the next 

larger scale  
 

(ρ ρ
t


 


v) vv) = P      (18) 

 

 

where 1  , 1v v  and the total or mixture 

stress tensor is [40, 42] 
 

 

i i i i j j i i

i i

m ( )( )f du
       

     P P u v u v    (19) 
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 The subscript “i” in (11)-(14) that 

conventionally refers to chemical “specie i” is 

being also employed to identify the scale of 

“element” of the field.  For example, in case of 

velocity with (atomic, element, and system) 

velocities denoted as 
i i

),
  

(u v w,  one associates 

the average of a local group of specie i particles 

each with velocity 
i

u  as “element” or mean 

local velocity
i

v .  In moving to the next larger 

scale of , the system velocity 
i 

 w v  is 

then identified as the “mixture” velocity. When 

moving to the yet higher scale, one identifies 

1
(system) (element)

 
   such that 

j 1 
w v  as the 

new “specie j” or “element” velocity and repeats 

the same procedure as before. According to this 

convention, the ordinary mass-average velocity 

of fluid mechanics 
o

v  will correspond to the 

system or “mixture” velocity
m c
w v  of 

molecular-dynamic scale. This is because the 

mean thermal speed of molecules is the speed of 

sound 
m,mp

v  that is a stationary random variable 

for a given temperature and constitutes the 

“atomic” velocity 
c m,mp

u v=  of the next higher 

scale of ECD field by (1).   

 Considering (14), the classical definition of 

vorticity involves the curl of linear velocity 

 
 v   thus giving rotational velocity of 

particle a secondary status in that it depends on 

its translational velocity v.  However, it is 

known that particle’s rotation about its center of 

mass is independent of the translational motion 

of its center of mass.  In other words, 

translational, rotational, and vibrational 

(pulsational) motions of particle are 

independent degrees of freedom that should not 

be necessarily coupled.   

 To resolve this paradox, iso-spin of the 

particle at scale  is defined as the curl of the 

velocity at the next lower scale of 
 
 

i i 1 i   v u  (20) 
 
 

With such a definition, the rotational velocity 

while having a connection to some type of 

translational motion at internal scale of  

retains its independent degree of freedom at the 

external scale  as required.  A schematic 

description of iso-spin and vorticity fields is 

shown in Fig. 12.  

 

 
 

 

 

      
 

 
 

Fig. 12 Description of internal (iso-spin) versus 
external vorticity fields in cosmology.  
 
Thus, what appears as rotational motion at scale 

, when viewed at the lower scale  is 

identified as orbital translational motion and a 

new local rotational motion is identified at this 

smaller scale.  The nature of galactic vortices in 

cosmology and the associated dissipation have 

been discussed [29, 57]. 
 

 The local velocity 
v in (11)-(14) is expressed 

in terms of the convective 
w  and the diffusive 

V  
velocities [34, 58]  

 

g   w v V   g i iln( )D    V   (21a)
 

tg   w v V      tg i iln( )    V    (21b)
 

hg   w v V   hg i iln( )   V p  (21c) 
 

rhg   w v V    rhg i iln( )   V π  (21d)  

 

 where ( gV , tgV , hgV , rhgV ) are respectively 

the diffusive, the thermo-diffusive, the linear 

and the angular hydro-diffusive velocities and 

i i i/      .  Since for an ideal gas pc Th   , 

when pc   is constant and T T , (21b) reduces 

to the Fourier law of heat conduction  
 

i i i t ih Τ       q V     

 

where iand i i i pi/ ( c )        are the thermal 

conductivity and diffusivity.  Similarly, (21c) may be 

identified as the shear stress associated with 

diffusional flux of linear momentum and expressed 

by the generalized Newton law of viscosity [34, 58] 
 

ijβ iβ jβ ijβh i jβ iρ /    τ v V v x   
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Finally, (21d) may be identified as the torsional 

stress induced by diffusional flux of angular 

momentum and expressed as [36] 

 

ijrβ β jβ ijβrh β jβ iρ /    τ ω V ω x   (24)


 Substituting from (21a)-(21d) into (11)-(14), 

neglecting the cross-diffusion terms and 

assuming constant transport coefficients with 

unity Prandtl and Schmidt numbers Sc Pr 1
 
   

result in  

 

i 2

i i i i

ρ
ρ ρ

t
D



    


  


+ w  

  
(25)

 

i 2

i i i i i pi

T
T T / (ρ c )

t
h



       


   


+ w   (26) 

 

iji i i2

i i i

i i
t ρ ρ

  

   

 

 
    



Pv v
+ w v v


 

 
(27)

 

i i i2

i i i i

i
t

  

     



 
    

 

ω ω
+ w ω ω ω v   (28)

 

The main new feature of the modified form of 

the equation of motion (27) is its linearity due to 

the difference between convective w versus 

local vvelocities as compared with the non-

linear classical Navier-Stokes equation of 

motion. The linearity of (27) in harmony with 

Carrier [59] equation resolves the classical 

paradox of drag reciprocity [60, 61].   
 

4 The Invariant Boltzmann Equation 
and the Associated Invariant Enskog 
Equation of Change 
Following the classical methods [19, 22, 40-44], 

the scale-invariant form of Boltzmann equation 

in the absence of body forces is expressed as 

 

iβ iβ

iβ iβ
t t

f f
f


 


u




    (29) 

 

where iβ ( , , t )f   x u  is the invariant distribution 

function at the scale .  Multiplication of (29) 

with an arbitrary invariant function of velocity 

i for specie i and integration over all velocity 

space under appropriate assumptions [22, 40-

43] results in the Enskog equation of change  
 

iβ

i iβ i iβ iβ iβ iβ(n ) (n ) du
t t

f
 


    

 u





  
 (30)

 
 

In the generalized Boltzmann equation [42] we 

consider that only collisions that lead to 

“chemical reactions” contribute to rate of 

change of volumetric number density dni/dt of 

particles of species i. Therefore, the chemical 

reaction source term on the RHS of (30) will be 

identically zero except for mass conservation 

equation. 

 Following the classical methods [40-43], the 

summational invariants i for mass, thermal 

energy, linear, and angular momentum are 

defined as  
 

i im    Mass               (31a) 
 

i i im h     Thermal energy (31b) 
 

i i im    u  Linear momentum (31c) 
 

i i im      Angular momentum    (31d) 
 

The new summational invariant (31d) involves 

the fluctuating iso-spin 
i

  of particle [56] of 

mass im   defined in (20). 

 

5 The Invariant forms of Continuity 
Equation 
Following the classical methods [40-44], 

substitution of 
i i

m
 

  into (30) gives invariant 

continuity equation  
 

 iβ

iβ iβ iβ

ρ
ρ

t


 


v

   
(32) 

 

with the invariant reaction rate defined as 
 
 

iβ iβ iβ iβm ( / t)duf    
   

(33) 

 

By summing (32) over all species one obtains 

the continuity equation for the next higher scale 

[36] 
 

 β+1

β+1 β+1 β+1

ρ
ρ

t


 


v

   
(34) 
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because 
 

iβ iβ iβ iβ

i i

m ( / t)duf        

             
iβ iβ iβ iβ iβ

i i

m du m n
t t

f   
 

 
 

 

                                     
iβ β+1 β+1 β+1

it t t
(m n )     

  

  
           

 

         
β+1 β+1 β+1 β+1m ( / t)duf   

 
(35) 

 

The result (35) is important since it represents a 

generalized expression for the reaction rate valid 

for all scales within the hierarchy shown in Fig. 

1. The gravitational mass at any scale is 

therefore convertible into energy through 

“chemical reactions” at the rate defined by (35).  

 When the local velocity in (32) is expressed 

in terms of the convective and diffusive 

velocities from (21a) one obtains (25) that for a 

pure system 
i 
    in the absence of reactions 

i
0


  results in the modified form of 

continuity equation [36] 
 

 

2ρ
ρ ρ 0

t
D


  


+ w  (36) 

 

where D is the coefficient of self-diffusion.   

 The importance of the modified form of the 

continuity equation (36) is that in the absence of 

convective velocity it reduces to diffusion 

equation. The second order derivative of 

diffusion equation allows for determination of 

internal structure of normal shock waves [62].  

For one-dimensional problem of normal shock 

with an imposed convective velocity w  the 

conservation equations in a moving coordinate 

sz x w t    
 
reduce to

  

2

x2

df d f
w                f = v , ,Y

dz dz
    (37) 

 

 

where the dimensionless coordinates are 

 

Hz z /
    

, 
   

Hx x /
  
, 
   

H s/ w 
  

, sw  is the shock velocity, and sw w / w  .  

Also, the dimensionless velocity, temperature, 

and density are defined as 

 

v (v v ) / (v v )  
        (38) 

(T T ) / (T T )          (39) 

Y (ρ ρ ) / (ρ ρ )            (40) 
 

When viewed at the outer laboratory 

coordinates (x ,  z )  at LCD scale the shock 

appears as a mathematical surface of 

discontinuity. However, in terms of the 

stretched hydro-thermo-diffusive coordinate 

(x,  z)
 

the internal structure of the shock is 

revealed at the scale of LMD (Fig. 2).  At this 

smaller scale the constant convective velocity 

will manifest its coordinate dependence and is 

expressed as w (1 z) / 2   such that in terms of 

the stretched coordinate (z 1) / 2   Eq. (37) 

becomes 
 

2

x2

d f df
+2 0               f = v , ,Y

d d
  

 
           (41)

 
 

v Y 0                        (42a) 

v Y 1                        (42b)
 

with the solution 
 

xv Y erfc( )
1

2
                                        (43)

 

The error-function shape of the solution in Eq. 

(43) is in agreement with both experimental 

data [63, 64] as well as numerical calculations 

[65-68] of normal shock.  However, the 

experimental data of Sherman [63] shows a 

shift of about 0.2 in the origin of normalized 

temperature profile as seen in Fig. 13a. 
 

 

     
 
 

Fig. 13a Comparison between experiment and theory 
from Sherman [63] for normal shock in helium at Ma 
= 1.82. 
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It is possible to account for this shift of 

coordinate origin in terms of the location of the 

shock relative to the center of the hydrodynamic 

shock structure.  This is because the position of 

shock is at z z 
 

where w = 1 while the 

center of the shock hydrodynamic structure is at 

z = 0.  From the solution in Eq. (43) the 

thickness of the shock to the accuracy of 

0.99954 and in units of characteristic viscous 

length H  is 
s Hz / 2 2.5   

 
hence 

 

s H5             (44) 
 

Therefore, with normalized coordinate 

s H/ ( / 2 )    and s Hy z / ( / 2 )  based on 

Eq. (44) one can express the normalized 

temperature profile as [62].
 
 

erf ( ) erf (0.2 y)        (45) 
 
 

The predicted temperature profile (45) is in 

close agreement with the experimental data of 

normalized wire temperature  across normal 

shock in helium at Mach number Ma = 1.82 

reported by Sherman [63] as shown in Fig. 13b 
 
 

      
 

 

Fig. 13b Comparison between measured normalized 
wire temperature  versus position (0.2y) in normal 
shock [63] and theory (45). 
 
 It is interesting to examine the implication of 

the present theory to the results of a recent 

study of normal shocks in a rarefied polyatomic 

gas by Taniguchi et al., [68].  In this study, 

besides the symmetric type A shock structure 

like Fig. 13b, the authors identified non-

symmetric type B and type C shock structures 

composed of thin and thick layers.  An example 

of type C structure is shown in Fig. 14 to be 

compared with FIG. 6 of [68].  According to 

Taniguchi et al., [68] the thickness of the thick 

layer could be as long as several centimeters.     

 It is suggested that the thick layer identified 

by Taniguchi et al., [68] should correspond to 

conventional gas-dynamics of viscous flow at 

LCD scale. To describe the type C shock 

structure, one notes that for hypersonic flows no 

signals could propagate to the left of the shock 

location at point A of Fig. 14 because 

1 1v a and 1 1Ma  .  Also, the velocity at point 

C at the exit of the shock surface of 

discontinuity (Fig. 14) will be equal to the local 

speed of sound *

2 2v v a  such that 
2 1Ma   

Therefore, beyond point C the flow will be 

subsonic and the velocity profile will be 

governed by the viscous equation of motion (41) 

but at the larger scale of LCD with the solution 

 

v v / a erfc(z)     (46) 

 

as shown in Fig. 14.   
 

             

   
 
Fig. 14 Structure of shock in polyatomic gas with thin 
and thick layers corresponding to type C shock 
structure of Taniguchi et al., [68].  
 
 

 To summarize, a hypersonic flow at LCD 

scale  = c corresponding to conventional gas 

dynamics (Fig. 2) will retain its constant 

velocity until it arrives at the shock location A 

in Fig. 14.  From this point one must move to 

the lower scale of LMD  = m and the shock 

structure will be given by the solutions (43) and 

(45) with structure shown in Fig. 13b.  

However, at LCD scale the shock will appear as 

a mathematical surface of discontinuity as 

shown in Fig. 14.  Finally, from point C to the 

far downstream point B in stationary gas the 

viscous flow at LCD scale will be governed by 

the solution in Eq. (46). 
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 As a second example that reveals the 

important difference between (32) versus (36), 

let us consider the one-dimensional unsteady 

problem of diffusion of an infinite yz- plane 

source of mass placed at the origin x = 0 at time t 

= 0.  Because of the symmetry of the problem 

the center of mass will remain stationary w = 0 

and (36) reduces to the diffusion equation  
 

2

2

ρ ρ

t x
D

 


 
 

     
(47) 

 

that governs the time evolution of density 

discontinuity in a background field composed of 

the same fluid. With appropriate boundary and 

initial conditions the solution of (47) is 
 

2
M x

exp( )
4 t4 t DD

  


 
    

(48) 

 

where  

 

M dx





 
     

(49) 

 

6 The Invariant form of Energy 
Conservation Equation 
To obtain the scale-invariant form of the energy 

equation the exact nature of the summational 

invariant 
i

  to be substituted in (30) must first 

be identified. First the energy for translational 

oscillations of particles in two directions (x , x )
 

 
is considered. According to (3), particle 

translational velocity is the sum of the mean or 

cluster velocity and the random peculiar velocity   
 

 

mj mj mj cj mj
    u v V u V         (50) 

 

The above definition is in the same spirit as in 

cosmology where the peculiar velocity of a 

galaxy is defined as the difference between its 

velocity and the mean velocity of the cluster of 

galaxies to which it belongs. The thermodynamic 

system being considered herein is composed of a 

spectrum of molecular clusters under 

stochastically stationary state.  In a recent study 

[38], it was shown that three different flow 

regimes based on the nature of cluster velocity 

m
v  in (3) could be identified.  For a system of 

ideal gas at thermodynamic equilibrium all three 

velocities in (50) will be random such that (50) 

when squared, averaged, and multiplied by 

particle mass leads to the kinetic energy 

 
2 2 2 2 2

mxj mxj mxj cxj mxjmu mv mV mu mV          (51) 
 

 

since 
cxj mxj

0 u V . The internal energy of particle 

due to translational motion of particle in two 

directions (x , x )
 

 is expressed as 

 

2 2

mx mx

1 1
ˆ mv mv

2 2
tu      

 
 

  
2 2 2

cx cx mx

1 1
mu mu mv

2 2
          (52) 

 

Next, the potential energy due to “stress” is 

related to the kinetic energy of peculiar velocity 

as 

 

2 2

mx mx

1 1
ˆ mV mV

2 2
pε  

     

 

               
2 2

mx m

1
ˆmV mV pv

3
 

     (53) 

 

where pressure is defined as 2

m
p nmV / 3


 .  

Hence, the total energy associated with 

harmonic translational motion of particle will 

become [69] 

 

t̂
ˆ ˆ ˆ ˆpvt p tε =u +ε =u               (54) 

 

 Since particles are neither point masses 

without any physical extent nor absolutely 

rigid, their rotational and vibrational energies 

cannot be properly neglected as was 

emphasized by Clausius in his pioneering 

investigation of the mechanical theory of heat 

[70] 
 

 
"In liquids, therefore, an oscillatory, a 
rotatory, and a translator motion of the 
molecules take place, but in such a manner that 
these molecules are not themselves separated 
from each other, but even in the absence of 
external forces, remain within a certain 
volume" 
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Therefore, following Clausius the internal 

kinetic energy of rotational and vibrational 

motion of particles in two directions ( , )
 
  , 

(r , r )
   are written as [35, 69] 

 

2 2 2

m m m

1 1
ˆ I I I

2 2
r ru = ε                (55) 

 

 

2 2 2

m m m

1 1
ˆ r r r

2 2
v vu = ε                 (56) 

 

 

 

where (I,  ) are respectively the moment of 

inertia and the spring constant. Hence, the 

internal “atomic” energy of particle is defined 

as the sum of its translational, rotational, and 

vibrational kinetic energies from equations 

(52), (55) and (56) 

 
2 2 2

x
ˆ ˆ ˆ ˆ mv I rt r vu = u +u +u               (57) 

 

 Finally, by (53) and (57) the total atomic 

energy or the atomic enthalpy is defined as the 

sum of atomic internal kinetic energy and 

atomic external potential energy written as [69] 
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆpv pvt r vh u +u +u u             (58) 

 

such that the total enthalpy becomes 
 

pH U V   (59) 

 

where ˆ ˆ ˆN( v(H, U, V) h, u, ) . According to 

equation (58) the system has four degrees of 

freedom and at equilibrium Boltzmann principle 

of equipartition of energy requires 
 

ˆ ˆ ˆ ˆpvt r vu = u = u                (60) 

 

 In view of (58) and (60) the atomic enthalpy 

per unit mass mh  is defined as 

 

ii i / mˆ=h h                    (61) 

 

By (61) the expression for summational invariant 

for thermal energy in (31b) becomes 
 

i i i i
ˆm h h                             (62) 

 

Substituting (62) in Enskog equation of change 

(30) without the source term on the RHS results 

in the invariant form of energy conservation 

equation (12) 

 

 iβ

iβ iβ

ε
ε 0

t


 


v                        (63) 

 

with the volumetric density of total thermal 

energy defined as i i iρ h    .  Substituting from 

(21b) in (63), neglecting the cross diffusion 

terms, assuming constant transport coefficients 

such that the absolute enthalpy of ideal gas 

could be expressed as i pi ic Th    and setting 

iT T  results in scale invariant form of energy 

conservation equation [36] 

 

2

i i i pi

T
T T / (ρ c )

t
h



       


    


+ w 

    
(64) 

 

 As an example of solution of (64) the 

simple problem of steady plane parallel laminar 

flow over a flat plate schematically shown in 

Fig. 15 is considered. 



   
x'x' 2x' 1

y'

wx =1
wx =1



0  
 
Fig. 15 Laminar boundary layer over a flat plate. 
 

In the absence of chemical reactions and with 

negligible pressure gradient the equations 

governing partial density (37), temperature (64) 

, and velocity become identical for unity 

Prandtl and Schmidt numbersSc Pr 1
 
   [71]  

 

2

x i2

d g dg
2 0             g , v ,Y

d d
    

 
           (65) 

 

where similarity variable  is defined as 
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y

2 2x 2 2


                              (66) 

 

Furthermore, defining the dimensionless 

temperature, velocity, partial density, and 

coordinates as 
 

w

w

T T

T T


 


 x

x

xo

v
v

w





 ,   i iw

i

i iw

ρ ρ
Y

ρ ρ





   (67) 

 

Hx x /  Hy y / 
H xo/ w      (68) 

 

leads to identical boundary conditions  
 

iv Y 0                = 0       (69a) 

iv 1                 = Y       (69b)
 

such that the solution of (65) and (69) for 

temperature, velocity, and concentration 

profiles become identical [71] 

 

x iv Y erf ( / 2 2)       (70) 
 

The solution (70) leads to the Nusselt number 

Nu 
 

1/2 1/2

x xNu hL / (1/ 2 )Re 0.399Re     (71)

 

to be compared with the classical result 
 

1/2
xNu 0.332Re  (72)



 Following steps parallel to (47)-(49) for 

mass diffusion, the diffusion of a plane source 

of heat placed at the origin x = 0 at time t = 0 in 

a none-reactive 
i

0


   field leaves the center 

of mass stationary hence w  = 0 and (64) 

reduces to diffusion equation  
 

 

2

2

T

t

T

x










  (73) 

 

that with the appropriate initial and boundary 

conditions has the solution   
 

2

p

Q x
T exp( )

4 t4 tc


 


 (74) 

 

where  

 

pQ hdx c Tdx

 



 

         (75) 

 

7 The Invariant form of Equation of 
Motion 
The invariant form of equation of motion is 

obtained by the classical methods [40-44] of 

substituting 
i i i

m
  

  u into (30) without the 

source term on its’ RHS to obtain invariant 

Cauchy equation of motion 

 

 iβ iβ

iβ iβ jβ ijβ

( )

t

 
   



v
v v P 

   

(76)
 

 

where the stress tensor on the right hand-side 

has been defined in (16).   

 The history of derivation of Navier–Stokes 

equation from (76) has been described in an 

excellent review by Darrigol [72].  The 

derivation begins with the introduction of 

Cauchy total stress tensor in the form [40-44, 

72-74] 

 

ij ij ij ijp  2 e     v  
    

(77) 

 

where the rate of strain is 

 

ji
ij

j i

vv1
( )

2 x x


 

 
e

     

(78)  

 

For fluids the two Lame constants   are 

called the first and the second viscosity 

coefficients [72-74].   The classical expression 

for the stress tensor of fluids (77) was 

introduced in close analogy with the stress 

tensor for deformation of elastic solids 

developed by the founders Cauchy and Poisson 

[72, 73].  Thus the role played by the strain 

tensor ij in solids was related to the rate of 

strain tensor eij in liquids. 

 In view of the negative sign in (76) the 

total stress tensor for fluids is expressed as 

 

ij i ij i i ij i ijp 2 e       
    v  

  

(79) 

 

By classical methods [72-74] the mean pressure 

of fluid in motion is defined as 
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ij ii ij i ij i i i ij

2
μ

3 3
= p (

        


     P v 

 

(80) 

 

According to the conventional practice one 

makes the Stokes assumption of zero bulk 

viscosity 
sβ

0b   such that the two Lame 

constants 
β β

( ,  )  will be related by [74] 
 

sβ β β

2
μ 0

3
b          (81)  

 

However, according to both Cauchy and Poisson 

as the intermolecular spacing vanish 0R   the 

two Lame constants must satisfy the limiting 

expression [73]   
 

β β

4

0
μ ( ) 0

R
LimR f R


          (82) 

 

that by (81) leads to a finite coefficient of bulk 

viscosity [39]  
 

β

β β β

μ2
μ

3 3
b          (83) 

 

Therefore, in Cauchy-Poisson limit (82) all 

tangential stresses will vanish as was 

emphasized by Darrigol [73] 

 
 “Poisson and Cauchy both assumed the limit to be 
zero. Then the medium loses its rigidity since the 
transverse pressures disappear.”    
 
leaving only normal stresses.  By (80) and (83) 

the total normal stress tensor for fluids becomes 

[39] 
 

ij i ij i i ij ti hi ij
p μ (p p )

3
=

        


    P v

 

 (84) 

 

when the hydrodynamic pressure is defined as 
 

hi

μ

3
p



  v
         

(85) 

 

According to (84) a moving fluid besides the 

thermodynamic pressure pt experiences the 

hydrodynamic pressures ph due to its motion. 

 The expression for hydrodynamic pressure 

in (84) could also be arrived at directly by first 

noting that classically hydrodynamic pressure is 

defined as the mean normal stress 

hi xxi yyi zzip ( ) / 3          (86) 
 

because shear stresses in fluids must vanish by 

definition.  Next, normal stresses are expressed 

as diffusional flux of the corresponding 

momenta by (21c) as 
 
 

ii i i ii i i         v V v    (87) 

 

Substituting from (87) into (86) results in 
 

i

hi xxi yyi zzi i

μ
p ( )

3 3



    


    v   

 

(88)
 

 

that is in accordance with (85).   

 
Because by definition fluids satisfy Cauchy-

Poisson limit (82) and hence are incapable of 

supporting tangential forces, the normal stress 

tensor (84) is the total stress tensor for fluids 

[39] and only involves a single Lame coefficient 

as anticipated by Navier [72].  Substituting from 

(84) into (76) results in the modified invariant 

equation of motion for compressible fluids [39] 

 

 iβ iβ iβ

iβ iβ jβ iβ iβ

( )
p + )

t 3

 
   



v
v v v


    

       (89) 
 

It is noted that unlike the classical result the 

diffusion term does not occur in (89).  This is 

because by definition fluids are substances that 

cannot support any shear stress and hence shear 

force.  As a result, in the application of Newton 

law of motion to fluids the only forces on the 

right-hand-side of Cauchy equation of motion 

(76) must be normal forces.  Tangential or shear 

forces must therefore arise from diffusional flux 

of momentum and originate from the left-hand-

side of (76) to be further described in the 

following.   

 A most significant aspect of the modified 

equation of motion (89) is that for an 

incompressible fluid 
β

0v  by continuity 

equation (11) it reduces to Euler equation  
 

iβ iβ

β iβ

iβ

p

t


  

 

v
v v




     
(90) 

 

Therefore, for incompressible flows Euler 

equation (90) that has been conventionally only 

associated with potential hence non-viscous 
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flows is now identified as exact equation of 

motion even for viscous flows. This is because 

the only viscous effect appears in the last term of 

(89) and vanishes due to solenoidal velocity 

field. In other words, in fluids shear stresses can 

only arise from diffusional flux of momenta that 

according to (21c) arise from difference between 

convective versus local velocities. However, 

such distinction between convective and local 

velocities does not occur in Euler equation (90).
  If the local velocity that is coupled with the 

divergence operator jv  in the second term of 

(89) is expressed in terms of the sum of 

convective and diffusive velocities from (21c), 

and following conventional practice the cross 

diffusion effects are neglected and transport 

coefficients are assumed to be constant, one 

obtains the modified invariant equation of 

motion for compressible fluids as  

 

i i2

i i i

i

p

t ρ

 

   




   



v
+ w v v


 

 

                                                                 
i i i

i

i

( )
3 ρ

  





 
 

v
v 

   
(91)

 
 

The result (91) is to be compared with the 

classical Navier-Stokes equation of motion   

 

2 p
( )

t ρ 3

 
  




v
+ v v v v


   (92) 

 

 An important feature of the modified 

equation of motion (91) as compared to (92) is 

that it is linear since it involves a convective 

velocity w that is different from the local fluid 

velocity v .  Also, the diffusion term in (91) 

arises from the LHS of (76) and relates to 

diffusional flux of momentum [34, 58] by (21c).  

In (92) on the other hand, the diffusion term 

arises from the RHS of (76) as a force that relates 

to the classical form of the stress tensor (77). 

Finally, in the absence of convective velocity w  

= 0, the temporal and diffusion terms in (91) 

remain finite.  With the Navier-Stokes equation 

(92) on the other hand, the absence of velocity 

v  = 0 results in the vanishing of the entire 

equation of motion. 

 Parallel to the steps (44)-(46) for diffusion 

of mass. let a yz-plane source of momentum be 

placed at the origin x = 0 at time t = 0 in an 

infinite and otherwise stationary fluid. Because 

of symmetry, momentum conservation leads to 

stationary center of mass w  = 0.  Neglecting 

the pressure gradient, i.e. assuming that the total 

initial imparted momentum is small and for an 

incompressible fluid in the absence of chemical 

reactions
i

0


  , (91) reduces to 
 

2

t



 


  



v
v 

 
    (93)  

 

With the appropriate initial and boundary 

conditions the solution of (93) is  
 

2
x

exp( )
4 t4 t







 


v


   (93a)
 

 

where  
 

dx



 



  v
 
    (93b) 

 

is linear momentum per unit area of the plane 

source. Derivation of results (93) from the 

nonlinear classical form of the equation of 

motion (92) will be more complex.  

 As another example of solution of (91) the 

problem of laminar flow over a flat plate 

described in the previous Section with 

Pr / 1
       is considered.  The predicted 

velocity profile [71] given in (70) is in good 

agreement with experimental data of Dhawan 

[75] shown in Fig. 16.  

 

 

     
 

 
 

Figure 16. Predicted velocity profile (70) compared 
with experimental data of Dhawan [75]. 
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The close agreement with experimental data of 

Dhawan [75] and the small deviation from 

classical boundary layer solution by Blasius [76, 

41] shown in Fig. 16 were found to persist in 

other independent studies by Burgers and Zijnen 

[77],  Zijnen [78],  Hansen [79], and Büttner and 

Czarske [80] as described in [81].  For example, 

the comparison between predictions of modified 

and classical theories with the experimental data 

of Büttner and Czarske [80] from previous study 

[81] is shown in Fig. 17. 
 

        
 

 

Figure 17.  Comparisons between the experimental 
data of Büttner and Czarske [80] and the predictions of 
Blasius [76] and modified (70) theories.    
 

 The only data showing very close agreement 

with Blasius [76] solution of boundary layer 

equation is that of Nikuradse [82] that are likely 

to be defective because of his “data selection” to 

correct for entry-length effects described by 

Schlichting [41].   

 It is important to note that the exact 

similarity between hydro-thermo-diffusive (v, , 

Yi) fields for 1-dimensional laminar boundary 

layer flow governed by equations (62) and (65) 

will no longer be valid if instead of (91) the non-

linear Navier-Stokes equation of motion (92) is 

considered to obtain the velocity field.   

 The velocity profile (70) leads to friction 

coefficient 
 

2 1/2 1/2

f xo x xc / ( w / 2) 2 / Re 0.798Re       


       (94a)
 

to be compared with the classical result  

 
1/2

xfc 0.664Re     (94b)

With the longitudinal velocity (70) the continuity 

equation leads to the transverse velocity  
 

 

 

 
y

0
v 2 / x erf ( ) erf (z)dz

    
    (95) 

 

The stream function and vorticity associated 

with the velocity field (70) and (95) are  
 

 

 

0
2 2x erf ( )d



     (96) 

 

and 
 

22

z
0

2
1/ (x 2x) erf (z)dz erf ( ) e


 

      
 

  

 

                                         
2

(1/ 2 x)e     (97) 
 

 The scale invariant model of statistical 

mechanics naturally leads to a statistical theory 

of turbulence that is in accordance with the 

perceptions of Heisenberg and Chandrasekhar 

[29, 30, 38].  Hence, following Heisenberg the 

problem of turbulence is considered to be 

similar to that of Maxwell and Boltzmann 

kinetic theory of gas namely the problem of 

distribution of a given amount of energy 

amongst large numbers of degrees of freedom as 

described by Heisenberg [30]  

 
“Turbulence is an essentially statistical problem of 
the same type as one meets in statistical mechanics, 
since it is the problem of distribution of energy among 
a very large number of degrees of freedom.  Just as in 
Maxwell theory this problem can be solved without 
going into details of the mechanical motions, so it can 
be solved here by simple considerations of similarity.” 
 
 The model shown in Figs. 1 and 2 suggests 

a hierarchy of flows that appear laminar at scale 

 but are actually bulk advection of turbulent 

flows at the smaller scale of . Such 

hierarchies of embedded turbulent flows are 

most clearly seen in steady turbulent boundary 

layer over a flat plate when the solutions of (91) 

at scales  and  were respectively found to 

be [83]    

 
2

1v 5 8(2 / )  erf ( y / 32) 
                (98a) 

 
and   
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1v 8 (2/ ) erf ( / 8)y 
         (98b) 

 

For example, the solutions in (98a) and (98b) at 

 = e and  = c correspond to LED and LCD 

and their comparisons with experimental data 
[41, 49, 84-86] are shown in Fig.18a.   
 

 

              
      (a)               
 
 
 

 

                
                                      (b)  
 

 
 

 

                
                     (c)  
 
 

Fig. 18 Comparison between the predicted velocity 
profiles (a) LED-LCD, (b) LCD-LMD, (c) LMD-LAD 
with experimental data in the literature over spatial  
range of 108 [83].  
 

Similarly, the solutions in (98a) and (98b) at  

= c and  = m correspond to LCD and LMD and 

at  = m and  = a corresponding to LMD and 

LAD and their comparisons with experimental 

data of Lancien  et al. [87] and Meinhart  et al. 

[88] are shown in Figs. 18b and 18c, 

respectively. 
  

8 The Invariant form of Angular 
Momentum Conservation Equation 
To obtain the invariant form of the conservation 

equation of angular momentum, one introduces 

the new summational invariant 
i i i

m
  

    from 

(31d) where 
i

  is the iso-spin of particle [56] 

defined in (20).  Next, parallel to the distribution 

function for translational velocity iβ iβ iβ β( , , t )f x u  

in Boltzmann equation (29) one introduces the 

distribution function for iso-spin or rotational 

velocity 
riβ iβ iβ

( , , t )f


x   at the scale  that gives 

the total number of rotators per unit volume as 

 

iβ riβ iβn f d  ω     (99) 

 

The introduction of particle iso-spin 
i

  in (99) 

gives the mean iso-spin i.e. vorticity as 

 

iβ iβ iβ riβ iβ iβ( , ) d / nx t f ω ω    (100)
 

 

Substitutions form (31d) and (100) into 

equivalent of (30) without source term on RHS 

and with 
riβ

f for rotational motion results in the 

modified invariant vorticity equation 

 

 iβ

iβ iβ iβ β iβ 
t


  


v v


        (101) 

 

In (101) diffusion vorticity 
iβ

  is the mean of 

peculiar vorticity 
iβ
  defined by curl of (3). The 

last term of (101) corresponds to vortex 

stretching and arises from Coriolis force [89] as  

 

iβ iβ jβ iβ ijk iβ jβ( ) ( )     v v     

 

   iβ ijk jβ iβ iβ β iβ( )   v v           (102) 

 

The issue of sign discrepancy of the vortex 

stretching term in Helmholtz vorticity equation 

has been a source of difficulty in past studies 

[38, 39]. The error is now identified to originate 

from the neglect of Coriolis force in the last 

term on the RHS of (101) to be further 

discussed in the following.   

 As stated before, vorticity diffusion 


  

arises from the difference between the bulk or 

mean vorticity 


  and the local vorticity 


  
given by the curl of equation (3) as  
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iβ β iβ
        (103) 

 

 When the mean or bulk vorticity is absent 

iβ
2 0  w = w  , i.e. the absence of what 

Kundu [89] calls planetary vorticity, by (103) the 

local vorticity and diffusion vorticity relate by 

 

iβ iβ
    (104) 

 

Substitution from (104) into (101) results in 

scale-invariant Helmholtz vorticity equation 

 

 iβ

iβ iβ iβ β iβ
t


  


v v


      (105) 

 

 By expressing the local velocity in (105) in 

terms of convective and diffusive velocities from 

(21d) and neglecting cross diffusion terms and 

assuming constant transport coefficients one 

obtains the invariant modified Helmholtz 

vorticity equation  

 

i i i2

i i i i

i
t

  

     



 
  

 
 

ω ω
+ w ω ω v ω   (106) 

 

Equation (106) is to be compared with the 

classical form of Helmholtz vorticity equation  

 

2

t


 




ω
+ v ω ω v ω   (107) 

 

 An important difference between the 

modified (106) and the classical (107) forms of 

Helmholtz vorticity equation is the occurrence of 

convective velocity w  as opposed to local 

velocity v  in the second term.  Because local 

vorticity 


  in (107) is itself related to the curl of 

local velocity it cannot be convected by this 

same velocity.  On the other hand, the advection 

of local vorticity by convective velocity w in 

(106) is possible. Moreover, in absence of 

convection (106) reduces to the diffusion 

equation similar to that in (47), (73), and (93) for 

mass, heat, and momentum transport.  However, 

the absence of local velocity in (107) will lead to 

the vanishing of the entire equation.  

Parallel to diffusion of mass (47), heat (73), 

and momentum (93), for a plane source of 

vorticity placed at x = 0, at time t = 0, by 

symmetry the convection vanishes w  = 0 and 

in the absence of reaction 
i

0


   (106) reduces 

to diffusion equation 
 

2

2
t x











 
          (108)  

 

with the solution 
 

2
x

exp( )
4 t4 t

 


S
   (109) 

 

where  
 

dx





 S       (110)
 
 

 

is the vorticity per unit area of the plane source.  

 To show that the modified Helmholtz 

vorticity equation (106) does lead to consistent 

predictions, we consider the problem of 

spherical flow within a droplet located at the 

stagnation point of two cylindrically-symmetric 

opposed gaseous finite jets.  The convective 

velocity field is known and given as [41, 90] 
 

r w         ,      z 2 w                      (111) 
 

and the dimensionless velocity and coordinates 

are defined as  
 

r z r z( , ) ( , ) /  w w w w     ,      / /  r  
 

                                / /  z              (112) 
 

where is the stagnation flow velocity 

gradient. The modified steady Helmholtz 

vorticity equation (106) for axi-symmetric 

cylindrical coordinates in absence of chemical 

reactions 
i

0


   reduces to 

 

r

r z

2

2

v
w w

1
    

   
  

     

ω ω ω ω ω
 

 

 

      
2

2 2

 


  
  

ω ω
      (113) 
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The solution of (111)-(113) after substitution for 

local radial velocity 
r r 1 

v w=   that is in 

opposite direction as compared to (111) in 

accordance with (117) and under appropriate 

boundary conditions is given as [91, 92] 
 

214 / R

 ω  (114) 

 

and the corresponding flow within the droplet is 

described by the stream function   
 

2 2 2[1 ( / R) ( / R) ]         (115) 

 

The dimensionless vorticity, stream function, 

and droplet radius R  are defined as 

/
 

 ω ω , 3 1/ 2/( / )    , and 

R R / /   . Some of the streamlines 

calculated from (115) are shown in Fig. 19.  

          
Fig. 19 Flow field within liquid droplet at the 
stagnation point of viscous counter flow [92]. 
 

 The local radial and axial velocities 

corresponding to the stream function (115) are 

 
2 2

rv [1 ( / R) 3( / R) ]       
 

           2 2

zv 2 [1 2( / R) ( / R) ]         (116) 

 

One notes that with the local velocity field given 

in (116) the solution (114) does not satisfy the 

classical form of Helmholtz vorticity equation 

(107). However, in close vicinity of the 

stagnation point ( r 0 , z 0 ) the local velocity 

field (116) reduces to 

 

r r 1   v w       ,  z z 1 2  v w       (117) 

that is identical in form but opposite in direction 

to the outer convective velocity field in (111).  

Therefore, as was noted earlier [92], because of 

the scale-invariant nature of the conservation 

equations, one expects a cascade of embedded 

concentric spherical flows at ever smaller scales 

to form around the stagnation point.   

      It is interesting to note that even if there 

were no liquid droplet at the stagnation point, it 

is expected that a small spherical region of 

gaseous recirculation flow like that shown in 

Fig. 19 will form around the stagnation point of 

viscous counter flow.  For fluids with finite 

viscosity the critical singularity located at the 

stagnation point will be avoided by the 

formation of rigid-body core within the region of 

secondary flow recirculation.  The radius of such 

rigid-body core region is given by R /     

and hence depends on the viscosity and the rate 

of strain [91, 92].   

 Because of linearity of (113) the 

superposition principle applies such that the sum 

or products of solutions of (113) will also satisfy 

this equation.  For example by (115) it can be 

shown that the flow within three concentric 

immiscible liquid droplets of radii R1 = 2, R2 = 

5, and R3 = 10 located at the stagnation point of 

gaseous counter flow finite jets is described by the 

product solution 
 

6 3 2 2 2 2 2 2 2 2
(2 / R / R )(5 / R / R )         

 

                             2 2 2 2
(10 / R / R )       (118) 

 

Some of the streamlines for flow within three 

concentric droplets calculated from (118) are 

shown in Fig. 20. 
   

        


Fig. 20 Streamlines of concentric embedded spherical 
flows calculated from (118). 
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 Looking at Figs. 19 and 20 it is seen that as 

one moves away from the central inner droplet 

the outer convective flow (111) is identified as 

the local feature of a larger spherical flow within 

the second droplet and hence 
1 

 w v  gives 

 

r r 1

2 2
w v [1 ( / R) 3( / R) ]

 
             ,   

  

z z 1

2 2
w v 2 [1 2( / R) ( / R) ]

 
             (119) 

 

leading to the vorticity 

 

1

214 / R


  ω             (120) 

 

with opposite sign of 


ω  in (114).  The second 

droplet experiences yet a new “convective” 

velocity 
1

w  at the next larger scale given by 

 

r 1  w            ,          z 1 2 w               (121) 

  

that is similar to (111) but has opposite direction.  

The above hierarchy of embedded spherical 

flows with alternating sense of rotation is 

recognized as one aspect of the important 

problem of cascades of vortices in turbulent 

flows and the well-known rhyme attributed to 

Richardson about big and little eddies [93]. 

 
Big whirls have little whirls, 
That feed on their velocity; 
And little whirls have lesser whirls, 
And so on to viscosity, 

 

Generation of cascades of embedded spherical 

vortices within locally strained flows (Fig. 20) 

could be identified as one possible mechanism of 

turbulent dissipation.  

 The result in Fig. 20 is also in harmony with 

perceptions of Weizäcker in cosmology as was 

emphasized by Chandrasekhar [93].   

 
"Prominent role that Weizäcker ascribed to 
interplay between turbulence and rotation" 

 

Another significant astrophysical aspect of the 

spherical flows shown in Figs. 19 and 20 is their 

relations to the well-known Hill spherical vortex 

[94, 95] formed within a liquid droplet in 

uniform gaseous flow.  Hence, Fig. 19 could be 

viewed as two semi-spherical Hill vortices each 

vortex occupying a semi-spherical volume.  

Clearly the cascade of spherical flows in Fig. 20 

is a good model of convective flows within stars. 

As an example it is known that the direction of 

magnetic polarization of volcanic rocks alternate 

every few million years with no known 

mechanism to account for such behavior.  

Clearly, reversal of polarization could not be due 

to change of the direction of the magnetic field 

of the entire planet earth that would be 

catastrophic.  Examination of Fig. 20 suggests 

that successive generation and evolution of 

embedded spherical flows with alternating sense 

of rotation within the ionic plasma of a dynamo 

such as the planet earth discussed by Elsasser 

[96] could possibly account for such periodic 

changes in the direction of polarization.   

 
9 Derivation of Invariant Classical 
forms of Conservation Equations 
The invariant forms of conservation equations 

could be derived following classical integral 

methods by considering a volume element  

shown in Fig. 21  

                   

i

i

pi

n



w

i

 
 

Fig. 21 Conservation of 
i i i i

(ρ , ε , ), p π  in an arbitrary 
domain  with unit outward normal n. 
 
with the unit outward normal n and expressing 

mass, thermal energy, linear and angular 

momentum conservations as 
 

 

i i id dA d
t

V V      


     

   w .n        (122) 

 

i id dA
t

V    


   

   w .n        (123) 

 

i i ijd dA dA
t

V      


  

   p p w .n P .n    (124) 

 

i i i ijk j id dA dA
t

V       


    

   w .n v .n  

                (125) 
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For Coriolis force [89] in the last term of (125) 

substitution has been made from the identity 

 

i ijk i j i ijk j idA dA           v .n v .n     (126) 

  

By application of Gauss’s divergence theorem to 

(122)-(125) one arrives at 
 

 iβ

iβ β iβ

ρ
ρ

t


 


w            (127) 

 

 iβ

iβ β

ε
ε 0

t


 


w

               
(128) 

 

 iβ

iβ β ijβ
t


  



p
p w P 

                     

(129) 

 

 iβ

iβ β iβ iβ
t




  


w v


   

                 

(130) 

 

 In the above formulation the flux of 

quantities 
i i i i

(  ),  
   

  p    across the system 

boundary occurs by convective velocity that is 

now expressed as the vector sum of local plus 

diffusion velocities as  

 

j ij  w = v + V                 (131) 

 

that is different from (21c). To examine the 

difference between (131) and (21c) it is first 

noted that diffusion velocity relates to the mean 

of the peculiar velocity  

 

i i ij  
u v = V      (132) 

 

Also, one can express the peculiar and diffusion 

velocities of scale EMD from particle speed 

profiles shown in Fig. 6 as  

 

im im ijm
u v = V      , m,mp im im v v u   (132a) 

 

im m ijmv w = V     , m im m,mp w v v   (132b) 

 

From the overlap region between velocity 

distribution of EMD and ECD fields in Fig. 6 

one identifies the equivalence of (132b) with  

 

ic ic ijc
u v = V      , c,mp ic ic v v u    (133) 

Therefore, according to (3) since the equality 

j 
w =< v >  leads to the inequality i i v > w  the 

sign of the diffusion velocity ijV  will be 

positive and this is insured by having a negative 

sign in its definition 
 

hg i iln( )   V p     (134) 

 

In (131) on the other hand the sign of the 

diffusion velocity vector is not anticipated by 

retaining the negative sign in its definition in 

(134),   

 Substituting from (131), (21) and from (84) 

for the stress tensor into (127)-(130) and 

assuming constant transport coefficients and 

unity Schmidt and Prandtl numbers Sc Pr 1
 
   

result in the invariant forms of conservation 

equations for chemically reactive fields 

 

iβ 2

β iβ iβ iβ iβ

ρ
ρ ρ

t
D


  


v  

      
   (135) 

 

iβ 2

β iβ iβ iβ iβ iβ iβ piβ

T
T T / c

t
h


    


v        (136) 

 

iβ iβ2

β iβ iβ iβ

iβ

p

t


  

 

v
v v v


 

 

                                         

iβ

iβ iβ iβ iβ) /
3

   v v


       (137) 

 

iβ 2

β iβ iβ iβ β iβ iβ iβ iβ/
t


     


v v


     

 

                                                                                                                  

(138) 
 

5that appear similar to the classical forms of 

conservation equations except for the reactive 

terms in (137)-(138).  It is emphasized however 

that even though the final results are 

mathematically identical there are subtle and 

important fundamental differences between 

(135)-(138) and classical conservation equations 

besides the fact that the continuity equation 

(135) contains a diffusion term even for a pure 

fluid that is absent in the classical continuity 

equation (29).    

 To relate (135)-(138) to classical 

conservation equations one must start with the 

most elementary question namely the definition 
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of fluid velocity.  In classical fluid mechanics 

the local fluid velocity mv v v= is usually 

defined as the average of molecular velocity 

m u u  by (2).   Therefore, conventional fluid 

mechanics is considered to be associated with 

laminar-molecular-dynamics LMD scale (Fig. 2) 

with relevant velocities
m m m

( ,  , )u v w . However, it 

is known that the most probable molecular speed 

is the velocity of sound, m,mp 358 m / sv  in air 

at standard conditions [69] that is a constant at 

constant temperature. As a result, 
c m,mp
 = u v  is 

random and hence the velocity of fluid mechanics 

should correspond to higher scale than LMD.  

This implies that stationary fluids should be 

identified with ECD and consequently 

conventional fluid dynamics should correspond 

to laminar-cluster-dynamics LCD scale with 

relevant velocities 
c c c

( ,  , )u v w  as shown in Figs. 

2 and 6. The evidence for the existence of 

intermediate scale of ECD separating the 

statistical field of EMD from EED is the 

phenomenon of Brownian motions as discussed 

in [38, 39].  

 The exact nature of fluid mechanic velocity 

is best revealed in the field of combustion where 

distinction between molecular specie velocity 

im
u , mean molecular velocity of specie

im
v , and 

mass-average velocity 
o

v  of all species i.e. 

mixture velocity become necessary [42]. In the 

model being described herein, one associates 

“atomic”, “element”, and “system” velocities for 

identification of different scales as opposed to 

identity of specific molecular species.  

Accordingly, the velocity of conventional fluid 

mechanics should be identified as the mass-

average velocity  
o

v   as noted by Williams [42] 

and is identified as system velocity of LMD 

scale 
o im im m
  v u v w .     

 In view of the above discussions, the 

relevant velocities for conventional fluid 

mechanics should be identified as 

 

                

ic

ic

c

    







"ATOMIC"  VELOCITY    

ELEMENT  VELOCITY     

SYSTEM  VELOCITY        

u
v
w

  
                      

(139) 

Hence, the conservation equations (135)-(138) 

at LCD scale  = c with local velocity c mv w  

given by Navier-Stokes equation (137) 

represents the conventional field of fluid 

mechanics. This is because mw as system 

velocity of LMD cannot appear in differential 

equations since by definition it is not locally 

defined i.e. its value at any position will depend 

on velocity at other locations remote from this 

position as discussed earlier [34].  It appears 

therefore that due to the scale invariant nature 

of the problem the conservation equations 

(135)-(138) at LCD scale closely coincide with 

the classical forms of conservation equations 

that are conventionally conceived to correspond 

to the lower scale of LMD. However, as 

discussed in Section 5, LMD scale corresponds 

to internal structure of of shock waves.  Many 

of the concepts and results described in this 

study are in need of further investigations.  

 

10 Concluding Remarks 
A scale-invariant model of statistical mechanics 

was applied to introduce invariant Boltzmann 

equation and the associated invariant Enskog 

equation of change. The invariant modified 

forms of mass, thermal energy, linear and 

angular momentum conservation equations were 

derived. A modified form of continuity equation 

with a diffusion term even in pure systems was 

presented and applied to describe internal hydro-

thermo-diffusive structure of normal shock in 

pure gaseous system. Thus, the classical paradox 

of inapplicability of classical Navier-Stokes 

equation of motion to shocks due to violation of 

continuum approximation was resolved. The 

internal shock structure was shown to be 

governed by LMD scale representing a new 

continuum.   

 A modified form of equation of motion with 

distinction between convective and local 

velocity similar to Carrier equation of motion 

was presented. The solutions of modified 

equation of motion for the problems of laminar 

and turbulent flow over a flat plate were 

described.  The predicted velocity profiles were 

shown to be in close agreement with 

experimental observations available in the 

literature.  
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 A definition of vorticity was introduced as 

the mean iso-spin of particle leading to a 

modified form of Helmholtz vorticity equation 

that was solved for the problem of spherical flow 

within a liquid droplet located at the stagnation 

point of opposed gaseous axisymmetric finite 

jets.  Finally, by application of integral methods 

classical forms of conservation equations were 

derived. The invariant nature of conservation 

equations across broad range of spatio-temporal 

scales described herein is in harmony with the 

observed universal occurrence of fractals in 

physical science [97]. 
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