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Abstract: - In the present work, the Roe, the Steger and Warming, the Van Leer, the Chakravarthy and Osher, 

the Harten, the Frink, Parikh and Pirzadeh, the Liou and Steffen Jr. and the Radespiel and Kroll schemes are 

implemented, on a finite volume context and using an upwind structured spatial discretization, to solve the 

Euler equations in the three-dimensional space. The Roe, the Harten, the Chakravarthy and Osher and the 

Frink, Parikh and Pirzadeh schemes are flux difference splitting ones, whereas the others schemes are flux 

vector splitting ones. All eight schemes are first order accurate in space and their explicit and implicit versions 

are implemented in three-dimensions. The explicit time integration uses a Runge-Kutta, a time splitting or an 

Euler method. The former is second order accurate in time, whereas the others are first order accurate in time. 

In the implicit case, an ADI approximate factorization is employed, which is first order accurate in time. The 

physical problems of the supersonic flow along a ramp, in the implicit case, and the “cold gas” hypersonic 

flows around a blunt body and along an air inlet, in the explicit case, are solved. The results have demonstrated 

that the Liou and Steffen Jr. scheme is the most conservative algorithm among the studied ones, whereas the 

Van Leer scheme is the most accurate. 

 

Key-Words: - Flux difference splitting algorithms, Flux vector splitting algorithms, Structured schemes, Euler 

equations, Three-Dimensions, Supersonic and hypersonic flows. 

 

1 Introduction 
Conventional non-upwind algorithms have been 

used extensively to solve a wide variety of problems 

([1-2]). Conventional algorithms are somewhat 

unreliable in the sense that for every different 

problem (and sometimes, every different case in the 

same class of problems) artificial dissipation terms 

must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks 

and steep compression and expansion gradients may 

defy solution altogether. 
 Upwind schemes are in general more robust but 

are also more involved in their derivation and 

application. Some upwind schemes that have been 

applied to the Euler equations are: [3-10]. Some 

comments about these methods are reported below: 

 [3] presented a work that emphasized that several 

numerical schemes to the solution of the hyperbolic 

conservation equations were based on exploring the 

information obtained in the solution of a sequence 

of Riemann problems. It was verified that in the 

existent schemes the major part of these information 

was degraded and that only certain solution aspects 

were solved. It was demonstrated that the 

information could be preserved by the construction 

of a matrix with a certain “U property”. After the 

construction of this matrix, its eigenvalues could be 

considered as wave velocities of the Riemann 

problem and the UL-UR projections over the matrix’s 

eigenvectors would be the jumps which occur 

between intermediate stages. 

 [4] developed a method that used the remarkable 

property that the nonlinear flux vectors of the 

inviscid gasdynamic equations in conservation law 

form were homogeneous functions of degree one of 

the vector of conserved variables. This property 

readily permitted the splitting of the flux vectors 

into subvectors by similarity transformations so that 

each subvector had associated with it a specified 

eigenvalue spectrum. As a consequence of flux 

vector splitting, new explicit and implicit dissipative 

finite-difference schemes were developed for first-

order hyperbolic systems of equations. 

 [5] suggested an upwind scheme based on the 

flux vector splitting concept. This scheme 

considered the fact that the convective flux vector 

components could be written as flow Mach number 

polynomial functions, as main characteristic. Such 

polynomials presented the particularity of having 

the minor possible degree and the scheme had to 

satisfy seven basic properties to form such 

polynomials. This scheme was presented to the 
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Euler equations in Cartesian coordinates and three-

dimensions. 

 [6] presented an upwind, shock capturing 

algorithm generalized to arbitrary coordinate 

systems. It could be applied to essentially all 

hyperbolic systems of conservation laws arising in 

physics, but became especially simple for the Euler 

equations. The method did not require any special 

properties of the Euler equations such as 

homogeneity. The [6] scheme was based on a 

Riemann problem solver, where compression waves 

are used to approximate shocks. This leads to a 

cleaner and smoother algorithm. 

 [7] developed a class of new finite difference 

schemes, explicit and with second order of spatial 

accuracy to calculation of weak solutions of the 

hyperbolic conservation laws. These schemes highly 

non-linear were obtained by the application of a first 

order non-oscillatory scheme to an appropriated 

modified flux function. The so derived second order 

schemes reached high resolution, while preserved 

the robustness property of the original non-

oscillatory first order scheme. 

 [8] proposed a new scheme, unstructured and 

upwind, to the solution of the Euler equations. The 

scheme was based on the [3] flux difference 

splitting algorithm and was first order accurate. 

High resolution was obtained using a linear 

extrapolation process based on conserved variables. 

They tested the precision and the utility of this 

scheme in the analysis of the inviscid flows around 

two airplane configurations: one of transport 

configuration, with turbines under the wings, and 

the other of high speed civil configuration. Tests 

were accomplished at subsonic and transonic Mach 

numbers with the transport airplane and at transonic 

and low supersonic Mach numbers with the civil 

airplane, yielding good results. 

 [9] proposed a new flux vector splitting scheme. 

They declared that their scheme was simple and its 

accuracy was equivalent and, in some cases, better 

than the [3] scheme accuracy in the solutions of the 

Euler and the Navier-Stokes equations. The scheme 

was robust and converged solutions were obtained 

so fast as the [3] scheme. The authors proposed the 

approximated definition of an advection Mach 

number at the cell face, using its neighbor cell 

values via associated characteristic velocities. This 

interface Mach number was so used to determine the 

upwind extrapolation of the convective quantities. 

 [10] emphasized that the [9] scheme had its 

merits of low computational complexity and low 

numerical diffusion as compared to others methods. 

They also mentioned that the original method had 

several deficiencies. The method yielded local 

pressure oscillations in the shock wave proximities, 

adverse mesh and flow alignment problems. In the 

[10] work, a hybrid flux vector splitting scheme, 

which alternated between the [9] scheme and the [5] 

scheme, in the shock wave regions, is proposed, 

assuring that resolution of strength shocks was clear 

and sharply defined. 

 Traditionally, implicit numerical methods have 

been praised for their improved stability and 

condemned for their large arithmetic operation 

counts ([11]). On the one hand, the slow 

convergence rate of explicit methods become they 

so unattractive to the solution of steady state 

problems due to the large number of iterations 

required to convergence, in spite of the reduced 

number of operation counts per time step in 

comparison with their implicit counterparts. Such 

problem is resulting from the limited stability region 

which such methods are subjected (the Courant 

condition). On the other hand, implicit schemes 

guarantee a larger stability region, which allows the 

use of CFL numbers above 1.0, and fast 

convergence to steady state conditions. 

Undoubtedly, the most significant efficiency 

achievement for multidimensional implicit methods 

was the introduction of the Alternating Direction 

Implicit (ADI) algorithms by [12-14]. ADI 

approximate factorization methods consist in 

approximating the Left Hand Side (LHS) of the 

numerical scheme by the product of one-

dimensional parcels, each one associated with a 

different spatial direction, which retract nearly the 

original implicit operator. These methods have been 

largely applied in the CFD community and, despite 

the fact of the error of the approximate factorization, 

it allows the use of large time steps. 

 Considering the two-dimensional case, [15-16] 

studied the [3-10] and [17] algorithms, first order 

accurate in space, implemented employing explicit 

and implicit formulations to solve the Euler 

equations. Such algorithms were implemented 

according to a finite volume methodology and using 

structured spatial discretization. The [3, 6-8] 

algorithms were flux difference splitting ones, 

whereas the others were flux vector splitting 

algorithms. The implicit schemes employed an ADI 

approximate factorization or Symmetric Line 

Gauss-Seidel to solve implicitly the Euler equations. 

Explicit and implicit results were compared, as also 

the computational costs, trying to emphasize the 

advantages and disadvantages of each formulation. 

The schemes were accelerated to the steady state 

solution using a spatially variable time step, which 

had demonstrated effective gains in terms of 

convergence rate according to [18-19]. The 
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algorithms were applied to the solution of the 

physical problem of the moderate supersonic flow 

along a compression corner. The results had 

demonstrated that the most accurate solutions were 

obtained with the [7] first order scheme, when 

implemented in its explicit version. The best wall 

pressure distribution was obtained by the [10] first 

order scheme, in both explicit and implicit cases. 

 In the present work, the [3-10] schemes are 

implemented, on a finite volume context and using 

an upwind and structured spatial discretization, to 

solve the Euler equations in the three-dimensional 

space. The [3] and [6-8] schemes are flux difference 

splitting ones and more accurate solutions are 

expected. On the other hand, the [4-5] and [9-10], 

schemes are flux vector splitting ones and more 

robustness properties are expected. The 

implemented schemes are first order accurate in 

space. The explicit time integration uses a Runge-

Kutta, a time splitting or an Euler method. The 

former is second order accurate in time, whereas the 

others are first order accurate in time. In the implicit 

case, an ADI approximate factorization is employed, 

which is first order accurate in time. The physical 

problems of the supersonic flow along a ramp, in the 

implicit case, and the “cold gas” hypersonic flows 

around a blunt body and along an air inlet, in the 

explicit case, are solved. All the eight algorithms are 

accelerated to the steady state solution using a 

spatially variable time step. This technique has 

proved excellent gains in terms of convergence ratio 

as reported in [18-19]. 

 The results have demonstrated that the [9] 

scheme is the most conservative algorithm among 

the studied ones, whereas the [5] scheme is the most 

accurate. 
 

 

2 Euler Equations 
The fluid movement is described by the Euler 

equations, which express the conservation of mass, 

of linear momentum and of energy to an inviscid, 

heat non-conductor and compressible mean, in the 

absence of external forces. In the integral and 

conservative forms, employing a finite volume 

formulation and using a structured spatial 

discretization, to three-dimensional simulations, 

these equations can be represented by: 

   0  S
zeyexe

V
dSnGnFnEQdVt , (1) 

where Q is written to a Cartesian system, V is a cell 

volume, which corresponds to an hexahedron in the 

three-dimensional space, nx, ny and nz are the 

components of the normal unity vector pointing 

outward to the flux face, S is the surface area and Ee, 

Fe and Ge represent the components of the 

convective flux vector. Q, Ee, Fe and Ge are 

represented by: 
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The quantities that appear above are described as 

follows:  is the fluid density, u, v and w are the 

Cartesian components of the flow velocity vector in 

the x, y and z directions, respectively; e is the total 

energy per unit volume of the fluid; and p is the 

fluid static pressure. 

 The Euler equations were nondimensionalized in 

relation to the freestream density, , and the 

freestream speed of sound, a, for the studied 

problems. To allow the solution of the matrix 

system of five equations to five unknowns described 

by Eq. (1), it is employed the state equation of 

perfect gases presented below: 

               )(5.0)1( 222 wvuep  ,         (3) 

where  is the ratio of specific heats at constant 

pressure and volume, respectively, which assumed a 

value 1.4 to the atmospheric air. The total enthalpy 

is determined by: 

                                 ρpeH  .                        (4) 

The geometrical domain with the description of a 

structured cell, its nodes, interfaces and neighbors, 

as also the calculation of the cell volume, cell 

surfaces and normal unity vectors are found in [20-

21]. 

 

3 Roe Numerical Algorithm 
The [3] algorithm, first order accurate in space, is 

specified by the determination of the numerical flux 

vector at the (i+1/2,j,k) interface. Its extension to the 
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(i,j+1/2,k) and the (i,j,k+1/2) interfaces is 

straightforward, without any complication. 
 Following a finite volume formulation, which is 

equivalent to a generalized coordinate system, the 

right and left cell volumes, as well the interface 

volume, necessary to a coordinate change, are 

defined by: 

 

kjiR VV ,,1 , kjiL VV ,,  and  LR VVV  5.0int ,  (6) 

 

where “R” and “L” represent right and left states in 

relation to the interface, respectively. The metric 

terms to this coordinate system are defined as: 

 

intint, VSh xx  , intint, VSh yy  , intint, VSh zz  ; 

                               intint VShn  ,                          (7) 

 

with, int,xS , int,yS  and int,zS  representing the surface 

area components and Sint is the norm of the surface 

area vector. 

 The properties calculated at the flux interface are 

obtained by arithmetical average or by Roe’s 

average. In the present work, the Roe’s average was 

used: 

 

RLint ,    LRLRRL uuu  1int ; 

   LRLRRL vvv  1int ; 

               LRLRRL www  1int ;         (8) 

           LRLRRL HHH  1int ;   (9) 

           2
int

2
int

2
intintint 5.01 wvuHa  ,  (10) 

where aint is the speed of the sound at the interface. 

The eigenvalues of the Euler equations, in the 

normal direction to the flux face, to the convective 

flux are given by: 
 

zyxnormal hwhvhuq intintint  , nnormal haq int1  ; 

   normalq 432 , nnormal haq int5  .  (11) 
 

 The jumps of the conserved variables, necessary 

to the construction of the [3] dissipation function, 

are given by: 
 

            LR eeVe  int ,  LRV  int ;     (12) 

      LR uuVu  int ,       LR vvVv  int ;  (13) 

                            LR wwVw  int .                (14) 

 

 The  vectors to the interface are calculated by 

the following expressions: 
 

                             QR l int
1

int   ,                 (15) 

 

with: 
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 (16) 

        T
ewvuQ  int , defined by 

Eqs. (12), (13) and (14);                                      (17)                                                       

                       2
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       nxx hhh ' , nyy hhh '  and nzz hhh ' . (20) 

 

 The [3] dissipation function uses the right-

eigenvector matrix of the normal to the flux face 

Jacobian matrix in generalized coordinates: 
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 The entropy condition is implemented using the 

entropy function  defined of the following way:  

 


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
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mmmmm
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m
if

if

,5.0

,
22  to non-linear 

fields and mm   to linear fields,                   (22) 

with “m” ranging from 1 to 5 (three-dimensional 

space), being the values 1 and 5 associated to non-

linear fields (shock waves and expansion waves) 
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and 2, 3 and 4 associated to linear fields (contact 

discontinuities), and mε  assuming the value 0.2, 

recommended by [3]. Finally, the [3] dissipation 

function to the interface is constructed by the 

following matrix-vector product: 

                          intintint
 RDRoe .             (23) 

The convective numerical flux vector to the 

(i+1/2,j,k) interface is described by: 
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where: 
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 The right-hand-side (RHS) of the [3] scheme, 

necessaries to the resolution of the implicit version 

of this algorithm, is determined by: 
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 The time integration to the explicit simulations 

follows the time splitting method, first order 

accurate, which divides the integration in three 

steps, each one associated with a specific spatial 

direction. In the initial step, it is possible to write for 

the  direction: 
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in the intermediate step,  direction: 
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and at the final step,  direction: 

 

 **
2/1,,

**
2/1,,,,,,

1
,, 
  kjikjikjikji

n
kji FFVtQ ; 

                     
1
,,

**
,,

1
,,

  n
kjikji

n
kji QQQ .                  (29) 

 

4 Steger and Warming Numerical 

Algorithm 
 

4.1 Theory for the One-Dimensional Case 
If the homogeneous Euler equations are put in 

characteristic form 

 

                          0 xWtW ,              (30) 

 

where W is the vector of characteristic variables 

(defined in [22]) and  is the diagonal matrix of 

eigenvalues, the upwind scheme: 
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where u is a scalar property,  aaa ˆˆ5.0ˆ   and 

 aaa ˆˆ5.0ˆ  , can be applied to each of the three 

characteristic variables separately, with the 

definitions 

 

  mmm  5.0    and    mmm  5.0  (32) 

 

for each of the eigenvalues of  
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























au

au

u

3

2

1

.  (33) 

This defines two diagonal matrices 

: 

 
 

 






















































auau

auau

uu

5.0

5.0

5.0

3

2

1

, 

(34) 

where 
+
 has only positive eigenvalues, 

-
 only 

negative eigenvalues, and such that 

 

            and        or 

           mmm    and     mmm .        (35) 

 

 The quasi-linear coupled equations are obtained 

from the characteristic form by the transformation 

matrix P (defined in [22]), with the Jacobian A 

satisfying 

 

     1 PPA , resulting in 0 xQAtQ .    (36) 
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Hence an upwind formulation can be obtained with 

the Jacobians 

 

          1  PPA    and   1  PPA , with: 

                   AAA  and   AAA .       (37) 

 The fluxes associated with these split Jacobians 

are obtained from the remarkable property of 

homogeneity of the flux vector f(Q). f(Q) is a 

homogeneous function of degree one of Q. Hence, f 

= AQ and the following flux splitting can be 

defined: 

QAf      and   QAf   , with:   fff . (38) 

This flux vector splitting, based on Eq. (32), has 

been introduced by [4]. The split fluxes f
+
 and f

-
 are 

also homogeneous functions of degree one in Q. 

  

4.2 Arbitrary Meshes 
In practical computations one deal mostly with 

arbitrary meshes, considering either in a finite 

volume approach or in a curvilinear coordinate 

system. In both cases, the upwind characterization is 

based on the signs of the eigenvalues of the matrix 

             zyx
n CnBnAnnAK 


)( ,      (39) 

where A, B and C are the Jacobian matrices written 

to the Cartesian system. The fluxes will be 

decomposed by their components 

                  zyx
n GnFnEnnFF 


~~ )(        (40) 

and separated into positive and negative parts 

according to the sign of the eigenvalues of K
(n)

 as 

described above, considering the normal direction as 

a local coordinate direction. 

 For a general eigenvalue splitting, as Eq. (32), 

the normal flux projection, Eq. (40), is decomposed 

by the [4] flux splitting as 

 

 
 
 

  



























































12

2

~

322
32

222
32

32

32

)(

aav
wvu

naw

nav

nau

F

n

z

y

x

n , 

(41) 

 

where the eigenvalues of the matrix K are defined as 

   nvnv 


1 , anv 


2  and anv 


3 ,   (42) 

 

with v


 being the flow velocity vector,  sign 

indicates the positive or negative parts respectively, 

and the speed of sound defined by  pa . The 

parameter  is defined as 

 

                             32112 .             (43) 

 

4.3 Numerical scheme 
The numerical scheme of [4] implemented in this 

work is based on an structured finite volume 

formulation, where the convective numerical fluxes 

at interface are calculated as 

 

  kjikjikjikji SFFF ,2/1,,,,1,,2/1,

~~~



  , 

                kjikjikjikji SFFF ,,2/1,,,,1,,2/1

~~~



  ;         (44) 

  kjikjikjikji SFFF ,2/1,,,,1,,2/1,

~~~



  , 

                kjikjikjikji SFFF ,,2/1,,,,1,,2/1

~~~



  ;     (45) 

  2/1,,,,1,,2/1,,

~~~



  kjikjikjikji SFFF , 

                2/1,,,,1,,2/1,,

~~~



  kjikjikjikji SFFF ;     (46) 

 

 The Euler explicit method, first order accurate in 

time, is employed to perform the time integration: 

 

  
 SW

kji
SW

kjikjikji
n

kji
n

kji FFVtQQ ,,2/1,2/1,,,,,,,
1
,,

~~
 

    nSW
kji

SW
kji

SW
kji

SW
kji FFFF 2/1,,2/1,,,,2/1,2/1,

~~~~
  .  (47) 

 

The RHS to the implicit simulations is determined 

by: 

 

  
SW

kji
SW

kjikjikji
n

kji FFVtRHS ,,2/1,2/1,,,,,,,

~~
 

     nSW
kji

SW
kji

SW
kji

SW
kji FFFF 2/1,,2/1,,,,2/1,2/1,

~~~~
  . (48) 

 

This version of the flux vector splitting algorithm of 

[4] is first order accurate in space. 

 

5 Van Leer Numerical Algorithm 
The approximation of the integral equation (1) to a 

hexahedron finite volume yields a system of 

ordinary differential equations with respect to time: 

 

                     kjikjikji RdtdQV ,,,,,,  ,               (49) 

 

with Ri,j,k representing the neat flux (residue) of the 

conservation of mass, of linear momentum and of 
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energy in the Vi,j,k volume. The residue is calculated 

as: 

 

  kjikjikjikjikji RRRRR ,2/1,,2/1,,,2/1,,2/1,,  

                    2/1,,2/1,,   kjikji RR ,                      (50) 

 

where 
c

jiji RR ,2/1,2/1   , in which “c” is related to 

the flow convective contribution. 

 As shown in [9], the discrete convective flux 

calculated by the AUSM scheme (“Advection 

Upstream Splitting Method”) can be interpreted as a 

sum involving the arithmetical average between the 

right (R) and the left (L) states of the (i+1/2,j,k) cell 

face, related to cell (i,j,k) and its neighbor, 

respectively, multiplied by the interface Mach 

number, and a scalar dissipative term. Hence, to the 

(i+1/2,j,k) interface: 
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

 
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aw

av

au

a

aH

aw

av

au

a
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2

1
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





 , 

(51) 

where  T
kjizyxkji SSSS

,,2/1,,2/1    defines the 

normal area vector to the (i+1/2,j,k) surface. Mi+1/2,j,k 

defines the advection Mach number at the (i+1/2,j,k) 

face of the (i,j,k) cell, which is calculated according 

to [9] as: 

                              RLl MMM ,                     (52) 

 

where the separated Mach numbers M
+/-

 are defined 

by [5]: 

 

           ;1

;1,0

,125.0

;1,
2



















Mif

MifM

MifM

M    (53a) 

 

and 

              ;1

.1,

,125.0

;1,0
2



















MifM

MifM

Mif

M     (53b) 

 

ML and MR represent the Mach number associated 

with the left and right states, respectively. The 

advection Mach number is defined by: 

 

                      aSwSvSuSM zyx  .           (54) 

 

 The pressure at the (i+1/2,j,k) face of the (i,j,k) 

cell is calculated by a similar way: 

 

                           
  RLkji ppp ,,2/1 ,             (55) 

 

with p
+/-

 denoting the pressure separation defined 

according to [5]: 

 

   
















;1,0

1,2125.0

;1,
2

Mif

MifMMp

Mifp

p  

And 

               
















.1,

1,2125.0

;1,0
2

Mifp

MifMMp

Mif

p ;    (56) 

 

 The definition of the dissipative term  

determines the particular formulation of the 

convective fluxes. According to [10], the choice 

below corresponds to the [5] scheme: 

 

 
 
















.01,15.0

;10,15.0

;1,

2

2

lLl

lRl

ll

VL
ll

MifMM

MifMM

MifM

(57) 

 

 The equations above clearly show that to a 

supersonic Mach number at the cell face, the [5] 

scheme represents a purely upwind discretization, 

using either the left state or the right state to the 

convective and pressure terms, depending of the 

Mach number signal. The explicit time integration 

follows the time splitting method described in the 

[3] scheme [Eqs. (27-29)]. To the implicit time 

integration, it is necessary the following RHS 

definition: 
 

  
VL

kji
VL

kjikjikji
n

kji RRVtRHS ,,2/1,,2/1,,,,,,     

nVL
kji

VL
kji

VL
kji

VL
kji RRRR 2/1,,2/1,,,2/1,,2/1,   . (58)
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The [5] scheme presented in this work is first order 

accurate in space. 

 

 

6  Chakravarthy and Osher Numerical 

Algorithm 
 

6.1 Eigenvalues 
The Jacobian matrices in generalized coordinates, 

necessary to define the system’s eigenvalues 

according to the [6] scheme, are defined by: 

 

 
kjizyxkji ChBhAhA

,,2/1,,2/1
ˆ

  ; 

 
kjizyxkji ChBhAhB

,2/1,,2/1,
ˆ

  ; 

             
2/1,,2/1,,

ˆ
 

kjizyxkji ChBhAhC ,    (59) 

 

where QEA  , QFB   and QGC   are 

the Cartesian Jacobian matrices. Remembering that 

the sound speed is determined by  /pa , the 

eigenvalues of Â  are defined by: 

 

nhaU )(1  , nUh 4,3,2  and nhaU )(5  , 

(60) 

 

with whvhuhU zyx
'''  . 

6.2 Riemann Invariants 
Riemann invariants are the building blocks for the 

[6] algorithm applied to Euler equations. Riemann 

invariants are associated with the eigenvalues of the 

generalized Jacobian matrices and are obtained from 

the corresponding right eigenvectors. For the [6] 

scheme, the Riemann invariants  corresponding to 

the lth eigenvalue are obtained by solving 

                              0)(  QrlQ ,                    (61) 

 

where Q  is the gradient operator with respect to 

the vector of dependent variables denoted by Q and 

rl is the lth right eigenvector. It may easily be 

verified that the following are Riemann invariants: 
 

For nhaU )(1  : 
 

)1/(21
2  aU ; 

  Sp /1
3 entropy; 

Vuhvh yx  ''1
4 ; 

                        Wuhwh zx  ''1
5 ;                  (62) 

For nUh 4,3,2 : 

 

               p 4,3,2
1    and   U 4,3,2

5 ;              (63) 

 

For nhaU )(5  : 

 

 )1/(25
1  aU ,   Sp /5

2 entropy; 

     Vuhvh yx  ''5
3 , Wuhwh zx  ''5

4 . (64) 

 

The superscript denotes the eigenvalue to which the 

Riemann invariants correspond. 

6.3 Intermediate States 
 In finite volumes the variable of interest are defined 

at the (i,j,k) cell centroid, where the vector of 

conserved variables is denoted as Qi,j,k. The 

coordinate direction  is treated in details in this 

work and the extension to the  and  coordinates is 

straightforward. By simplicity, the indexes j and k 

are suppressed in the present notation. 

 Conventional finite volume schemes employ 

values at the cell centroids of the conserved 

variables, or dependents, of a simple manner. Such 

schemes are generally symmetric, what simplify 

their numerical implementation. The [6] algorithm 

is more sophisticated. Fundamental to the [6] 

scheme are the intermediate states of the dependent 

variables, which are defined from the values of the 

cell states of the computational domain. While states 

in the computational cells are defined by Qi-1, Qi, 

etc., the correspondent intermediate states are 

defined by Qi-2/3 and Qi-1/3. The rest of this sublevel 

describes how these intermediate states are defined 

and their meanings. 

 

 
 

Figure 1. Schematic Representation of [6] 

Scheme in Terms of Intermediate and Cell 

Values of Dependent Variables. 

 Figure 1 serves as a guide to the construction of 

the intermediate values. The states i-1 and i are 

connected through a curve in the state space which 

is made up of three subpaths. The first path connects 

Qi-1 and Qi-2/3 and is associated with 1. Path 2 

connecting Qi-2/3 and Qi-1/3 is associated with 2,3,4 
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and path 3 connecting Qi-1/3 and Qi is associated with 

5. Thus 1
5,4,3,2  are constant between Qi-1 and Qi-2/3; 

4,3,2
5,1   are  constant  between  Qi-2/3  and  Qi-1/3; and 

5
4,3,2,1  are constant between Qi-1/3 and Qi. Equating 

Riemann invariants between the end points of each 

subpath it is possible to find 4+2+4 = 10 equations 

to obtain the 10 unknown values of Qi-2/3 and Qi-1/3 

from the known values at Qi-1 and Qi. Thus the 

dependent variables at i-2/3 and i-1/3 are defined by 

the following formulas: 

 

   11
2)1(

3/1 2/1 


  iiiii aaUU  

                          2/)1()2/(1

1 /1 

  iiii SSa ;          (65) 

   11
2)1(

3/1 2/1 


  iiiii aaUU  

                       2/)1(
1

)2/(1

11 /1 




  iiii SSa ;         (66) 

                   
  3/213/13/2 iiii Spp ;             (67) 

    3/13/2113/2 )1(2 iiiii UaaUU  

                  3/1)1(2  iii aaU ;                 (68) 

 13/2   ii VV    and   ii VV  3/1 .              (69) 

 13/2   ii WW    and   ii WW  3/1 .          (70) 

 

Once Qi-1/3 and Qi-2/3 are known, 1 may be 

computed at i-1 and i-2/3 and 5 at i and i-1/3. It can 

be shown that 1 and 5 can at most change sign 

only once along paths 1 and 3, respectively. If these 

eigenvalues do indeed change sign [if 

0)3/2()1( 11  ii , for example], it becomes 

necessary to compute the dependent variables at the 

points along paths 1 and 3 where the respective 

eigenvalues 1 and 5 vanish. These “sonic” points 

are defined as 3/2iQ  and 3/1iQ  and are given by 

the formulas that follow below: 

 

    iii aUU )1(2113/1  , 

                       2/1
3/1

2/)1(

3/1 )/( iii SU  


 ;           (71) 

        
  3/13/1 iii Sp , ii VV  3/1 , ii WW  3/1 ; (72) 

      113/2 1211   iii aUU , 

                   2/1
13/2

2/)1(

3/2 )/( 


  iii SU ;          (73) 

  

  3/213/2 iii Sp , 13/2   ii VV , 13/2   ii WW .  (74) 

Along path 2, the Riemann invariant 4,3,2
5  is equal 

to nh/2 . Thus 2 does not change either 

magnitude or sign. The 1 and 5 fields are called 

genuinely nonlinear and the fields corresponding to 

2,3,4 are termed linearly degenerate. 

 In Equations (68), (69) and (70), (71) and (72) 

and (73) and (74), it is straightforward to decode for 

u, v and w from U , V and W (in generalized 

coordinates, U, V and W would be the normalized 

velocity contravariants). From these definitions, it is 

possible to write for u, v and w: 

 

  '''''2'
xzxyxx hhWhhVhhUu





  ; 

   '''''''''
xzyzzxxyx hhWhhhhhVhUhv  ; 

   '''''''''
xyyxxzyzx hhhhhWhVhhUhw  . (75) 

6.4 Paths of integration 
In this sublevel, the values of the variables of the 

intermediate states and the values of the dependent 

variables at the cells of the computational domain 

are employed to form the [6] algorithm to the Euler 

equations. Initially, the net numerical flux vector in 

the  direction is approximated by: 

 







 





 dQAXIdQAXFF
i

i

i

i

Q

Q

Q

Q
kjikji

1

1

ˆ)(ˆ
,,2/1,,2/1 .  (76) 

 

The matrix X(Q) and the paths of integration are 

what define the scheme. The sub-paths of 

integration were recently defined (curves 1-3 of Fig. 

1). The matrix X(Q) is defined to be: 

 

   )()(2/12/1)()( 1 QRQsignaldiagQRQX l
 , 

(77) 

 

where R(Q) is the right-eigenvector matrix or the 

matrix of column eigenvectors of the Jacobian 

matrix in generalized coordinates Â  and R
-1

(Q) its 

inverse. Hence, 

 

     ARRdiagAX l
ˆ0,maxˆ 1  

 

and 

 

                 ARRdiagAXI l
ˆ0,minˆ)( 1 .  (78) 

 

The asymmetric character of the scheme is apparent 

from this definition. The Equation (76) can be more 

simplified by the partition of the original integration 

interval through the sub-paths of integration: 

 






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 


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i
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QhFQhFdQAXIdQAX

i
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           











 
i

i

i

i

i

i
dQAdQAdQA

3/1
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3/2

3/2

1

ˆˆˆ     (79a) 
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    
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 
1

3/2

3/2

3/1

3/1
ˆˆˆ

i

i

i

i

i

i
dQAdQAdQA ,  (79b) 

 

with the normal flux to the interface defined by: 
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)( ),( .          (80) 

 

It is obvious so that the blocks of construction of the 

[6] scheme are the sub-integrals along the sub-paths 

connecting all pair of neighbor cells. To the interval 

between the pair of cells i-1 and i, for example, it is 

possible to define: 

 










 
3/1

3/2

3/2

1

ˆ2,ˆ1
i
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Q

Q

Q

Q
dQADdQAD , 




i

i

Q

Q
dQAD

3/1

ˆ3 . 

                                  (81) 

 

While the integral formulae in the above equations 

seem very complex to be evaluated, they simplify 

considerably and each sub-integral is reduced to the 

flux difference )()( QF n  in each mesh cell and in 

each cell of the intermediate and sonic states. 

Therefore, it is possible to write: 

 

),(),(1 1
)(

3/2
)(

  i
n

i
n QhFQhFD , 

            if  0)( 11  iQ   and  0)( 3/21  iQ ;     (82) 

 

),(),(1 3/2
)(

3/2
)(

  i
n

i
n QhFQhFD , 

            if  0)( 11  iQ   and  0)( 3/21  iQ ;     (83) 

 

),(),(1 1
)(

3/2
)(

  i
n

i
n QhFQhFD , 

            if  0)( 11  iQ   and  0)( 3/21  iQ ;     (84) 

 

  01D , if  0)( 11  iQ   and  0)( 3/21  iQ ; (85) 

 

),(),(2 3/2
)(

3/1
)(

  i
n

i
n QhFQhFD , 

                         if  0)( 3/14,3,2  iQ ;                  (86) 

 

                 02 D , if  0)( 3/14,3,2  iQ ;            (87) 

 

             ),(),(3 3/1
)()(

 i
n

i
n QhFQhFD , 

            if  0)( 3/15  iQ   and  0)(5  iQ ;      (88) 

 

 

),(),(3 3/1
)()(

 i
n

i
n QhFQhFD , 

             if  0)( 3/15  iQ   and  0)(5  iQ ;     (89) 

 

),(),(3 3/1
)(

3/1
)(

  i
n

i
n QhFQhFD , 

             if  0)( 3/15  iQ   and  0)(5  iQ ;      (90) 

 

 03D , if  0)( 3/15  iQ  and  0)(5  iQ . (91) 

6.5 Chakravarthy and Osher algorithm 
The complete algorithm of [6] to update the 

dependent variables at the (i,j,k) cell of the n 

temporal level to the next n+1 level can be simply 

write as a concise sequence of steps. 

 contribution: 

1) Evaluate the dependent variables at the 

intermediate cells between i-1 and i using Eqs. (65) 

to (70). The metric terms are calculated at i-1/2 

interface (pointing to inside the cell); 

2) Using Eqs. (71) to (74), evaluate the sonic cells 

which appear between i-1 and i (if the eigenvalues 

change signal). The metric terms are calculated at i-

1/2 interface (pointing inside the cell); 

3) Evaluate the sub-integrals D1, D2 and D3 

between cells i-1 and i using Eqs. (82) to (91). 

The fluxes )(nF  at the cells of the computational 

domain and at the intermediate states are evaluated 

as necessary; 

 4) Repeat steps 1-3 between cells i and i+1. The 

metric terms are calculated at the i+1/2 interface 

(pointing outside the cell); 

5) Substitute the sub-integrals and fluxes in Eq. (79) 

to evaluate the  contribution. 

 contribution: 

6) Repeat steps 1-5 to the cells j-1, j and j+1 and the 

metric terms calculated at the j-1/2 and j+1/2 

interfaces [the formulae to  are obtained 

substituting areas and volumes at the interfaces (i-

1/2,j,k) and (i+1/2,j,k) by areas and volumes at 

interfaces (i,j-1/2,k) e (i,j+1/2,k)]. 

 contribution: 

7) Repeat steps 1-5 to the cells k-1, k and k+1 and 

the metric terms calculated at the k-1/2 and k+1/2 
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interfaces [the formulae to  are obtained 

substituting areas and volumes at the interfaces (i-

1/2,j,k) and (i+1/2,j,k) by areas and volumes at 

interfaces (i,j,k-1/2) e (i,j,k+1/2)]. 

Update: 

8) Update the conserved variables using the explicit 

Euler method to the time march with first order of 

accuracy: 


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(92) 

 

with the terms multiplying ti,j,k being evaluated in 

steps 1-6. This version of the algorithm of flux 

difference splitting of [6] is first order accurate in 

space. The RHS to an implicit simulation is dictate 

by:  
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(93) 

 

 

7 Harten Numerical Algorithm 
The [7] algorithm, first order accurate in space, is 

specified by the determination of the numerical flux 

vector at (i+1/2,j,k) interface. This scheme uses 

Equations (6-21) of [3] scheme, also using the Roe 

average to determine the interface properties. The 

next step consists in determining the entropy 

condition. The entropy condition is implemented of 

the following way: 

 

mmkjim Zt  ,,  

 

and 

 

  










fmffm

fmm

m
ZifZ

ZifZ

,5.0

,
22 ,     (94) 

 

with “m” varying from 1 to 5 (three-dimensional 

space), as defined in [3] scheme, and f assuming 

values between 0.1 and 0.5, being 0.2 the value 

suggested by [7]. 

 The [7] dissipation function to the (i+1/2,j,k) 

interface is constructed by the following matrix-

vector product: 

 

                    
int,,intint kjiHarten tRD  .     (95) 

 

 The convective numerical flux vector to the 

(i+1/2,j,k) interface is described by: 

 

  )(
int

)(
int

)(
int

)(
int

)(
,,2/1 5.0 m

Hartenz
m

y
m

x
mm

kji DVhGhFhEF  , 

(96) 

 

with )(

int

m
E , )(

int
mF  and )(

int

m
G  defined according to Eq. 

(25). The time integration is performed by the time 

splitting method, described ins Eq. (27-29). 
 

8 Frink, Parikh and Pirzadeh 

Numerical Algorithm 
In this scheme, the numerical flux vector is 

calculated applying the flux difference splitting 

procedure of [3]. The flux which crosses each cell 

face is calculated using the [3] formula: 

  
int

,,2/1

~
)()(21 LRRLkji QQAQFQFF  . (97) 

In this equation, QR and QL are right and left state 

variables of the (i+1/2,j,k) flux interface, 

respectively. The Roe matrix A
~

 is determined by 

the evaluation of QFA   with the flow 

properties obtained by the Roe’s average [Eqs. (8), 

(9) and (10)] of such way that 

 LRLR QQAQFQF 
~

)()(  is exactly satisfied. 

Introducing the diagonalization matrices  R  and 

 1R  evaluated with the Roe’s average, defined by 

Eqs. (21) and (16), respectively, and the eigenvalue 

diagonal matrix , the A
~

 matrix is defined as 

   1~  RRA . The term 

  

                        QRRQQA LR  1~
           (98) 

in the formula of the numerical flux vector of [3], it 

can be rewritten in terms of three flux components, 

each one associated with a distinct eigenvalue, and 

the dissipation function of the [8] scheme is defined 

by: 

       541
1 FFFQRRDFPP   ,  (99) 
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where: 
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with zyx nwnvnuU intintintint  , wnvnunU zyx  int  

and       kjikji ,,,,1   . 

 The present author introduced the entropy 

function   aiming to avoid zero values to the 

contributions of the system eigenvalues to the 

dissipation function. This entropy condition is 

implemented in the eigenvalues int1 U , 

intint4 aU   and intint5 aU   as follows: 

 

 






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ll

ll

l
ZifZ

ZifZ

,5.0

,
22 , with: llZ  , (102) 

 

where l assumes values 1, 4 and 5 and   is a 

parameter which assumes the value 0.01, 

recommended by the present author. In the original 

work of [8], the value used to  is equal to zero, 

which corresponds to the non-use of the entropy 

condition. 

 The numerical flux vector at the (i+1/2,j,k) 

interface is determined by: 

   int
)()(

int
)(

int
)(

int
)(

,,2/1 5.0 SDnGnFnEF m
FPPz

m
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m
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mm
kji  , (103) 

with 
)(

int

m
E , 

)(

int

m
F  and 

)(

int

m
G  defined according to Eq. 

(25). The time integration is performed by the 

Runge-Kutta explicit method, second order 

accurate, of five stages, described below. The 

contribution of the convective numerical flux 

vectors is determined by the Ci,j,k vector: 
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The Runge-Kutta can be represented of generalized 

form by: 
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with “m” = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 

1/2 and 5 = 1. The [8] scheme implemented in this 

work is first order accurate in space. The RHS of 

this scheme is given by: 

 

                 
n

kjikjikji
n

kji CVtRHS ,,,,,,,,  .        (106) 

 

 

9 Liou and Steffen Jr. Numerical 

Algorithm 

The [9] algorithm is specified by the determination 

of the numerical flux vector at the (i+1/2,j,k) 

interface. This scheme employs Equations (49-56) 

to determine interface properties. The next step 

consists in determining the dissipative term . The 

definition of this term determines the particular 

formulation of the convective fluxes. According to 

[10], the choice below corresponds to the [9] 

scheme: 

 

                 LS
intint  , with: intint MLS  .         (107) 

 

The explicit time integration employs the time 

splitting method described by Eqs. (27-29). The 

implicit time integration is performed with the 

definition of the RHS. To this scheme, the RHS is 

determined by Eq. (58), with the definition of Eq. 

(107) to the dissipative term. The [9] scheme 

presented in this work is first order accurate in 

space. 
 

 

10 Radespiel and Kroll Numerical 

Algorithm 
The [10] algorithm is specified by the determination 

of the numerical flux vector at the (i+1/2,j,k) 

interface. This scheme employs Equations (49-56) 

to determine interface properties. The next step 

consists in determining the dissipative term . The 

definition of this term determines the particular 

formulation of the convective fluxes. A hybrid 

scheme is proposed by [10], which combines the [5] 

scheme and the [9] (AUSM) scheme. Hence, 
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                           LSVL
intintint 1  ,          (108) 

with: 
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where 
~

 is a small parameter, 0 < 
~
 0.5, and  is 

a constant, 0    1. In this work, the values used 

to 
~

 and  were: 0.2 and 0.5, respectively. The 

explicit time integration is described by Eqs. (27-

29). The implicit time integration is defined by Eq. 

(58), using Eq. (108). This scheme is first order 

accurate in space. 

 

 

11 Implicit Formulations 
All implicit schemes studied in this work used an 

ADI formulation to solve the algebraic nonlinear 

system of equations. In these cases, the nonlinear 

system of equations is linearized considering the 

implicit operator evaluated at the time “n” and, 

posteriorly, the heptadiagonal system of linear 

algebraic equations is factored in three tridiagonal 

systems of linear algebraic equations, each one 

associated with a particular spatial direction. 

Thomas algorithm is employed to solve these three 

tridiagonal systems. All the implicit schemes 

studied in this work were only applicable to the 

solution of the Euler equations, which implies that 

only the convective contributions were considered 

in the RHS operator. 

 

11.1 Implicit Formulation to the Flux 

Difference Splitting Schemes 
The ADI form to the [3, 6-8] first order schemes is 

defined by the following three step algorithm: 
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to the  direction;                                               (113) 

 

                         1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ ,            (114) 

 

where: 

 

   n kjikji

n

kjikji RRK ,,2/1
1

,,2/1,,2/1,,2/1 




  ; 

   n kjikji

n

kjikji RRJ ,2/1,
1

,2/1,,2/1,,2/1, 




  ; 

            n kjikji

n

kjikji RRL 2/1,,
1

2/1,,2/1,,2/1,, 





  ; (115) 

 
n

kji

l
kji diag

,,2/1
,,2/1







 



  ; 

 
n

kji

l
kji diag

,2/1,
,2/1,








 



  ; 

                 
n

kji

l
kji diag

2/1,,
2/1,,








 



  ;       (116) 

   lll




  5.0 ,    lll




  5.0 ; 

                           lll




  5.0 ;               (117) 

           kjikji ,,1,, 

  ,     kjikji ,,,,1  


 ;  (118) 

       kjikji ,1,,, 

  ,     kjikji ,,,1,  


 . (120) 

       1,,,, 

  kjikji ,     kjikji ,,1,,  


 . (121) 

 

In Equation (115), the R matrix is defined by Eq. 

(21); diag[] is a diagonal matrix; in Eqs. (116-117), 

“l” assumes values from 1 to 5 (three-dimensional 

space) and ’s are the eigenvalues of the Euler 

equations, defined by Eq. (11). The matrix R
-1

 is 

defined by Eq. (16). The RHS(FDS) is defined as the 

residual of the flux difference splitting schemes, 

which is defined, for instance, by Eq. (26). The 

other schemes follow similar formulae. 

 This implementation is first order accurate in 

time due to the definition of , of  and of , as 

reported in [23], and is first order accurate in space 

due to the RHS of the numerical schemes. 
 

11.2 Implicit Formulation to the Flux 

Vector Splitting Schemes 
The ADI form to the [4-5, 9-10] first order schemes 

is defined by the following three step algorithm: 

 

   n
kjiFVSkjikjikjikjikji RHSQAtAtI

,,)(
*

,,,,2/1,,,,2/1,,  









 , 

to the  direction;                                               (122) 
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  *
,,

**
,,,2/1,,,,2/1,,, kjikjikjikjikjikji QQBtBtI  









 , 

to the  direction;                                               (123) 

 

  **
,,

1
,,2/1,,,,2/1,,,, kji

n
kjikjikjikjikji QQCtCtI  









 , 

to the  direction;                                               (124) 

 

                         1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ ,            (125) 

 

where the matrices A

, B


 and C


 are defined as: 

 

             n kjikji

n

kjikji TTA ,,2/1
1

,,2/1,,2/1,,2/1 




  ; 

             n kjikji

n

kjikji TTB ,2/1,
1

,2/1,,2/1,,2/1, 




  ;                    

             n kjikji

n

kjikji TTC 2/1,,
1

2/1,,2/1,,2/1,, 





  ; (126) 

                 
n

kji

l
kji diag

,,2/1
,,2/1







 



  ; 

                 
n

kji

l
kji diag

,2/1,
,2/1,








 



  ; 

                 
n

kji

l
kji diag

2/1,,
2/1,,








 



   ,      (127) 

 

with the similarity transformation matrices defined 

by: 
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 intint 2a ,  intint21 a ; 

 
2

1

2
int

2
int

2
int2 wvu 

 ; 

                    int
'

int
'

int
'~

whvhuh zyx  ;           (129) 
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with int defined as the interface density. The 

properties defined at interface are calculated by 

arithmetical average. The RHS(FVS) is defined as the 

residual of the flux vector splitting schemes, similar 

to Eq. (111). This implementation is first order 

accurate in time. 

 

 

12 Spatially Variable Time Step 

The idea of a spatially variable time step consists in 

keeping constant a CFL number in the calculation 

domain and to guarantee time steps appropriated to 

each mesh region during the convergence process. 

The spatially variable time step can be defined by: 

                      
 

 
kji

kji

kji
aq

sCFL
t

,,

,,

,,



 ,                (131) 

where CFL is the Courant-Friedrichs-Lewis number 

to method stability;   kjis ,,  is a characteristic 

length of information transport; and  
kji

aq
,,

  is 

the maximum characteristic speed of information 

transport, where a is the speed of sound. The 

characteristic length of information transport, 

  kjis ,, , can be determined by: 

                       
iMINMINkji ClMINs ,,,   ,      (132) 
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where lMIN is the minimum side length which forms 

a computational cell and CMIN is the minimum 

distance of baricenters between the computational 

cell and its neighbors. The maximum characteristic 

speed of information transport is defined by 

 
kji

aq
,,

 , with 222 wvuq  . 

 

 

12 Initial and Boundary Conditions 

 

12.1   Initial Condition 
The initial condition adopted for the problems is the 

freestream flow in all calculation domain ([24-25]). 

The vector of conserved variables is expressed as 

follows: 

 

               























































2)1(
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cossin

cos

1

2M

γγ

ψθM

ψθM

θM

Q ,                (133) 

 

where M represents the freestream Mach number,  

is the flow incidence angle upstream the 

configuration under study and  is the angle in the 

configuration longitudinal plane. 

 

12.2   Boundary Conditions 
The different types of implemented boundary 

conditions are described as follows. They are 

implemented in the special cells named “ghost” 

cells. 

 

a)  Wall - The Euler case requires the flux tangency 

condition. On the context of finite volumes, this 

imposition is done considering that the tangent flow 

velocity component to the wall of the ghost cell be 

equal to the tangent flow velocity component to the 

wall of the neighbor real cell. At the same time, the 

normal flow velocity component to the wall of the 

ghost cell should be equal to the negative of the 

normal flow velocity component to the wall of the 

neighbor real cell. [26] suggests that these 

procedures lead to the following expressions to the 

velocity components u, v and w of the ghost cells: 

 

   realzxrealyxrealxxg wnnvnnunnu )2()2()21(  ;   (134) 

  realzyrealyyrealxyg wnnvnnunnv )2()21()2(  ;   (135) 

 realzzrealyzrealxzg wnnvnnunnw )21()2()2(  . (136) 

 The fluid pressure gradient in the direction 

normal to the wall is equal to zero for the inviscid 

case. The temperature gradient is equal to zero 

along the whole wall, according to the condition of 

adiabatic wall. With these two conditions, a zero 

order extrapolation is performed to the fluid 

pressure and to the temperature. It is possible to 

conclude that the fluid density will also be obtained 

by zero order extrapolation. The energy conserved 

variable is obtained from the state equation to a 

perfect gas, Eq. (3). 

 

b) Far field - In the implementation of the boundary 

conditions in the external region of the mesh to 

external flow problems, it is necessary to identify 

four possible situations: entrance with subsonic 

flow, entrance with supersonic flow, exit with 

subsonic flow and exit with supersonic flow. These 

situations are described below. 

b.1) Entrance with subsonic flow – Considering 

the one-dimensional characteristic relation concept 

in the normal direction of flow penetration, the 

entrance with subsonic flow presents four 

characteristic velocities of information propagation 

which have direction and orientation point inward 

the calculation domain, which implies that the 

variables associated with these waves cannot be 

extrapolated ([25]). It is necessary to specify four 

conditions to these four data. [24] indicate as 

appropriated quantities to be specified the 

freestream density and the freestream Cartesian 

velocity components u, v and w. Just the last 

characteristics, “(qn-a)”, which transports 

information from inside to outside of the calculation 

domain, cannot be specified and will have to be 

determined by interior information of the calculation 

domain. In this work, a zero order extrapolation to 

the pressure is performed, being the total energy 

defined by the state equation of a perfect gas. 

b.2) Entrance with supersonic flow - All 

variables are specified at the entrance boundary, 

adopting freestream values. 

b.3) Exit with subsonic flow - Four 

characteristics which govern the Euler equations 

proceed from the internal region of the calculation 

domain. So, the density and the Cartesian velocity 

components are extrapolated from the interior 

domain ([25]). One condition should be specified to 

the boundary. In this case, the pressure is fixed in 

the calculation domain exit, keeping its respective 

value of freestream flow. Total energy is specified 

by the state equation of a perfect gas. 

b.4) Exit with supersonic flow - The five 

characteristics which govern the Euler equations 

proceed from the internal region of the calculation 
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domain. It is not possible to specify variable values 

at the exit. The zero order extrapolation is applied to 

density, Cartesian velocity components and 

pressure. Total energy is specified by the stae 

equation of a perfect gas. 

 

c) Entrance and exit – The entrance and exit 

boundaries are applied to the ramp and air inlet 

problems. Boundary conditions which involve flow 

entrance in the calculation domain had the flow 

properties fixed with freestream values. Boundary 

conditions which involve flow exit of the 

computational domain used simply the zero order 

extrapolation to the determination of properties in 

this boundary. This procedure is correct because the 

entrance flow and the exit flow are no minimal 

supersonic to both studied examples. 

 

 

13 Results 

Tests were performed in a notebook with processor 

Intel core i7, 2.20GHz of clock, and 8Gbytes of 

RAM memory. As the interest of this work is steady 

state problems, one needs to define a criterion which 

guarantees that such condition was reached. The 

criterion adopted in this work was to consider a 

reduction of 4 orders in the magnitude of the 

maximum residual in the domain, a typical criterion 

in the CFD community. The residual to each cell 

was defined as the numerical value obtained from 

the discretized conservation equations. As there are 

five conservation equations to each cell, the 

maximum value obtained from these equations is 

defined as the residual of this cell. Thus, this 

residual is compared with the residual of the others 

cells, calculated of the same way, to define the 

maximum residual in the domain. The configuration 

upstream and the configuration longitudinal plane 

angles were set equal to 0.0. 

 The physical problems to be studied are the 

supersonic flow along a ramp with 20 of inclination 

and the “cold gas” hypersonic flows along an air 

inlet and around a cylindrical blunt body. The ramp 

configuration is described in Fig. 2. An algebraic 

mesh of 61x60x10 points or composed of 31,860 

hexahedrons and 36,600 nodes was used as shown 

in Fig. 3. The points are equally spaced in both 

directions. The second configuration is the 

cylindrical blunt body. It has a nose ratio of 1.0m 

and the far field is located at twenty times the nose 

ratio in relation to the body’s leading edge. It is 

composed of 32,922 hexahedrons and 37,800 nodes, 

which corresponds in finite differences to a 

63x60x10 mesh. Figure 4 shows the blunt body 

configuration and Fig. 5 exhibits the blunt body’s 

mesh. 

 

 
Figure 2. Ramp configuration. 

 

 
Figure 3. Ramp mesh (61x60x10). 

 

 
Figure 4. Blunt body configuration. 
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Figure 5. Blunt body mesh. 

 

 Finally, the last configuration is the air inlet 

geometry. It is composed of 20,709 hexahedrons 

and 24,000 nodes, which corresponds to a mesh of 

60x40x10 in finite differences. Figure 6 exhibits the 

air inlet configuration, whereas Fig. 7 presents the 

air inlet mesh. 

 
Figure 6. Air inlet configuration. 

 
Figure 7. Air inlet mesh. 

 

13.1 Ramp Problem – Implicit Simulation 

 The ramp problem is described as a low 

supersonic flow impinging a compression corner, 

generating an oblique shock wave, and expanding in 

an expansion corner, as shown in Fig. 2. The 

freestream Mach number flow, which defines the 

initial condition, was adopted equal to 2.0 

(supersonic flow). All schemes generated converged 

results to this implicit problem. 

 Figures (8-15) show the pressure contours 

obtained by [3-10] numerical algorithms. As can be 

seen, only the [6] and [9] schemes yielded bad 

results. The [6] scheme presents a unphysical 

solution, whereas [9] scheme exhibits a pressure 

oscillation due to the shock, even being a low Mach 

number flow. The rest of the solutions presents good 

behavior, capturing appropriately the shock 

discontinuity.  

 

 
Figure 8. Pressure contours ([3]). 

 
Figure 9. Pressure contours ([4]). 

 

 Figures (16-23) show the Mach number contours 

obtained by all studied schemes. The problems with 

the [6] and [9] schemes appear again. The [6] 
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solution is an unphysical one and is not due to the 

implemented algorithm. In other words, the problem 

is not numerical, but physical. The [6] scheme 

seems unable to capture appropriately the shock 

wave. 
 

 
Figure 10. Pressure contours ([5]). 

 

 
Figure 11. Pressure contours ([6]). 

 

 
Figure 12. Pressure contours ([7]). 

 
Figure 13. Pressure contours ([8]). 

 

 
Figure 14. Pressure contours ([9]). 

 

 
Figure 15. Pressure contours ([10]). 

 

 The [9] solution only highlights that the problem 

with this scheme is the non-capacity of avoid pre-

shock oscillations at compression regions. Although 
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the shock profile is captured, the oscillation in the 

wall pressure distribution becomes such scheme 

limited in its capacity to predict discontinuities. 

 

 
Figure 16. Mach number contours ([3]). 

 

 
Figure 17. Mach number contours ([4]). 

 

 
Figure 18. Mach number contours ([5]). 

 
Figure 19. Mach number contours ([6]). 

 

 
Figure 20. Mach number contours ([7]). 

 

 
Figure 21. Mach number contours ([8]). 

 

 Figures (24-27) exhibit the wall pressure 

distributions at wall. Figure 24 shows the flux 

difference splitting solutions, obtained by the [3, 6-
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8] algorithms. In this plot, the [3] and [8] schemes 

have presented the best choice for this type of 

formulation. 

 

 
Figure 22. Mach number contours ([9]). 

 

 
Figure 23. Mach number contours ([10]). 

 
Figure 24. Wall pressure distributions (FDS). 

 
Figure 25. Wall pressure distributions (FVS). 

 
Figure 26. Choosing the best distribution. 

 
Figure 27. Best profiles. 

 

 Figure 25 shows the wall pressure distributions 

obtained by the flux vector splitting schemes [4-5, 

9-10]. The best distribution for this type of 

formulation was obtained by the [10] scheme. 
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 Figure 26 represents the comparison among the 

three solutions that were chosen as the best in each 

formulation. The best global solution was due to [3, 

8]. Finally, Figure 27 exhibits the best profiles of 

pressure with symbols to identify in how many cells 

the discontinuity is captured. In this study, the best 

results captured the discontinuity using six (6) cells, 

which gives us a feeling in how important is the use 

of high resolution algorithms. 

 A way to quantitatively verify if the solutions 

generated by each scheme are satisfactory consists 

in determining the shock angle of the oblique shock 

wave, , measured in relation to the initial direction 

of the flow field. [27] (pages 352 and 353) presents 

a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is 

determined as function of the freestream Mach 

number and of the deflection angle of the flow after 

the shock wave, . To  = 20º (ramp inclination 

angle) and to a freestream Mach number equals to 

2.0, it is possible to obtain from this diagram a value 

to  equals to 53.0 º. Using a transfer in all pressure 

contours figures, it is possible to obtain the values of 

 to each scheme, as well the respective errors, 

shown in Tab. 1. As can be noted, the best result is 

due to [5]. As the best wall pressure distribution was 

due to [3, 8] and the best shock angle has the [3] 

algorithm with an error of only 0.94% (less than 

1.0%), the [3] algorithm is the best in this problem. 

 
Table 1. Shock angle and percentage errors. 

 

Algorithm  (º) Error (%) 

[3] 53.5 0.94 

[4] 53.4 0.75 

[5] 53.0 0.00 

[6] 53.9 1.70 

[7] 52.9 0.19 

[8] 54.0 1.89 

[9] 54.0 1.89 

[10] 54.3 2.45 

 

13.2 Blunt Body Problem – Explicit 

Simulation 
In this problem, a high “cold gas” hypersonic flow 

is simulated. A freestream Mach number of 36.0 is 

studied. The [3, 6, 8] schemes did not yield 

converged results. The results are compared with 

normal shock wave theory ones. 

 Figures (28-32) show the pressure contours 

obtained by [4-5, 7, 9-10] schemes, respectively. 

The most severe pressure field is due to [9], which 

characterizes this scheme as the most conservative. 

 
 

Figure 28. Pressure contours ([4]). 

 

 
 

Figure 29. Pressure contours ([5]). 

 

 
 

Figure 30. Pressure contours ([7]). 
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Figure 31. Pressure contours ([9]). 

 

 
 

Figure 32. Pressure contours ([10]). 

 

 
 

Figure 33. Mach number contours ([4]). 

 
 

Figure 34. Mach number contours ([5]). 

 

 
 

Figure 35. Mach number contours ([7]). 

 

 
 

Figure 36. Mach number contours ([9]). 
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 Figures (33-37) exhibit the Mach number 

contours obtained by the [4-5, 7, 9-10] schemes, 

respectively. All schemes predict a freestream Mach 

number inferior to 36.0. The Mach number field 

generated by the [7] algorithm is the closest in 

relation to the original freestream flow. All solutions 

present good symmetry properties. The [5] and [10] 

results present the biggest extension of the low 

supersonic region, ahead of the body’s 

configuration. 

 

 
 

Figure 37. Mach number contours ([10]). 

 

 Figure 38 exhibits the –Cp distributions at wall 

of the blunt body, generated by the five schemes 

under study in this problem. The maximum Cp was 

obtained by [9] and reaches the value 1.66. 

 
Figure 38. –Cp distributions at wall. 

 

 Figure 39 shows the temperature distribution at 

wall generated by the five schemes. The maximum 

peak of temperature is obtained by [7] and assumed 

the value of 70,000K, which is a solution typical of 

“cold gas” flows and is incorrect in reality. Values 

of temperature around 20,000K are more realistic 

and are obtained with a “hot gas” formulation. To 

more details about “hot gas” formulation, see [21, 

28-33]. 

 

 
Figure 39. Temperature distributions at wall. 

 

In terms of quantitative results, the present author 

compared the stagnation pressure at the blunt body 

nose assuming the perfect gas formulation. To 

calculate the stagnation pressure ahead of the blunt 

body, [27] presents in its B Appendix values of the 

normal shock wave properties ahead of the 

configuration. The ratio pr0/pr∞ is estimated as 

function of the normal Mach number and the 

stagnation pressure pr0 can be determined from this 

parameter. Hence, to a freestream Mach number of 

36.0, the ratio pr0/pr∞ assumes the value 1669.0. The 

value of pr∞ is 0.714 by the present dimensionless. 

Using the ratio obtained from [27], the stagnation 

pressure ahead of the configuration nose is 

estimated as 1,191.66 unities. Table 2 compares the 

values obtained from the simulations with this 

theoretical parameter and presents the numerical 

percentage errors. As can be observed, all solutions 

present percentage errors less than 40.0%, which is 

a reasonable estimation of the stagnation pressure. 

The best estimation was due to the [9] scheme, first 

order accurate, with an error of 15.68%.
 

 

Table 2. Stagnation pressure and errors. 

 

Algorithm pr0 Error (%) 

[4] 824.48 30.81 

[5] 875.92 26.50 

[7] 734.27 38.38 

[9] 1,004.84 15.68 

[10] 882.50 25.94 
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13.3 Air Inlet Problem – Explicit Simulation 
The freestream Mach number of this high “cold gas” 

air inlet flow was 20.0. The [3, 6, 8] schemes did 

not yield converged results. 

 Figures (40-44) exhibit the pressure contours of 

this simulation to the five algorithms that were 

robust enough to perform this study. As can be seen, 

only the [7] did not produce good results. Moreover, 

none of the flux difference splitting schemes yielded 

reasonable results for the two “cold gas” high 

hypersonic flow simulations, ratifying the expected 

behavior that the flux vector splitting algorithms are 

more robust. The pressures contours are well 

captured by the FVS algorithms, mainly the shock 

interference at the air inlet throat. 

 

 
Figure 40. Pressure contours ([4]). 

 

 
Figure 41. Pressure contours ([5]). 

 

 Figures (45-49) present the Mach number 

contours obtained by the [4-5, 7, 9-10] schemes, 

respectively. With the exception of the [7] solution, 

which seems very diffusive, the other solutions are 

good and capture the shock interference at the 

throat. Particularly, the [5] and [10] solutions are 

very close. 

 

 
Figure 42. Pressure contours ([7]). 

 

 
Figure 43. Pressure contours ([9]). 

 

 
Figure 44. Pressure contours ([10]). 
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Figure 45. Mach number contours ([4]). 

 
Figure 46. Mach number contours ([5]). 

 
Figure 47. Mach number contours ([7]). 

 

 Figure 50 shows the pressure distributions along 

the air inlet. Only the [7] solution is not plotted 

because it presents a peak of pressure at the shock 

interference that is very high to be considered 

altogether. The best solution is that originated by 

[10]: it captures the pressure plateau at the 

beginning region (> 10mm), after that the peak of 

pressure from the shock interference, the shock and 

the expansion wave (> 12mm). 

 
Figure 48. Mach number contours ([9]). 

  

 
Figure 49. Mach number contours ([10]). 

 
Figure 50. Wall pressure distributions. 
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 A parameter which can be analyzed to evaluate 

the accuracy of the four schemes, without 

considering [7], is the shock angle of the oblique 

shock wave that appear at the lower and upper air 

inlet walls. With a transfer were measured the 

inclination angles of the lower and upper ramp of 

the entrance device. To the lower wall this angle 

was of 6.5
o
 in relation to the horizontal and to the 

upper wall was of 13.5
o
 in relation to the horizontal. 

With these angles and with the freestream Mach 

number was possible to determine the theoretical 

shock angles of the oblique shock waves. These 

angles are disposed in Tab. 3, joined with the 

measured values of them to each scheme and the 

respective percentage error. Figures (40-44), at the 

xy plane, were used to evaluate the measured 

angles. 

 

Table 3. Measured values of the shock angles of 

the oblique shock waves. 

 

Surface Scheme β
(Theory)

 β
(Measured)

 Error 

(%) 

 [4] 10.0 10.0 0.00 

Lower [5] 

[9] 

[10] 

10.0 

10.0 

10.0 

10.0 

9.4 

10.0 

0.00 

6.00 

0.00 

 [4] 17.5 18.8 7.43 

Upper [5] 

[9] 

[10] 

17.5 

17.5 

17.5 

18.0 

17.4 

18.0 

2.86 

0.57 

2.86 

 

As can be seen, the [5, 10] schemes gave the best 

results considering a global analyses; in other 

words, the results of the two walls. Although the [9] 

scheme had determined with excellent accuracy the 

value of the shock angle of the oblique shock wave 

at the air inlet upper wall, its behavior at the lower 

wall was reasonable, with an error of 6.0%. The [5, 

10] operators had errors inferiors to 3.0% in both 

walls and, therefore, presented the best solutions. 

 

13.4 Computational Data 
Table 4 presents the computational data of the 

simulations. All simulations converged in four (4) 

orders of reduction of the initial residue. It is 

interesting to note the behavior of the [4] scheme in 

the air inlet problem. The [5, 7, 9-10] algorithms 

converged using a CFL of 0.2 at maximum. 

However, the [4] converged with CFL of 0.9, which 

indicates that a more strength initial condition 

(freestream Mach number) could be used. The 

robustness of the [4] scheme is a remarkable 

property of this algorithm. For an initial phase of 

airplanes design, this algorithm is highly 

recommended by its low cost, simple numerical 

implementation and good solution quality. Table 4 

highlights the excellent performance of the [4] 

scheme, being the fastest to convergence and using 

bigger CFL number than the other schemes. 

 

Table 4. Computational Data. 

 
Ramp Blunt Body Air Inlet 

Scheme CFL Iter. CFL Iter. CFL Iter. 

[3] 1.5 299 - - - - 

[4] 2.5 173 0.9 305 0.9 561 

[5] 1.5 291 0.4 819 0.1 5196 

[6] 2.0 400 - - - - 

[7] 2.0 227 0.5 562 0.1 8192 

[8] 1.5 299 - - - - 

[9] 1.5 325 0.9 726 0.1 5320 

[10] 1.5 303 0.9 440 0.2 2590 

 

 

14 Conclusions 

In the present work, the [3-10] schemes are 

implemented, on a finite volume context and using 

an upwind and structured spatial discretization, to 

solve the Euler equations in the three-dimensional 

space. The [3, 6-8] schemes are flux difference 

splitting ones and more accurate solutions are 

expected. On the other hand, the [4-5, 9-10] are flux 

vector splitting ones and more robustness properties 

are expected. The implemented schemes are first 

order accurate in space. The explicit time integration 

uses a time splitting method, an Euler method or a 

Runge-Kutta method. The implicit time integration 

uses an ADI approximate factorization method. The 

physical problems of the supersonic flow along a 

ramp and the high “cold gas” hypersonic flows 

around a blunt body and along an air inlet are 

solved. All the eight algorithms are accelerated to 

the steady state solution using a spatially variable 

time step. This technique has proved excellent gains 

in terms of convergence ratio as reported in [18-19]. 

 The results have demonstrated that the [9-10] 

schemes are the most conservative algorithms 

among the studied ones and that the [3, 5, 9] 

schemes are the most accurate. The [9] scheme 

yielded the most severe pressure field in the blunt 

body problem, which indicates this one as a more 

conservative scheme to the prediction of high “cold 

gas” hypersonic design conditions. The pressure 

distribution along the ramp was better predicted by 

[3, 8] schemes. The [3, 8] scheme presented better 

shock capturing properties due to the use of Roe’s 

average. In the estimation of the angle of the oblique 
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shock wave, only the [5] scheme presented 

appropriate predictions (error equal to 0.00%). The 

best algorithm for the ramp problem was a 

compromise between quality and quantity and 

resulted in the [3] scheme as the best. In the blunt 

body problem, the [3, 6, 8] schemes were not so 

robust as the others schemes and simulated a less 

severe initial condition, what characterized a 

supersonic case. The others five schemes simulated 

the intended high “cold gas” hypersonic flow. The 

following comments are related only with the 

hypersonic case. The most severe pressure field was 

estimated by the [9] scheme, which also indicates 

this scheme to more severe design conditions of 

aerospace vehicles. The stagnation pressure ahead 

of the configuration is better predicted by the [9] 

scheme, which indicates it for high hypersonic 

airplanes design. In the air inlet configuration, only 

five schemes simulate this problem. However, the 

[7] scheme did not yield reasonable results and was 

excluded from such analysis. The more conservative 

scheme was the [10] one. Moreover, the upper wall 

pressure distribution was more appropriately 

described by [10]. In the prediction of the shock 

angles of the oblique shock waves at the lower and 

upper walls of the air inlet, the [5, 10] schemes were 

the best. 

 As final conclusion, the present author 

recommends the [5, 9] schemes, among the studied 

algorithms, to obtain more accurate solutions in the 

three-dimensional space. The [5] scheme, due to its 

confirmed robustness and accuracy, could be used in 

the initial and final design phases of aerospace 

vehicles. 

 

15 Concluding Remarks 
As a final comment is the excellent computational 

performance of the [4] scheme, as was demonstrated 

in section 13.4. Although not present comparative 

accuracy in relation to the [5] scheme, its algorithm 

has presented significant numerical behavior, also 

being indicated to the initial phase of airplane 

design. 
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