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Abstract: - In the present work, the Roe, the Steger and Warming, the Van Leer, the Chakravarthy and Osher,
the Harten, the Frink, Parikh and Pirzadeh, the Liou and Steffen Jr. and the Radespiel and Kroll schemes are
implemented, on a finite volume context and using an upwind structured spatial discretization, to solve the
Euler equations in the three-dimensional space. The Roe, the Harten, the Chakravarthy and Osher and the
Frink, Parikh and Pirzadeh schemes are flux difference splitting ones, whereas the others schemes are flux
vector splitting ones. All eight schemes are first order accurate in space and their explicit and implicit versions
are implemented in three-dimensions. The explicit time integration uses a Runge-Kutta, a time splitting or an
Euler method. The former is second order accurate in time, whereas the others are first order accurate in time.
In the implicit case, an ADI approximate factorization is employed, which is first order accurate in time. The
physical problems of the supersonic flow along a ramp, in the implicit case, and the “cold gas” hypersonic
flows around a blunt body and along an air inlet, in the explicit case, are solved. The results have demonstrated
that the Liou and Steffen Jr. scheme is the most conservative algorithm among the studied ones, whereas the
Van Leer scheme is the most accurate.
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1 Introduction construction of this matrix, its eigenvalues could be
Conventional non-upwind algorithms have been considered as wave velocities of the Riemann
used extensively to solve a wide variety of problems problem and the U, -Ur projections over the matrix’s
([1-2]). Conventional algorithms are somewhat eigenvectors would be the jumps which occur
unreliable in the sense that for every different between intermediate stages.
problem (and sometimes, every different case in the [4] developed a method that used the remarkable
same class of problems) artificial dissipation terms property that the nonlinear flux vectors of the
must be specially tuned and judicially chosen for inviscid gasdynamic equations in conservation law
convergence. Also, complex problems with shocks form were homogeneous functions of degree one of
and steep compression and expansion gradients may the vector of conserved variables. This property
defy solution altogether. readily permitted the splitting of the flux vectors
Upwind schemes are in general more robust but into subvectors by similarity transformations so that
are also more involved in their derivation and each subvector had associated with it a specified
application. Some upwind schemes that have been eigenvalue spectrum. As a consequence of flux
applied to the Euler equations are: [3-10]. Some vector splitting, new explicit and implicit dissipative
comments about these methods are reported below: finite-difference schemes were developed for first-
[3] presented a work that emphasized that several order hyperbolic systems of equations.
numerical schemes to the solution of the hyperbolic [5] suggested an upwind scheme based on the
conservation equations were based on exploring the flux vector splitting concept. This scheme
information obtained in the solution of a sequence considered the fact that the convective flux vector
of Riemann problems. It was verified that in the components could be written as flow Mach number
existent schemes the major part of these information polynomial functions, as main characteristic. Such
was degraded and that only certain solution aspects polynomials presented the particularity of having
were solved. It was demonstrated that the the minor possible degree and the scheme had to
information could be preserved by the construction satisfy seven basic properties to form such

of a matrix with a certain “U property”. After the polynomials. This scheme was presented to the
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Euler equations in Cartesian coordinates and three-
dimensions.

[6] presented an upwind, shock capturing
algorithm generalized to arbitrary coordinate
systems. It could be applied to essentially all
hyperbolic systems of conservation laws arising in
physics, but became especially simple for the Euler
equations. The method did not require any special
properties of the Euler equations such as
homogeneity. The [6] scheme was based on a
Riemann problem solver, where compression waves
are used to approximate shocks. This leads to a
cleaner and smoother algorithm.

[7] developed a class of new finite difference
schemes, explicit and with second order of spatial
accuracy to calculation of weak solutions of the
hyperbolic conservation laws. These schemes highly
non-linear were obtained by the application of a first
order non-oscillatory scheme to an appropriated
modified flux function. The so derived second order
schemes reached high resolution, while preserved
the robustness property of the original non-
oscillatory first order scheme.

[8] proposed a new scheme, unstructured and
upwind, to the solution of the Euler equations. The
scheme was based on the [3] flux difference
splitting algorithm and was first order accurate.
High resolution was obtained using a linear
extrapolation process based on conserved variables.
They tested the precision and the utility of this
scheme in the analysis of the inviscid flows around
two airplane configurations: one of transport
configuration, with turbines under the wings, and
the other of high speed civil configuration. Tests
were accomplished at subsonic and transonic Mach
numbers with the transport airplane and at transonic
and low supersonic Mach numbers with the civil
airplane, yielding good results.

[9] proposed a new flux vector splitting scheme.
They declared that their scheme was simple and its
accuracy was equivalent and, in some cases, better
than the [3] scheme accuracy in the solutions of the
Euler and the Navier-Stokes equations. The scheme
was robust and converged solutions were obtained
so fast as the [3] scheme. The authors proposed the
approximated definition of an advection Mach
number at the cell face, using its neighbor cell
values via associated characteristic velocities. This
interface Mach number was so used to determine the
upwind extrapolation of the convective quantities.

[10] emphasized that the [9] scheme had its
merits of low computational complexity and low
numerical diffusion as compared to others methods.
They also mentioned that the original method had
several deficiencies. The method yielded local

E-ISSN: 2224-3461

122

Edisson Savio de Gées Maciel

pressure oscillations in the shock wave proximities,
adverse mesh and flow alignment problems. In the
[10] work, a hybrid flux vector splitting scheme,
which alternated between the [9] scheme and the [5]
scheme, in the shock wave regions, is proposed,
assuring that resolution of strength shocks was clear
and sharply defined.

Traditionally, implicit numerical methods have
been praised for their improved stability and
condemned for their large arithmetic operation
counts ([11]). On the one hand, the slow
convergence rate of explicit methods become they
S0 unattractive to the solution of steady state
problems due to the large number of iterations
required to convergence, in spite of the reduced
number of operation counts per time step in
comparison with their implicit counterparts. Such
problem is resulting from the limited stability region
which such methods are subjected (the Courant
condition). On the other hand, implicit schemes
guarantee a larger stability region, which allows the

use of CFL numbers above 1.0, and fast
convergence to  steady  state  conditions.
Undoubtedly, the most significant efficiency

achievement for multidimensional implicit methods
was the introduction of the Alternating Direction
Implicit (ADI) algorithms by [12-14]. ADI
approximate factorization methods consist in
approximating the Left Hand Side (LHS) of the
numerical scheme by the product of one-
dimensional parcels, each one associated with a
different spatial direction, which retract nearly the
original implicit operator. These methods have been
largely applied in the CFD community and, despite
the fact of the error of the approximate factorization,
it allows the use of large time steps.

Considering the two-dimensional case, [15-16]
studied the [3-10] and [17] algorithms, first order
accurate in space, implemented employing explicit
and implicit formulations to solve the Euler
equations. Such algorithms were implemented
according to a finite volume methodology and using
structured spatial discretization. The [3, 6-8]
algorithms were flux difference splitting ones,
whereas the others were flux vector splitting
algorithms. The implicit schemes employed an ADI
approximate factorization or Symmetric Line
Gauss-Seidel to solve implicitly the Euler equations.
Explicit and implicit results were compared, as also
the computational costs, trying to emphasize the
advantages and disadvantages of each formulation.
The schemes were accelerated to the steady state
solution using a spatially variable time step, which
had demonstrated effective gains in terms of
convergence rate according to [18-19]. The
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algorithms were applied to the solution of the
physical problem of the moderate supersonic flow
along a compression corner. The results had
demonstrated that the most accurate solutions were
obtained with the [7] first order scheme, when
implemented in its explicit version. The best wall
pressure distribution was obtained by the [10] first
order scheme, in both explicit and implicit cases.

In the present work, the [3-10] schemes are
implemented, on a finite volume context and using
an upwind and structured spatial discretization, to
solve the Euler equations in the three-dimensional
space. The [3] and [6-8] schemes are flux difference
splitting ones and more accurate solutions are
expected. On the other hand, the [4-5] and [9-10],
schemes are flux vector splitting ones and more
robustness  properties are  expected. The
implemented schemes are first order accurate in
space. The explicit time integration uses a Runge-
Kutta, a time splitting or an Euler method. The
former is second order accurate in time, whereas the
others are first order accurate in time. In the implicit
case, an ADI approximate factorization is employed,
which is first order accurate in time. The physical
problems of the supersonic flow along a ramp, in the
implicit case, and the “cold gas” hypersonic flows
around a blunt body and along an air inlet, in the
explicit case, are solved. All the eight algorithms are
accelerated to the steady state solution using a
spatially variable time step. This technique has
proved excellent gains in terms of convergence ratio
as reported in [18-19].

The results have demonstrated that the [9]
scheme is the most conservative algorithm among
the studied ones, whereas the [5] scheme is the most
accurate.

2 Euler Equations

The fluid movement is described by the Euler
equations, which express the conservation of mass,
of linear momentum and of energy to an inviscid,
heat non-conductor and compressible mean, in the
absence of external forces. In the integral and
conservative forms, employing a finite volume
formulation and using a structured spatial
discretization, to three-dimensional simulations,
these equations can be represented by:

6/8tLQdV +L (Eony +Fun, +G,n, S =0, (1)

where Q is written to a Cartesian system, V is a cell
volume, which corresponds to an hexahedron in the
three-dimensional space, n,, n, and n, are the
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components of the normal unity vector pointing
outward to the flux face, S is the surface area and E,,
F. and G, represent the components of the
convective flux vector. Q, E,, F. and G, are
represented by:

P pu pv
pu pu?+p puv
Q=4pvi, E, =4 puv ¢, Fo={pv2+pf;
PW pUW PVW
e (e+ pu (e+ p)v
PW
pUW
G, =4 pwW (2)
pwe +p
(e+ p)w

The quantities that appear above are described as
follows: p is the fluid density, u, v and w are the
Cartesian components of the flow velocity vector in
the x, y and z directions, respectively; e is the total
energy per unit volume of the fluid; and p is the
fluid static pressure.

The Euler equations were nondimensionalized in
relation to the freestream density, p., and the
freestream speed of sound, a., for the studied
problems. To allow the solution of the matrix
system of five equations to five unknowns described
by Eq. (1), it is employed the state equation of
perfect gases presented below:

p=(y-Dle-05pu? +v2 +w?)],  (3)
where y is the ratio of specific heats at constant
pressure and volume, respectively, which assumed a
value 1.4 to the atmospheric air. The total enthalpy
is determined by:

H=(e+p)p. @)
The geometrical domain with the description of a
structured cell, its nodes, interfaces and neighbors,
as also the calculation of the cell volume, cell

surfaces and normal unity vectors are found in [20-
21].

3 Roe Numerical Algorithm

The [3] algorithm, first order accurate in space, is
specified by the determination of the numerical flux
vector at the (i+1/2,j,k) interface. Its extension to the
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(ij+1/2,k) and the (i,j,k+1/2) interfaces is
straightforward, without any complication.

Following a finite volume formulation, which is
equivalent to a generalized coordinate system, the
right and left cell volumes, as well the interface
volume, necessary to a coordinate change, are
defined by:

Vi =Viajx Vo=V« and Vi, ZO'S(VR +VL)1 (6)

where “R” and “L” represent right and left states in
relation to the interface, respectively. The metric
terms to this coordinate system are defined as:

hx = Sx,int/\/int ) hy = Sy,int/\/lnt 1 hz = Sz int
hn = Sint/vint !

int »

(7)

with, S Syin

area components and S;y; is the norm of the surface
area vector.

The properties calculated at the flux interface are
obtained by arithmetical average or by Roe’s
average. In the present work, the Roe’s average was
used:

pintz\/m’uint:(uL+uRM)/(l+M);
Vim:(VL+VR\/PR/PL)/(1+\/PR/PL);

Wo =+ lon o e oa /o @)

Hi=(Ho + Hepe/pc L+ or /oL )i @)

aint = \/(Y _1)lH int O 5(u|nt + Vlnt + Wmt)J ' (10)

.and S, representing the surface

X,int 1

where ay; is the speed of the sound at the interface.
The eigenvalues of the Euler equations, in the
normal direction to the flux face, to the convective
flux are given by:

h, +v, h +Wich,, Ay

qnormal - ulnt X int int

Ainehy s

qnormal int

5 - qnormal + ainthn ' (11)

4 — qnormal '

The jumps of the conserved variables, necessary
to the construction of the [3] dissipation function,
are given by:

Ae= th(eR )1 Ap= th( PL) (12)
Alpu) =V [(pu)e - (p )] Apv) =Vinl[(pv)e - (pv) ]; (23)
Alpw) = Vi [(pw)s = (pw).]. (14)

The « vectors to the interface are calculated by
the following expressions:
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{aint}z [R_l ]I {Ainta}’ (15)
with:
05 ((Y 1 mtb t ¢/aint] - 0'5[((Y - 1)/ai%n)1i ¢t h;(/aint]
1- ((Y )/ mt% 5q2 ((Y _1)/ai2m$“int
[R'l]: — |y + Vi + D h,
hzulnt +h, \Ving + h y Wint h,
105 [( mtb 50° ¢/am1] 0. 5[ ( )/aizm)iim + h;/aint]
-05 (Y - aizm)/im + hy ainl] - 0-5[’/ ~1)af g + hz/aint] 05(;- 1)/ai2m_
(<y-1)/aat o b
h h, 0 |;
h, hy 0
0'5[_ ((V - 1)/ai2nt)/int + h;f/aint] 0-5[_ (Y B thmt + h mt] 0. 5 )/ |m
(16)

0 Ql={ap Alpu) Alpy) Alpw) Ae), defined by

Egs. (12), (13) and (14); 7)
q2 :ui2nt +Vi2nt +Wi%1t; (18)

(I):umth +V|nth +W|nth (19)

h;( =hx/hn , hy =hy/hn and hZ =hz/hn . (20)

The [3] dissipation function uses the right-
eigenvector matrix of the normal to the flux face
Jacobian matrix in generalized coordinates:

1 1 0
Uint = h;aint Uint hIy
[R] = Vint = hlyaint Vint h;
Wing -h, 28int Wing . hx .
mt h xUintint ~ h Vlntalnt _h 2 Wingint 0. 5q hxwint t thint + hyuim
0 1 ]
h:z Uint + h';<aint
hx Vipt + hyaint (21)
h;/ Wing + h;aint
h;Wint + h;vint + h;uint H int T h;uintaint + h;lvintaint + hIzWintaint_

The entropy condition is implemented using the
entropy function v defined of the following way:

v - M. if | > &,
" 0802+ ey, it P <,
fields and y,, =[A,| to linear fields,

to non-linear
(22)

with “m” ranging from 1 to 5 (three-dimensional
space), being the values 1 and 5 associated to non-
linear fields (shock waves and expansion waves)
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and 2, 3 and 4 associated to linear fields (contact
discontinuities), and ¢, assuming the value 0.2,
recommended by [3]. Finally, the [3] dissipation

function to the interface is constructed by the
following matrix-vector product:
{DRoe }int = [R]int {_ Wa}int' (23)

The convective numerical flux vector to the
(i+1/2,j,k) interface is described by:

R0,k = (EDh, + RO, + G, My, +05D,
(24)
where:
E® =05[EDM +EM), P =05(F™ +F™);

G! (m) _

m _o5GM +6™). (25)

The right-hand-side (RHS) of the [3] scheme,
necessaries to the resolution of the implicit version
of this algorithm, is determined by:

RHSn At|]k/vljk[|:l-'§]?/ezjk FR](?/ZJk—i_

FlR;Tl/Zk FIJ “1/2,k +Fi,j(?li+1/2 _Fi,Rjo,E—UZ] . (26)
The time integration to the explicit simulations
follows the time splitting method, first order
accurate, which divides the integration in three
steps, each one associated with a specific spatial

direction. In the initial step, it is possible to write for
the & direction:

AQiitj,k == At /Vi,j,k (Fiillz,j,k - Figl/Z,j,k )?
Qlix = Qi +AQ7 jx: (27)

in the intermediate step, n direction:

—At j« /Vi,j,k (Fifj+1/2,k - FiTj—l/Z,k );

AQ:’;YK =
Qiik =Q ik +AQ/ k- (28)

and at the final step, € direction:

AQ|n;rlk == | j.k /\/I J.k ( | J.k+1/2 Fl?,k—llz);
anjﬂk = Qi3 +AQTT (29)
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4 Steger and Warming Numerical
Algorithm

4.1 Theory for the One-Dimensional Case
If the homogeneous Euler equations are put in
characteristic form

OW/dt+AdW/ox =0, (30)
where W is the vector of characteristic variables

(defined in [22]) and A is the diagonal matrix of
eigenvalues, the upwind scheme:
( |+l

~0.5(a+[4) and

ut —u! =—At/Ax[”*(u -u 1) )] (31)

where u is a scalar property, 4"

a = O.S(é— é), can be applied to each of the three
characteristic  variables separately, with the
definitions
o =050k, +[Ay|) and %, = 0.5(ky, —[1y]) (32)
for each of the eigenvalues of A
M u
A= Ay = u+a . (33)
Ag u-a
This defines two diagonal matrices A™:
5 05{u )
A=l N = 05fu+at|u+al :
i 05u-aju-d)
(34)
where A* has only positive eigenvalues, A™ only

negative eigenvalues, and such that

A=A +A
A=A + A4

and |A|=A"-A" or
and [A,|=A5, -2,

m| - (35)
The quasi-linear coupled equations are obtained
from the characteristic form by the transformation
matrix P (defined in [22]), with the Jacobian A
satisfying
A=PAP

1, resulting in Q/at+ AéQ/ox=0. (36)
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Hence an upwind formulation can be obtained with
the Jacobians

A" =PA*P! and A =PA P!, with;
A=A"+A and [A=A"-A". (37)

The fluxes associated with these split Jacobians
are obtained from the remarkable property of
homogeneity of the flux vector f(Q). f(Q) is a
homogeneous function of degree one of Q. Hence, f
= AQ and the following flux splitting can be
defined:

f"=A'Q and f =AQ,with: f=f"+f".(38)
This flux vector splitting, based on Eq. (32), has
been introduced by [4]. The split fluxes f* and f are

also homogeneous functions of degree one in Q.

4.2 Arbitrary Meshes

In practical computations one deal mostly with
arbitrary meshes, considering either in a finite
volume approach or in a curvilinear coordinate
system. In both cases, the upwind characterization is
based on the signs of the eigenvalues of the matrix

K™ =Aefi=An, +Bn, +Cn,, (39)

where A, B and C are the Jacobian matrices written

to the Cartesian system. The fluxes will be
decomposed by their components
F™ —Fefi=En, +Fn, +Gn, (40)

and separated into positive and negative parts
according to the sign of the eigenvalues of K™ as
described above, considering the normal direction as
a local coordinate direction.

For a general eigenvalue splitting, as Eq. (32),
the normal flux projection, Eq. (40), is decomposed
by the [4] flux splitting as

(04
ocu+a(-—7éiX
ﬁ(n)_ﬂ OLV-l—a(7 7\% y
+ - 1

S Yy aw+af;, - Ng)nz
2 2 2 + +
a%+avn(ﬁ2—7ﬁs)+a2%—+i‘3

y_

(41)

where the eigenvalues of the matrix K are defined as
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A =Veni=v, , L, =Veii+aand L, =Vei (42)

with v being the flow velocity vector, + sign
indicates the positive or negative parts respectively,

and the speed of sound defined by a=./yp/p . The
parameter o is defined as

o =20y =1 + 45 + 5. (43)
4.3 Numerical scheme

The numerical scheme of [4] implemented in this
work is based on an structured finite volume
formulation, where the convective numerical fluxes
at interface are calculated as

l

- —+
ii-1/2k = (Fi,j—l,k + Fi,j,k)si,j—llz,k )

- —+ .
4172,k = (Fi+1,j,k + Fi,j,k)SHl/Z,i,k '

.

(44)

.

— —— —+

i, j+1/ 2,k _(FI j+1k+|:ijk)si j+1/2,k 1
F1/2]k_( 1]k+FI]k)SI1/ZJk; (45)
|:Ijk+1/ (Ijk+1+Fljk)Sljk+l/2’

Fiik 1+Fljk)8i,j,k—l/2; (46)

i, jk-1/2

The Euler explicit method, first order accurate in
time, is employed to perform the time integration:
Q|n+l Qinj K —At k/Vi i k(FiSjW1/2k + Fiﬂ\;z,j,k +
Flsjvjrll/Zk +F| -1/2,j,k +F| j.k+1/2 +F| .k 1/2) ' (47)
The RHS to the implicit simulations is determined
by:

— SW
I:|+1/2 B

IJk/VIJk(FIJ 1/2k+

= sw
Fijvok + Fi—1/2,j,k + Fi,j,k+l/2 + Fi,j,k—l/Z) . (48)

RHSir;ljyk :_ k +

This version of the flux vector splitting algorithm of
[4] is first order accurate in space.

5 Van Leer Numerical Algorithm

The approximation of the integral equation (1) to a
hexahedron finite volume yields a system of
ordinary differential equations with respect to time:

ij.ko

with R;;x representing the neat flux (residue) of the
conservation of mass, of linear momentum and of
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energy in the V;;, volume. The residue is calculated
as:

Riik =Rizjk —Rizjx TRijurex —Rijoaak +
Rijki2 —Rijk2: (50)

where Ri;,,; =R{y, , in which “c” is related to

the flow convective contribution.

As shown in [9], the discrete convective flux
calculated by the AUSM scheme (“Advection
Upstream Splitting Method”) can be interpreted as a
sum involving the arithmetical average between the
right (R) and the left (L) states of the (i+1/2,j,k) cell
face, related to cell (i,j,k) and its neighbor,
respectively, multiplied by the interface Mach
number, and a scalar dissipative term. Hence, to the
(i+1/2,j,K) interface:

[pa |l [ pa]
. pau pau
Ri+1/2,j,k:|s|i+1/21jyk EMi*'l/Zvjyk pav | +| pav
paw paw
paH | | paH |,
"pa | [ pa] [0 ]
1 pau pau Syp
_§¢i+l/2,j,k pav | —| pav +/S,p ,
paw paw S,p
—paH—R —paH-L L 0 di+1/2,jk
(51)
where S;.1/5 ¢ Z[Sx S, S, 12, k defines the

normal area vector to the (i+1/2,j,k) surface. Misijx
defines the advection Mach number at the (i+1/2,j,k)
face of the (i,j,k) cell, which is calculated according
to [9] as:

M, =M/ +Mg, (52)

where the separated Mach numbers M*" are defined
by [5]:

M, if M>1;
M*=[0.25M +1)*, if [M|<L (53a)
0, if M <-1;
and
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0, if M 21,
M~ =|-0.25M -1), if M|<L  (53b)
M, if M <-1.

M, and Mg represent the Mach number associated
with the left and right states, respectively. The
advection Mach number is defined by:

M =(S,u+Sv+S,w)/(Sla). (54)

The pressure at the (i+1/2,j,k) face of the (i,j,k)
cell is calculated by a similar way:

Piti2jk = P+ Pr, (55)

with p*" denoting the pressure separation defined
according to [5]:

P, if M>1;
p*=|0.25p(M +1)*(2-M), if |[M|<1
0, if M<-1,
And
0, if M>1
p~=|0.25p(M -1’2+ M), if [M|<1; (56)
D, if M <-1.

The definition of the dissipative term ¢
determines the particular formulation of the
convective fluxes. According to [10], the choice
below corresponds to the [5] scheme:

|M||: if |M,|21;

b =0 = |M||+0-5(MR—1)2, if 0<M, <1,
IM,[+05(M_ +1f, if —1<M, <0.

(57)

The equations above clearly show that to a
supersonic Mach number at the cell face, the [5]
scheme represents a purely upwind discretization,
using either the left state or the right state to the
convective and pressure terms, depending of the
Mach number signal. The explicit time integration
follows the time splitting method described in the
[3] scheme [Egs. (27-29)]. To the implicit time
integration, it is necessary the following RHS
definition:

RHSirjj,k = _Ati,j,k/vi,j,k[Ri\{il—_l/Z,j,k - RiV—Ll/Z,j,k +

VL VL VL VL n
Ri,j+1/2,k _Ri,j—l/z,k + Ri,j,k+1/2 - Ri,j,k—l/z] . (58)
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The [5] scheme presented in this work is first order
accurate in space.

6 Chakravarthy and Osher Numerical
Algorithm

6.1 Eigenvalues

The Jacobian matrices in generalized coordinates,
necessary to define the system’s eigenvalues
according to the [6] scheme, are defined by:

Ai+1/2,j,k :(hXA+hyB+hZC)i+1/2,j,k;
By iz = (A+h,B+h,C)

ij+1/2,k’

éi,j,k+1/2 :(th+hyB+th) (59)

ij.k+1/2’
where A=0E/6Q, B=0F/dQ and C =2G/oQ are
the Cartesian Jacobian matrices. Remembering that
the sound speed is determined by a=./yp/p, the

eigenvalues of A are defined by:

=W +a)h,, Ays, =Uh, and A, = (U —a)h,,
(60)

with U =h,u+h,v+h,w.

6.2 Riemann Invariants

Riemann invariants are the building blocks for the
[6] algorithm applied to Euler equations. Riemann
invariants are associated with the eigenvalues of the
generalized Jacobian matrices and are obtained from
the corresponding right eigenvectors. For the [6]
scheme, the Riemann invariants y corresponding to
the Ith eigenvalue are obtained by solving

Vo (@=0, (61)

where V, is the gradient operator with respect to

the vector of dependent variables denoted by Q and
r is the Ith right eigenvector. It may easily be
verified that the following are Riemann invariants:

For A, =(U +a)h,:

vy =U-2al/(y-1);
y; = p/p! =S =entropy;
y; =vh, —uh, =V ;

w5 =wh, —uh, =W ; (62)
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For A,5, =Uh,:

234 _

y24=p and w2 =U; (63)

For A =(U —a)h,:

y; =U+2al(y-1), v = p/p’' =S =entropy;
y3 =vh, —uh, =V, yi =wh, —uh, =W . (64)

The superscript denotes the eigenvalue to which the
Riemann invariants correspond.

6.3 Intermediate States

In finite volumes the variable of interest are defined
at the (i,j,k) cell centroid, where the vector of
conserved variables is denoted as Q;jx. The
coordinate direction & is treated in details in this
work and the extension to the ny and £ coordinates is
straightforward. By simplicity, the indexes j and k
are suppressed in the present notation.

Conventional finite volume schemes employ
values at the cell centroids of the conserved
variables, or dependents, of a simple manner. Such
schemes are generally symmetric, what simplify
their numerical implementation. The [6] algorithm
is more sophisticated. Fundamental to the [6]
scheme are the intermediate states of the dependent
variables, which are defined from the values of the
cell states of the computational domain. While states
in the computational cells are defined by Qi1, Qi
etc., the correspondent intermediate states are
defined by Qi3 and Q;.ys. The rest of this sublevel
describes how these intermediate states are defined
and their meanings.

1-23 1T 1-1/3

113 1T 14213

Figure 1. Schematic Representation of [6]
Scheme in Terms of Intermediate and Cell
Values of Dependent Variables.

Figure 1 serves as a guide to the construction of
the intermediate values. The states i-1 and i are
connected through a curve in the state space which
is made up of three subpaths. The first path connects
Qi1 and Qi,z and is associated with 4;. Path 2
connecting Qi3 and Qi.y3 is associated with 4,34
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and path 3 connecting Q.13 and Q; is associated with

As. Thus 3 4, 5 are constant between Qy.y and Qi
wrs"
\uleu are constant between Q;.13 and Q;. Equating

Riemann invariants between the end points of each
subpath it is possible to find 4+2+4 = 10 equations
to obtain the 10 unknown values of Qi3 and Q.13
from the known values at Q;; and Q;. Thus the
dependent variables at i-2/3 and i-1/3 are defined by
the following formulas:

are constant between Qs and Qjys; and

pi(:/l)ez/z :[(V_l)(ui _Ui—l)/2+ai +ai—l]/
lai l1+ (Sia/S )l/(ZY) u)i(yfl)/z ;
pi(ﬁ,l)g,/z Z[(Y—l)(Ui —Ui,l)/2+ai +ai71]/

(65)

|_ai—1b'+(si /Si71)1/(2y) HDi(ZIl)/Z; (66)
Pi_2/3 = Picss = Sis1Piz/a; (67)

U os=Ui 1 —2/(y-D(a 4 —a 55)=U, 45 =
U +2/(y=D(a —ay_ys); (68)
Vis=Viy and Vi, =V, (69)
W3 =Wy and Wy, =W,. (70)

Once Qiiz and Qi,s are known, A; may be
computed at i-1 and i-2/3 and As at i and i-1/3. It can
be shown that A, and As can at most change sign
only once along paths 1 and 3, respectively. If these
eigenvalues do indeed change sign [if
A (i-2)-2,(1—2/3) <0, for example], it becomes
necessary to compute the dependent variables at the
points along paths 1 and 3 where the respective
eigenvalues 4; and As vanish. These “sonic” points

are defined as Q,_,,, and Q,,,, and are given by
the formulas that follow below:

Uiys =(-1/+1)U; +2/(v-D &),
P =Uiys (085 (71)
Piars = SiPiasss Virs =Vis Wigjs =Wi; (72)

Ui s =(r=1)/(y+)U;, - 2/(y-1)a;,),
P = U5 (8% (73)
Pi-2i3 =Si1Pi2/3s \7i—2/3 =Vi, Vvi—2/3 =Wi. (74)

Along path 2, the Riemann invariant y2**

is equal
to A,/h,. Thus A, does not change either

magnitude or sign. The A; and As fields are called
genuinely nonlinear and the fields corresponding to
23,4 are termed linearly degenerate.
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In Equations (68), (69) and (70), (71) and (72)
and (73) and (74), it is straightforward to decode for
u, v.and w from U , V and W (in generalized
coordinates, U, V and W would be the normalized
velocity contravariants). From these definitions, it is
possible to write for u, v and w:

u =[U(h'x)2 ~Vhih, —Wn'xh'z]/h'x ;
v=[uhh V(bbb )-whl k) ]/n
w=[Uh.h, —vh b, +w(hh +hh )]/ (75)

6.4 Paths of integration

In this sublevel, the values of the variables of the
intermediate states and the values of the dependent
variables at the cells of the computational domain
are employed to form the [6] algorithm to the Euler
equations. Initially, the net numerical flux vector in
the & direction is approximated by:

i+l

Fovzik—Foajx zU(zilx'&dQJfJ‘Qi (I —X)AdQ}- (76)

The matrix X(Q) and the paths of integration are
what define the scheme. The sub-paths of
integration were recently defined (curves 1-3 of Fig.
1). The matrix X(Q) is defined to be:

X(Q) = R(Q)diagil/2 +1/2signall:, (Q IR (Q),
(77)

where R(Q) is the right-eigenvector matrix or the
matrix of column eigenvectors of the Jacobian

matrix in generalized coordinates A and RY(Q) its
inverse. Hence,

XA = Rdiaglmax(, 0)R* = A*
and
(1 - X)A=Rdiag[min(x, ,0)R™* = A". (78)

The asymmetric character of the scheme is apparent
from this definition. The Equation (76) can be more
simplified by the partition of the original integration
interval through the sub-paths of integration:

UQ' XAdQ+ [ (1 - X)Adq} SFO(hQ.)-F(hQ)+

Qi1 Qi

[[PAaQ+ | AdQ+[ AdQ (79a)

-1 i-2/3
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i+2/3

i+1/3 A A i+1 a
—j A*dQ- A*dQ—J._ _ AdQ, (79p)

i+1/3

with the normal flux to the interface defined by:

pUh,
puUh, + ph,
(80)

F® (h,Q) =Vint pVUhn + phy

pwUh, + ph,

(e+ p)uh,

It is obvious so that the blocks of construction of the
[6] scheme are the sub-integrals along the sub-paths
connecting all pair of neighbor cells. To the interval
between the pair of cells i-1 and i, for example, it is
possible to define:

Qi_yz ~ QA
A*dQ, D3= A"dQ.
Q jQV Q

(81)

D= j;’ AdQ D2=

Qi—23 i-1/3

While the integral formulae in the above equations
seem very complex to be evaluated, they simplify
considerably and each sub-integral is reduced to the

flux difference F™(Q) in each mesh cell and in

each cell of the intermediate and sonic states.
Therefore, it is possible to write:

Dl= F(n) (h’ Qi—2/3) - F(n) (h’ Qi—l) )

if %,(Q1)>0 and A,(Q_;3)>0; (82)
D1=F®(h,Q.25) ~F ™ (n,Qi2/3)
if 2,(Q1)<0 and 1,(Q;;5)>0; (83)
D1=F® (h,Q;_2/3)~F ' (h,Q:y),
if A,(Qi1)>0 and A;(Q; 53)<0; (84)

D1=0,if 1,(Qi4)<0 and A,(Q;_,;3)<0;(85)

D2=F®(h,Qy/3) ~F™ (h,Q_43),

if X554(Qiy/3)>0; (86)

D2=0,if X,54(Qi1/5)<0; (87)
D3=F® (h,Q;) - F® (h,Qiy/3),

if 15(Qiy/3)>0 and A5(Q;)>0; (88)
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D3=F™(h,Q)-F™(h,Qi3),

if A5(Q;4,3)<0 and A;(Q;)>0; (89)
D3=F® (h, @—1/3) —-F® (h, Qi—l/S) )
if A5(Qi1/5)>0 and A5(Q;)<0; (90)

D3=0, if A4(Q,,;) <0 and A4(Q,)<0.(91)

6.5 Chakravarthy and Osher algorithm

The complete algorithm of [6] to update the
dependent variables at the (i,j,k) cell of the n
temporal level to the next n+1 level can be simply
write as a concise sequence of steps.

& contribution:

1) Evaluate the dependent variables at the
intermediate cells between i-1 and i using Egs. (65)
to (70). The metric terms are calculated at i-1/2
interface (pointing to inside the cell);

2) Using Egs. (71) to (74), evaluate the sonic cells
which appear between i-1 and i (if the eigenvalues
change signal). The metric terms are calculated at i-
1/2 interface (pointing inside the cell);

3) Evaluate the sub-integrals D1, D2 and D3
between cells i-1 and i using Egs. (82) to (91).

The fluxes F™ at the cells of the computational
domain and at the intermediate states are evaluated
as necessary;

4) Repeat steps 1-3 between cells i and i+1. The
metric terms are calculated at the i+1/2 interface
(pointing outside the cell);

5) Substitute the sub-integrals and fluxes in Eq. (79)
to evaluate the & contribution.

n contribution:

6) Repeat steps 1-5 to the cells j-1, j and j+1 and the
metric terms calculated at the j-1/2 and j+1/2
interfaces [the formulae to m are obtained
substituting areas and volumes at the interfaces (i-
1/2,j,k) and (i+1/2,j,k) by areas and volumes at
interfaces (i,j-1/2,k) e (i,j+1/2,k)].

£ contribution:

7) Repeat steps 1-5 to the cells k-1, k and k+1 and
the metric terms calculated at the k-1/2 and k+1/2
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interfaces [the formulae to ¢ are obtained
substituting areas and volumes at the interfaces (i-
1/2,j,k) and (i+1/2,j,k) by areas and volumes at
interfaces (i,j,k-1/2) e (i,j,k+1/2)].

Update:

8) Update the conserved variables using the explicit
Euler method to the time march with first order of
accuracy:

+ Q| + Q|+1
anl Qljk Atljk/VleU JkAdQJ ”AdQ+

|1]k I]k
J‘Qi,jk
Qi i1k

B'dQ+ jQBdQ jQ é+do+ IQ'J’:“CdQ)
: (@

with the terms multiplying At;;x being evaluated in
steps 1-6. This version of the algorithm of flux
difference splitting of [6] is first order accurate in
space. The RHS to an implicit simulation is dictate

by:

Q' Q|+1
RHS =—At, i,j,k(j " ATdQ+ j " AdQ+

[ b0 b )

QI,J‘k i jk-1 I,]‘K
(93)

7 Harten Numerical Algorithm

The [7] algorithm, first order accurate in space, is
specified by the determination of the numerical flux
vector at (i+1/2,j,k) interface. This scheme uses
Equations (6-21) of [3] scheme, also using the Roe
average to determine the interface properties. The
next step consists in determining the entropy
condition. The entropy condition is implemented of
the following way:

Um = Ati,j,kkm =
and

1Zawl; if |Z,]>8;
Y =os(z2+82 )fs,, if |Z,| <,

with “m” varying from 1 to 5 (three-dimensional
space), as defined in [3] scheme, and & assuming
values between 0.1 and 0.5, being 0.2 the value
suggested by [7].

(94)
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The [7] dissipation function to the (i+1/2,j,k)
interface is constructed by the following matrix-
vector product:

{DHarten }int = [R]int {_Wa/Ati,j,k }int' (95)

The convective numerical flux vector to the
(i+1/2,j,K) interface is described by:

F|(+T32 j.k (EI(I’]T)h + Flr(1rtn)h + GI(I"IT)h int + 0 5Dg2?’ten ’
(96)
with EM™, F™ and G™ defined according to Eq.

(25). The time integration is performed by the time
splitting method, described ins Eq. (27-29).

8 Frink, Parikh and Pirzadeh

Numerical Algorithm

In this scheme, the numerical flux wvector is
calculated applying the flux difference splitting
procedure of [3]. The flux which crosses each cell
face is calculated using the [3] formula:

Pz =V2|F@Q) + FQo) - |AQ: -Q)| - (67)

In this equation, Qr and Q. are right and left state
variables of the (i+1/2,j,k) flux interface,

respectively. The Roe matrix A is determined by
the evaluation of A=0F/0Q with the flow

properties obtained by the Roe’s average [Egs. (8),
(99 and (20)] of such way that

F(Q:)-F(Q,)=A(Qs —Q,) is exactly satisfied.
Introducing the diagonalization matrices [R] and
[R’l] evaluated with the Roe’s average, defined by
Egs. (21) and (16), respectively, and the eigenvalue
diagonal matrix A, the W matrix is defined as

W = [R]A|[R‘1]. The term

~Q)=[RIA[R*heQ

in the formula of the numerical flux vector of [3], it
can be rewritten in terms of three flux components,
each one associated with a distinct eigenvalue, and
the dissipation function of the [8] scheme is defined

by:

Al (98)

Derp =[R]A|[R71]AQ:|AF1|+|AF4|+|AF5|' (99)
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where:
! 0
Ui M-, AU
p Vi .
‘AFim‘:‘\l‘im‘ [AP'Q n +Pint AV"nyAUim )
Aipt Wit AW-nAU
Uizm +Vizm *Wizm o
-, UiggU + Vigg AV + Wi AW = U e AUy
(100)
1
Uint t Ny @jnt
Ap £ pjaAU;
ARy - |W4,5|[—2;2' nt | vtnane |, (101)
int

Wint x Nz &jnt
Hint iuintaint

WIth Ui = Uiy +Viey + Wiy, , - AUjy = AU + 1AV + 1, AW
and A()= (')i+1,j,k _('%,j,k .

The present author introduced the entropy
function y aiming to avoid zero values to the
contributions of the system eigenvalues to the
dissipation function. This entropy condition is
implemented in the eigenvalues A, =U;,,

Ay =U;, +a,, and A, =U;,, —a, as follows:

int

o Halze i 2, <, 02

= . , With: =i,
Y oslzz e, it f2) < =k (102)
where | assumes values 1, 4 and 5 and ¢ is a
parameter which assumes the wvalue 0.01,

recommended by the present author. In the original
work of [8], the value used to ¢ is equal to zero,
which corresponds to the non-use of the entropy
condition.

The numerical flux vector at the (i+1/2,,k)
interface is determined by:

R 2ik = (Ei(nT)n + I:(m)ny +G{'n, —0.5D{F)

X int int ''z

int (103)

F™ and G{™

int int

with E™, defined according to Eq.

(25). The time integration is performed by the
Runge-Kutta explicit method, second order
accurate, of five stages, described below. The
contribution of the convective numerical flux
vectors is determined by the C;; vector:

(m) _ =(m (m) (m) (m)
Ciix =Fiituax tFovzjx T Fijiaax tFiyzjc +

Fi,(;T,])k+1/2 + Fi,(m—uz : (104)
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The Runge-Kutta can be represented of generalized
form by:

© _om
Qiljk = Qilj
m _ O
Qiljk =Qijk

(n+1) _ ~(m)
Qi,r}j—k _Qi,T,k

—oy Aty Vi <CQRUY ), (105)

with “m”=1,...,5; o1 = 1/4, 0, = 1/6, a3 = 3/8, oy =
1/2 and a5 = 1. The [8] scheme implemented in this
work is first order accurate in space. The RHS of
this scheme is given by:

RHSI:]J'k :_Atl,],k/vl,],kclr,]j,k .

(106)

9 Liou and Steffen Jr.

Algorithm

The [9] algorithm is specified by the determination
of the numerical flux vector at the (i+1/2,,k)
interface. This scheme employs Equations (49-56)
to determine interface properties. The next step
consists in determining the dissipative term ¢. The
definition of this term determines the particular
formulation of the convective fluxes. According to
[10], the choice below corresponds to the [9]
scheme:

Numerical

LS
int

Gine = Oint » With: iy (107)

=|Mint|'
The explicit time integration employs the time
splitting method described by Egs. (27-29). The
implicit time integration is performed with the
definition of the RHS. To this scheme, the RHS is
determined by Eq. (58), with the definition of Eq.
(107) to the dissipative term. The [9] scheme
presented in this work is first order accurate in
space.

10 Radespiel and Kroll Numerical

Algorithm

The [10] algorithm is specified by the determination
of the numerical flux vector at the (i+1/2,,k)
interface. This scheme employs Equations (49-56)
to determine interface properties. The next step
consists in determining the dissipative term ¢. The
definition of this term determines the particular
formulation of the convective fluxes. A hybrid
scheme is proposed by [10], which combines the [5]
scheme and the [9] (AUSM) scheme. Hence,
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(I)int :( |nt +0)¢|nt ’ (108)
with:

|Mint|v If |Mint| 21;

= M+ 001 0< M <T (109)
1

|Mim|+E(ML+1)2, if ~1<M,, <0;
3 M if [M >3
o= )2 2 ~, 110
int (Mlntz)g+8 ' if |Mim|<8 ( )

where & is a small parameter, 0 <5< 0.5, and » is
a constant, 0 < o < 1. In this work, the values used

to & and o were: 0.2 and 0.5, respectively. The
explicit time integration is described by Egs. (27-
29). The implicit time integration is defined by Eq.
(58), using Eq. (108). This scheme is first order
accurate in space.

11 Implicit Formulations

All implicit schemes studied in this work used an
ADI formulation to solve the algebraic nonlinear
system of equations. In these cases, the nonlinear
system of equations is linearized considering the
implicit operator evaluated at the time “n” and,
posteriorly, the heptadiagonal system of linear
algebraic equations is factored in three tridiagonal
systems of linear algebraic equations, each one
associated with a particular spatial direction.
Thomas algorithm is employed to solve these three
tridiagonal systems. All the implicit schemes
studied in this work were only applicable to the
solution of the Euler equations, which implies that
only the convective contributions were considered
in the RHS operator.

11.1 Implicit Formulation to the Flux
Difference Splitting Schemes

The ADI form to the [3, 6-8] first order schemes is
defined by the following three step algorithm:

{l + AL ;A Kiiaso ik T AL, ij Kisi/2,j, k}AQi*,j,k :[RHS(FDS)rj_k'

to the & direction; (112)
{I +Ati, n‘]|+1+1/2k +Ati,j, n i, j+1/2k}AQI k™ AQ| jko
to the m direction; (112)
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{I +At| j, kACI-l jk+1/2 +At| j, kAEIﬂ i k+1/2}AQ|nJrl AQ:},k !
to the C direction; (113)
Qi

= Qirjj,k + AQirj},lk ' (114)

where:

12,k

+ _ -1
Ki+1/2jk _[R|+1/2]kQ|+1/21k[R Tt
-1
‘]l jHl/2k — [R]I jl/2, kq)l j+l/2k[R rj+l/2k ’

I-| j.ktl/2 — [R]I j, k+1/2LP|_J k+1/2 R l]—‘j k+1/2 1 (115)

b |

L
dix1r2,jk

[

i, jx1/2,k
| —n

(35—

L i, jk+1/2

0. =o. s(x'é _M) ) =0, M);

Qiiﬂ/z,J,k = diag

®_J+l/2 « =diag

lPiij k172 = diag (116)

J =o. 5(%' + ! ) (117)

A = ()ljk ()—1ka E ()+ljk ()i,j,k; (118)
A} :(')i,j,k _(')i,, 1k n (). j+Lk _(')i,j,k . (120)
A_c :(')i,j,k _(')i,J k-1 (). iok+1 _(')i,j,k - (121)

In Equation (115), the R matrix is defined by Eq.
(21); diag[-] is a diagonal matrix; in Egs. (116-117),
“I” assumes values from 1 to 5 (three-dimensional
space) and A’s are the eigenvalues of the Euler
equations, defined by Eq. (11). The matrix R™*
defined by Eq. (16). The RHSps) is defined as the
residual of the flux difference splitting schemes,
which is defined, for instance, by Eg. (26). The
other schemes follow similar formulae.

This implementation is first order accurate in
time due to the definition of Q, of ® and of ¥, as
reported in [23], and is first order accurate in space
due to the RHS of the numerical schemes.

J\+

11.2 Implicit Formulation to the Flux
Vector Splitting Schemes

The ADI form to the [4-5, 9-10] first order schemes
is defined by the following three step algorithm:

{l + A A AL Ati,,ijEAi:rllz,j,k}AQ;j,k = [RHS(FVS)Lk ,
to the & direction; (122)
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{l +AL A, B+j+1/2k +AG kAanHl/zk}AQi,b},k :AQ:j,k’
to the n direction; (123)

{I +At kA CI jk+1/2 +At| ], kA CI j, k+1/2}AQ|rHl AQ:},k !
to the ¢ direction; (124)

an}—lk - QI j.k + Aanle ! (125)
where the matrices A*, B* and C* are defined as:

+ _ n + -1 .
A+l/2 jk — [T]i+1/2 i in+1/2,j,k[T Lllz,j,k ’
-1 .
BI jrl/2.k _[T]I J+1/2kq)l j*l/2, k[T r,jtllz,k’

Ci_,j,kirllz = [T ]i,j,kﬂ/Z\Pi,_j,killz[-rilrj,ktllz ; (126)

+ . " | + n
Qf2,jk = diag (7‘&) lﬂ/“k;

D ju124 = diag (kln)ﬂn ;

i,jx1/2,k

4

Wi iz = diag (¢ ]” B
jk=1/2 Y ( Q) kL2 (27

with the similarity transformation matrices defined
by:

h, h,
h kUint h umt thint
T= h th + thlnt h Vlnt
thint - hypint hmet + hxpint
R PO VL
XT]_ + pint(hzvint - hyWint) h + pint(hxwint - hzuint)
h, a a
hzuint +hypint 0Ujnt +h><aint Uit _hxaint
h 2Vint ~ hxpim Vit +hyaim OVing — h amt .
thmt (OL Wing + r}z Aint (OL Wint — I'izamt
¢ o2 +al |~ [[6°+ad
h+p|nt(hyu|nt hx mt) 0 Yfllm‘l'ainte o Tllm_ainte -
(128)

o= pint/(‘/aaint)! sz/(‘/zpintaint);
2 2 2
92 :(y_l)uint +Vi£t + Wine .

0= th.m + hyvmt +h, Wi (129)
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N ¢’ (h Vint ~ h Int) h (Y‘l)uint
AR Pint ' alznt
hl1 ) (th.m hzu,m) _X (=D l)uInt
T1- ’ v-1 Pint Pint y amt
h _i (hyumt hxvmt) ﬂ+ h (v =Ll
U oy-t Pint Pint Z |2nt
Bgd) a.meg Bl — (-1
Blo” + a0 - B[h;(aint + (V 1)uint]
( 1)‘/mt _ ﬂ + h;( (Y - ]Z')Wint h'X (Y ;1)
plnt |nt Pint At Ant
( 1)‘/|nt L 4 h'y (Y _12)Wim _ h;, (Y ;1)
Pint Aipt At
( 1)V|nt ( 1)W|nt _ h; (Y ;1) ,
int 8int
[p Ant ( 1)"|nt] B[h At — 1)W|nt] B( _1)
- B[hyaim -] -Blhian +(-1wy] B

(130)

with pj,; defined as the interface density. The
properties defined at interface are calculated by
arithmetical average. The RHSgys) is defined as the
residual of the flux vector splitting schemes, similar
to Eqg. (111). This implementation is first order
accurate in time.

12 Spatially Variable Time Step

The idea of a spatially variable time step consists in
keeping constant a CFL number in the calculation
domain and to guarantee time steps appropriated to
each mesh region during the convergence process.
The spatially variable time step can be defined by:

CFL(as), ik

At = , (131)
I qq|+a)i,j,k

where CFL is the Courant-Friedrichs-Lewis number
to method stability; (As);, is a characteristic

length of information transport; and (|q|+a)i i 18

the maximum characteristic speed of information
transport, where a is the speed of sound. The
characteristic length of information transport,
(As), ; «» can be determined by:

(As)i,j,k = [MIN(IMIN Cuin )]. | (132)
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where lyy is the minimum side length which forms
a computational cell and Cyy is the minimum
distance of baricenters between the computational
cell and its neighbors. The maximum characteristic
speed of information transport is defined by

(|q|+a)i'j‘k ,with g =+vu? +v? +w? .

12 Initial and Boundary Conditions

12.1 Initial Condition

The initial condition adopted for the problems is the
freestream flow in all calculation domain ([24-25]).
The vector of conserved variables is expressed as
follows:

1
M, cosé
M _ sin 6 cosy
M _ sin@siny

1 M 2
+
L’(V—l) 2 }

where M, represents the freestream Mach number, ©
is the flow incidence angle upstream the
configuration under study and v is the angle in the
configuration longitudinal plane.

(133)

12.2 Boundary Conditions

The different types of implemented boundary
conditions are described as follows. They are
implemented in the special cells named “ghost”
cells.

a) Wall - The Euler case requires the flux tangency
condition. On the context of finite volumes, this
imposition is done considering that the tangent flow
velocity component to the wall of the ghost cell be
equal to the tangent flow velocity component to the
wall of the neighbor real cell. At the same time, the
normal flow velocity component to the wall of the
ghost cell should be equal to the negative of the
normal flow velocity component to the wall of the
neighbor real cell. [26] suggests that these
procedures lead to the following expressions to the
velocity components u, v and w of the ghost cells:

ug = (1_ 2n><nx)ureall + (_znxny)vreal + (_znxnz)wreal ; (134)
Vg = (_Znynx)ureal + (1_ 2nyny)vreal + (_znynz)wreal ; (135)
+ (—an”y)Vrea| +(1-2n,n,)W,, . (136)

Wg = (_an nx)ureal
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The fluid pressure gradient in the direction
normal to the wall is equal to zero for the inviscid
case. The temperature gradient is equal to zero
along the whole wall, according to the condition of
adiabatic wall. With these two conditions, a zero
order extrapolation is performed to the fluid
pressure and to the temperature. It is possible to
conclude that the fluid density will also be obtained
by zero order extrapolation. The energy conserved
variable is obtained from the state equation to a
perfect gas, Eq. (3).

b) Far field - In the implementation of the boundary
conditions in the external region of the mesh to
external flow problems, it is necessary to identify
four possible situations: entrance with subsonic
flow, entrance with supersonic flow, exit with
subsonic flow and exit with supersonic flow. These
situations are described below.

b.1)  Entrance with subsonic flow — Considering
the one-dimensional characteristic relation concept
in the normal direction of flow penetration, the
entrance with subsonic flow presents four
characteristic velocities of information propagation
which have direction and orientation point inward
the calculation domain, which implies that the
variables associated with these waves cannot be
extrapolated ([25]). It is necessary to specify four
conditions to these four data. [24] indicate as
appropriated quantities to be specified the
freestream density and the freestream Cartesian
velocity components u, v and w. Just the last
characteristics,  “(g,-a)”,  which transports
information from inside to outside of the calculation
domain, cannot be specified and will have to be
determined by interior information of the calculation
domain. In this work, a zero order extrapolation to
the pressure is performed, being the total energy
defined by the state equation of a perfect gas.

b.2)  Entrance with supersonic flow - All
variables are specified at the entrance boundary,
adopting freestream values.

b.3) Exit with subsonic flow - Four
characteristics which govern the Euler equations
proceed from the internal region of the calculation
domain. So, the density and the Cartesian velocity
components are extrapolated from the interior
domain ([25]). One condition should be specified to
the boundary. In this case, the pressure is fixed in
the calculation domain exit, keeping its respective
value of freestream flow. Total energy is specified
by the state equation of a perfect gas.

b.4)  Exit with supersonic flow - The five
characteristics which govern the Euler equations
proceed from the internal region of the calculation
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domain. It is not possible to specify variable values
at the exit. The zero order extrapolation is applied to
density, Cartesian velocity components and
pressure. Total energy is specified by the stae
equation of a perfect gas.

¢) Entrance and exit — The entrance and exit
boundaries are applied to the ramp and air inlet
problems. Boundary conditions which involve flow
entrance in the calculation domain had the flow
properties fixed with freestream values. Boundary
conditions which involve flow exit of the
computational domain used simply the zero order
extrapolation to the determination of properties in
this boundary. This procedure is correct because the
entrance flow and the exit flow are no minimal
supersonic to both studied examples.

13 Results

Tests were performed in a notebook with processor
Intel core i7, 2.20GHz of clock, and 8Ghytes of
RAM memory. As the interest of this work is steady
state problems, one needs to define a criterion which
guarantees that such condition was reached. The
criterion adopted in this work was to consider a
reduction of 4 orders in the magnitude of the
maximum residual in the domain, a typical criterion
in the CFD community. The residual to each cell
was defined as the numerical value obtained from
the discretized conservation equations. As there are
five conservation equations to each cell, the
maximum value obtained from these equations is
defined as the residual of this cell. Thus, this
residual is compared with the residual of the others
cells, calculated of the same way, to define the
maximum residual in the domain. The configuration
upstream and the configuration longitudinal plane
angles were set equal to 0.0°.

The physical problems to be studied are the
supersonic flow along a ramp with 20° of inclination
and the “cold gas” hypersonic flows along an air
inlet and around a cylindrical blunt body. The ramp
configuration is described in Fig. 2. An algebraic
mesh of 61x60x10 points or composed of 31,860
hexahedrons and 36,600 nodes was used as shown
in Fig. 3. The points are equally spaced in both
directions. The second configuration is the
cylindrical blunt body. It has a nose ratio of 1.0m
and the far field is located at twenty times the nose
ratio in relation to the body’s leading edge. It is
composed of 32,922 hexahedrons and 37,800 nodes,
which corresponds in finite differences to a
63x60x10 mesh. Figure 4 shows the blunt body
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configuration and Fig. 5 exhibits the blunt body’s
mesh.

¥y
Far Field
b Exit
f?"-_ Entrance =
L
Wall
| |
T e ™ 015m T

Figure 2. Ramp configuration.

Entrance

Exit

Wall

Exit

Figure 4. Blunt body configuration.
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The ramp problem is described as a low
supersonic flow impinging a compression corner,
generating an obligue shock wave, and expanding in
an expansion corner, as shown in Fig. 2. The
freestream Mach number flow, which defines the
initial condition, was adopted equal to 2.0
(supersonic flow). All schemes generated converged
results to this implicit problem.

Figures (8-15) show the pressure contours
obtained by [3-10] numerical algorithms. As can be
seen, only the [6] and [9] schemes yielded bad
results. The [6] scheme presents a unphysical
solution, whereas [9] scheme exhibits a pressure
oscillation due to the shock, even being a low Mach
number flow. The rest of the solutions presents good
behavior, capturing appropriately the shock

.4 .||'I| ‘.II
\

L)
St
S

Figure 5. Blunt body mesh. discontinuity.
Finally, the last configuration is the air inlet - [T T T T T T 7711 -
geometry. It is composed of 20,709 hexahedrons Pr 080 095 113 130 146 163 179 196

and 24,000 nodes, which corresponds to a mesh of
60x40x10 in finite differences. Figure 6 exhibits the
air inlet configuration, whereas Fig. 7 presents the
air inlet mesh.

AL = (41.10; 0.00) mm DL = (140.00; -5.00) mm DU = (140.00; 13.30) mm
BL =(106.00; 6.82) mm AU = (0.00; 44.00) mm  TU = (-10.00: 44.00) mm
CL=(12740;160)mm  CU=(127.40. 11.70) mm TL = (31.10,0.00) mm

~ BL

©.0)] T oA EIAS Figure 8. Pressure contours ([3]).

Fro 080 096 113 129 146 162 179 195

Figure 9. Pressure contours ([4]).

Figure 7. Air inlet mesh. Figures (16-23) show the Mach number contours
o . obtained by all studied schemes. The problems with
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solution is an unphysical one and is not due to the - [ TTTTT T T 711 -
implemented algorithm. In other words, the problem Pr 080 09112 120 146 163 179 196
is not numerical, but physical. The [6] scheme """‘h

seems unable to capture appropriately the shock
wave.

Figure 13. Pressure contours ([8]).

Pr. 0.82 104 125 146 168 139 211 232

Figure 10. Pressure contours ([5]).

Pro 050 072 093 114 1.36 157 173 2.00

Figure 11. Pressure contours ([6]).

Pro 0.80 086 113 129 146 1.62 179 196
%

Figure 15. Pressure contours ([10]).

The [9] solution only highlights that the problem
with this scheme is the non-capacity of avoid pre-
Figure 12. Pressure contours ([7]). shock oscillations at compression regions. Although
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the shock profile is captured, the oscillation in the - [ ] - [T ] -

wall pressure distribution becomes such scheme Mach: 121 134 147 160 173 188 1099 212
limited in its capacity to predict discontinuities.

T ([ [TTTT[TTTH

Mach: 1.22 132 142 153 163 174 184 195

Figure 19. Mach number contours ([6]).

Mach: 1.23 134 144 154 164 174 185 1.95

Figure 16. Mach number contours ([3]).

T [ [TTTTITTTH

Mach: 1.25 135 145 155% 165 175 185 1.85

Figure 20. Mach number contours ([7]).

Mach: 1.21 ‘1.42 153 1.63 174 1.84 185

Figure 17. Mach number contours ([4]).

BT ([ [TTTTTTTCH

Mach: 1.25 135 145 155 165 175 185 1.95
i

Figure 21. Mach number contours ([8]).

Figures (24-27) exhibit the wall pressure
distributions at wall. Figure 24 shows the flux
Figure 18. Mach number contours ([5]). difference splitting solutions, obtained by the [3, 6-
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8] algorithms. In this plot, the [3] and [8] schemes
have presented the best choice for this type of
formulation.

Mach: 110 122 1.34 146 158 170 182 1.94

Figure 22. Mach number contours ([9]).

Mach 1.24 ‘1. 1.44 154 165 175 1.85 1.95

Figure 23. Mach number contours ([10]).
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Figure 24. Wall pressure distributions (FDS).
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Figure 25. Wall pressure distributions (FVS).
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Figure 26. Choosing the best distribution.
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Figure 27. Best profiles.

Figure 25 shows the wall pressure distributions
obtained by the flux vector splitting schemes [4-5,
9-10]. The best distribution for this type of
formulation was obtained by the [10] scheme.
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Figure 26 represents the comparison among the
three solutions that were chosen as the best in each
formulation. The best global solution was due to [3,
8]. Finally, Figure 27 exhibits the best profiles of
pressure with symbols to identify in how many cells
the discontinuity is captured. In this study, the best
results captured the discontinuity using six (6) cells,
which gives us a feeling in how important is the use
of high resolution algorithms.

A way to quantitatively verify if the solutions
generated by each scheme are satisfactory consists
in determining the shock angle of the oblique shock
wave, 3, measured in relation to the initial direction
of the flow field. [27] (pages 352 and 353) presents
a diagram with values of the shock angle, B, to
oblique shock waves. The value of this angle is
determined as function of the freestream Mach
number and of the deflection angle of the flow after
the shock wave, ¢. To ¢ = 20° (ramp inclination
angle) and to a freestream Mach number equals to
2.0, it is possible to obtain from this diagram a value

to B equals to 53.0 °. Using a transfer in all pressure = :
contours figures, it is possible to obtain the values of |
B to each scheme, as well the respective errors, [ |
shown in Tab. 1. As can be noted, the best result is ||
due to [5]. As the best wall pressure distribution was = 46
due to [3, 8] and the best shock angle has the [3] ]
algorithm with an error of only 0.94% (less than [ =
1.0%), the [3] algorithm is the best in this problem. =
Table 1. Shock angle and percentage errors. L
Algorithm B (%) Error (%)

[3] 53.5 0.94

[4] 53.4 0.75

[5] 53.0 0.00

[6] 53.9 1.70

[7] 52.9 0.19

[8] 54.0 1.89 |

[9] 54.0 1.89 [ ]

[10] 54.3 2.45 =

. M,

13.2 Blunt Body Problem - Explicit |
Simulation ||
In this problem, a high “cold gas” hypersonic flow [
is simulated. A freestream Mach number of 36.0 is = :
studied. The [3, 6, 8] schemes did not vyield N .

converged results. The results are compared with
normal shock wave theory ones.

Figures (28-32) show the pressure contours
obtained by [4-5, 7, 9-10] schemes, respectively.
The most severe pressure field is due to [9], which
characterizes this scheme as the most conservative. Figure 30. Pressure contours ([7]).
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Pr
1004.84
837.90
870.95
804.01
73707
67013
G03.18
536.24
46930
402 35
335.41
268.47
20153
13458
67.64

Figure 31. Pressure contours ([9]).

Figure 32. Pressure contours ([10]). Figure 35. Mach number contours ([7]).

Figure 33. Mach number contours ([4]). Figure 36. Mach number contours ([9]).
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Figures (33-37) exhibit the Mach number
contours obtained by the [4-5, 7, 9-10] schemes,
respectively. All schemes predict a freestream Mach
number inferior to 36.0. The Mach number field
generated by the [7] algorithm is the closest in
relation to the original freestream flow. All solutions
present good symmetry properties. The [5] and [10]
results present the biggest extension of the low
supersonic  region, ahead of the body’s
configuration.

Figure 37. Mach number contours ([10]).

Figure 38 exhibits the —Cp distributions at wall
of the blunt body, generated by the five schemes
under study in this problem. The maximum Cp was
obtained by [9] and reaches the value 1.66.

e

41

24

05

Steger and Warming (1981)
Van Leer(1982)

Harten (1983)

Liou and Steffen Jr. (1993)
Radespiel and Kroll (1995)

-12

-11

-14

ad as Le 15 18 15 38 35

X (m)
Figure 38. —Cp distributions at wall.

40

45 30

Figure 39 shows the temperature distribution at
wall generated by the five schemes. The maximum
peak of temperature is obtained by [7] and assumed
the value of 70,000K, which is a solution typical of
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“cold gas” flows and is incorrect in reality. Values
of temperature around 20,000K are more realistic
and are obtained with a “hot gas” formulation. To
more details about “hot gas” formulation, see [21,
28-33].

T (K)
e Steger and Warming (1981)
0000 Van Leer(1982)
Harten (1983)
oo Liou and Steffen Jr. {1993)
S Radespiel and Kroll {1995)

=L )

450000

400000

LI T 30 33 40 45 =

15 14 15

X (m)
Figure 39. Temperature distributions at wall.

In terms of quantitative results, the present author
compared the stagnation pressure at the blunt body
nose assuming the perfect gas formulation. To
calculate the stagnation pressure ahead of the blunt
body, [27] presents in its B Appendix values of the
normal shock wave properties ahead of the
configuration. The ratio pro/pr,, is estimated as
function of the normal Mach number and the
stagnation pressure pro can be determined from this
parameter. Hence, to a freestream Mach number of
36.0, the ratio pro/pr,, assumes the value 1669.0. The
value of pr,, is 0.714 by the present dimensionless.
Using the ratio obtained from [27], the stagnation
pressure ahead of the configuration nose is
estimated as 1,191.66 unities. Table 2 compares the
values obtained from the simulations with this
theoretical parameter and presents the numerical
percentage errors. As can be observed, all solutions
present percentage errors less than 40.0%, which is
a reasonable estimation of the stagnation pressure.
The best estimation was due to the [9] scheme, first
order accurate, with an error of 15.68%.

Table 2. Stagnation pressure and errors.

Algorithm pro Error (%)
[4] 824.48 30.81
[5] 875.92 26.50
[7] 734.27 38.38
9] 1,004.84 15.68
[10] 882.50 25.94
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13.3 Aiir Inlet Problem — Explicit Simulation
The freestream Mach number of this high “cold gas”
air inlet flow was 20.0. The [3, 6, 8] schemes did
not yield converged results.

Figures (40-44) exhibit the pressure contours of
this simulation to the five algorithms that were
robust enough to perform this study. As can be seen,
only the [7] did not produce good results. Moreover,
none of the flux difference splitting schemes yielded
reasonable results for the two “cold gas” high
hypersonic flow simulations, ratifying the expected
behavior that the flux vector splitting algorithms are
more robust. The pressures contours are well
captured by the FVS algorithms, mainly the shock
interference at the air inlet throat.

Pr. 358 1075 1782 25.08 3225 3541 4658 5375

Figure 40. Pressure contours ([4]).

Pro 373 11.08 1844 2579 3315 40.50 4786 5521

Figure 41. Pressure contours ([5]).

Figures (45-49) present the Mach number
contours obtained by the [4-5, 7, 9-10] schemes,
respectively. With the exception of the [7] solution,
which seems very diffusive, the other solutions are
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good and capture the shock interference at the
throat. Particularly, the [5] and [10] solutions are
very close.

Pr: 427 1138 1349 2580 3271 39.82 4593 54.04

Figure 42. Pressure contours ([7]).

Pro 380 1141 1802 2662 3423 41.84 4944 57.05

Figure 44. Pressure contours ([10]).
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388 604 819 1033 1248 1463 1678 1883

Mach:

Figure 45. Mach number contours ([4]).

489 631 852 1054 1255 14595 1693 18599

Mach:

Figure 46. Mach number contours ([5]).

421 832 842 1052 1263 1473 1683 15.94

Mach:

Figure 47. Mach number contours ([7]).

Figure 50 shows the pressure distributions along
the air inlet. Only the [7] solution is not plotted
because it presents a peak of pressure at the shock
interference that is very high to be considered
altogether. The best solution is that originated by
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[10]: it captures the pressure plateau at the
beginning region (> 10mm), after that the peak of
pressure from the shock interference, the shock and
the expansion wave (> 12mm).

786 1007 1227 1448 1659 18.90

J.a4

Mach: 3.65

Figure 48. Mach number contours ([9]).
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Figure 50. Wall pressure distributions.
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A parameter which can be analyzed to evaluate
the accuracy of the four schemes, without
considering [7], is the shock angle of the oblique
shock wave that appear at the lower and upper air
inlet walls. With a transfer were measured the
inclination angles of the lower and upper ramp of
the entrance device. To the lower wall this angle
was of 6.5° in relation to the horizontal and to the
upper wall was of 13.5° in relation to the horizontal.
With these angles and with the freestream Mach
number was possible to determine the theoretical
shock angles of the oblique shock waves. These
angles are disposed in Tab. 3, joined with the
measured values of them to each scheme and the
respective percentage error. Figures (40-44), at the
Xy plane, were used to evaluate the measured
angles.

Table 3. Measured values of the shock angles of
the oblique shock waves.

Surface | Scheme | p{™™™) [ p™Mesued I Error
(%)
[4] 10.0 10.0 0.00
Lower | [5] 10.0 10.0 0.00
[9] 10.0 9.4 6.00
[10] 10.0 10.0 0.00
[4] 175 18.8 7.43
Upper [5] 17,5 18.0 2.86
[9] 175 17.4 0.57
[10] 175 18.0 2.86

As can be seen, the [5, 10] schemes gave the best
results considering a global analyses; in other
words, the results of the two walls. Although the [9]
scheme had determined with excellent accuracy the
value of the shock angle of the oblique shock wave
at the air inlet upper wall, its behavior at the lower
wall was reasonable, with an error of 6.0%. The [5,
10] operators had errors inferiors to 3.0% in both
walls and, therefore, presented the best solutions.

13.4 Computational Data

Table 4 presents the computational data of the
simulations. All simulations converged in four (4)
orders of reduction of the initial residue. It is
interesting to note the behavior of the [4] scheme in
the air inlet problem. The [5, 7, 9-10] algorithms
converged using a CFL of 0.2 at maximum.
However, the [4] converged with CFL of 0.9, which
indicates that a more strength initial condition
(freestream Mach number) could be used. The
robustness of the [4] scheme is a remarkable
property of this algorithm. For an initial phase of
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airplanes  design, this algorithm is highly
recommended by its low cost, simple numerical
implementation and good solution quality. Table 4
highlights the excellent performance of the [4]
scheme, being the fastest to convergence and using
bigger CFL number than the other schemes.

Table 4. Computational Data.

Ramp Blunt Body Air Inlet
Scheme CFL Iter. CFL | Iter. | CFL Iter.
[3] 1.5 | 299 - - - -
[4] 25 | 173 | 09 |305| 09 | 561
[5] 15 | 291 | 04 [819] 0.1 |5196
[6] 2.0 | 400 - - - -
[7] 20 | 227 | 05 |562] 0.1 |8192
[8] 1.5 | 299 - - - -
[9] 15 325 09 | 726 | 0.1 |5320
[10] 15 303 0.9 |440 | 0.2 | 2590

14 Conclusions
In the present work, the [3-10] schemes are
implemented, on a finite volume context and using
an upwind and structured spatial discretization, to
solve the Euler equations in the three-dimensional
space. The [3, 6-8] schemes are flux difference
splitting ones and more accurate solutions are
expected. On the other hand, the [4-5, 9-10] are flux
vector splitting ones and more robustness properties
are expected. The implemented schemes are first
order accurate in space. The explicit time integration
uses a time splitting method, an Euler method or a
Runge-Kutta method. The implicit time integration
uses an ADI approximate factorization method. The
physical problems of the supersonic flow along a
ramp and the high “cold gas” hypersonic flows
around a blunt body and along an air inlet are
solved. All the eight algorithms are accelerated to
the steady state solution using a spatially variable
time step. This technique has proved excellent gains
in terms of convergence ratio as reported in [18-19].
The results have demonstrated that the [9-10]
schemes are the most conservative algorithms
among the studied ones and that the [3, 5, 9]
schemes are the most accurate. The [9] scheme
yielded the most severe pressure field in the blunt
body problem, which indicates this one as a more
conservative scheme to the prediction of high “cold
gas” hypersonic design conditions. The pressure
distribution along the ramp was better predicted by
[3, 8] schemes. The [3, 8] scheme presented better
shock capturing properties due to the use of Roe’s
average. In the estimation of the angle of the oblique
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shock wave, only the [5] scheme presented
appropriate predictions (error equal to 0.00%). The
best algorithm for the ramp problem was a
compromise between quality and quantity and
resulted in the [3] scheme as the best. In the blunt
body problem, the [3, 6, 8] schemes were not so
robust as the others schemes and simulated a less
severe initial condition, what characterized a
supersonic case. The others five schemes simulated
the intended high “cold gas” hypersonic flow. The
following comments are related only with the
hypersonic case. The most severe pressure field was
estimated by the [9] scheme, which also indicates
this scheme to more severe design conditions of
aerospace vehicles. The stagnation pressure ahead
of the configuration is better predicted by the [9]
scheme, which indicates it for high hypersonic
airplanes design. In the air inlet configuration, only
five schemes simulate this problem. However, the
[7] scheme did not yield reasonable results and was
excluded from such analysis. The more conservative
scheme was the [10] one. Moreover, the upper wall
pressure distribution was more appropriately
described by [10]. In the prediction of the shock
angles of the oblique shock waves at the lower and
upper walls of the air inlet, the [5, 10] schemes were
the best.

As final conclusion, the present author
recommends the [5, 9] schemes, among the studied
algorithms, to obtain more accurate solutions in the
three-dimensional space. The [5] scheme, due to its
confirmed robustness and accuracy, could be used in
the initial and final design phases of aerospace
vehicles.

15 Concluding Remarks

As a final comment is the excellent computational
performance of the [4] scheme, as was demonstrated
in section 13.4. Although not present comparative
accuracy in relation to the [5] scheme, its algorithm
has presented significant numerical behavior, also
being indicated to the initial phase of airplane
design.
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