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Abstract: - In this paper we present a transient model of transient heat conduction in a 2D system with double
wall and double fins. Here we consider third type linear boundary conditions and a boiling condition.
Conservative averaging and finite difference methods are applied to the given problem to construct numerical

solution of the given problem.
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1 Introduction

With this article we continue our study on systems
with double wall and double fins (see [2] - [4]). By
this definition we understand such structures that
consist of aflat surface that is roughened by adding
densely distributed vertical fin arrays, and then
covered with some kind of coating (see Fig.1).

Fig.1: 2D system with fins

These artificid roughness eements are usualy
developed and used to enhance heat transfer
performance (see, e.g., [10], [11]).
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Here we propose a model that describes the heat
conduction problem for 2D assembly with straight
fins of rectangular profile when the process is
transient, homogeneous and when partia boiling is
present. Just like in the publications [2] - [8], we use
conservative averaging method to reduce the given
2D problem to 1D one. The latter is solved
numerically by finite difference method used in [7].

Our mathematical models differ quite a bit from
those where relatively ssimple fin assemblies are
considered (see, e.g., [1], [9], [12], [13], [15]).

2 Problem Formulation in 2D
Before formulating the problem, let's divide the
given figure into symmetrical parts. That alows us
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to describe the problem for only one of those (see
Fig.2).

Fig.2: L-type domain

As shown in Fig.3, this L-shaped part can be
represented by a union of five non-overlapping

subdomains. Bear in mind, that | > b, 1.
X
©

W

C C, C,

0 b b+e Iy
C,
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Fig.3: Definition of geometrical parameters for the
sample

Let us denote the temperatures of the domains
C, by the symbols V, (X, y,t) . The basic properties,
such as therma conductivity, heat transfer
coefficient, specific heat and density, are constant
and denoted by k;, h, c,, p;, respectively. Here
wetake k =k, and k, =k, =k;.

We are going to describe these non-stationary

temperature fields by the following partia
differential equations:

(’32Vi 62Vi 10V, -, k;
+—_~__1ai =_~1X1yECi1
ox*  oy* a’ ot C p;
with theinitial conditions
_\/0
Vi|t:o =Vi (%),

and the boundary ones. As the geometry of interest
has mirror symmetry along the lines y=0 and

y =1,, we use the symmetry boundary conditions
™z,
on

with n as the unit exterior normal to the boundary
of the domains C, .
Along theline x=-¢6 heat flux

oV,

— = _Qo (y’ t)

OX |, s

isapplied.
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Assuming that a the y=b+¢g there is boiling

occurring,
(% + ﬁll\/lmJ = O’
ay y=b+¢;
where B = h
kl

At the other sides there is heat exchange between
the sample and its surroundings, that’s why third
type boundary conditions have to be specified here:

oV,

on
Along the lines connecting two neighbour domains
the continuity of temperature and heat flux are
ensured by

LN, =0,

Vi|x:... :Vj N
| kv,
x|,k ox "

Vi|y:... :Vj‘yzm’
oV, B kj 6Vj
oy y=... ki oy y=..

3 Approximate Solution of Problem
As the outer layer is quite thin compared with the
substrate, we may assume that the temperature
variations across the layer thickness are so small as
to be negligible. In this way the temperature can be
taken constant here. Thus, owing to appropriate
conjugation conditions, approximate expressions for
calculating the temperatures in the upper layer are
given by

Vo (%, 1) =V, (y,1) =V (0, y,1),

Vi Y1) =v; (%, 1) =V(x.b,1), 2

V3(X1 y1t):V3(y!t):V(|!y!t)' (3)
Now we are left with the heat conduction problem
for the basic layer only:

o o0V

(1)

1 0V

—=, 4
ox*  oy* a2 ot @
oV, 0%V, _ 1V )
ox>  oy*  a ot

The boundary conditionsimposed on all sides of the
new domain are as follows:

oV,
== 1t )
x| Q(y:t)

(6)
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|,
To get boundary conditions specified at x=0,
=|,and y=Db, let's use appropriate conjugation

conditions and expressions (1) — (3). For example, at
x=0 we have

©)

No , g _1 [ Mo _
(22, j ko S | =
or
N, .,
(a;+ﬂovojx_o=o,ye(b,lo). 9)
Butat x=1, y=Db:
[av ﬂéVj -0, (10)
OX -
Y,
ﬁl\/j =0. (12)
(&)

For the case of boiling the value of the index m

should belong to the interval {3; 3%} It is usually

taken to be equal to 3 or 3%. The model is non-

linear because of the boiling condition.

In addition we also have conjugation conditions
which express the continuity of the temperature and
heat flux at the interface x=0:

V |><_—0 |x +0’ (12)
Ml N w
aX x=-0 aX Xx=+0
And finally, the initial conditions:
V(% y,00=V°(x,y), (14)
Vo (%, ¥,0) =V5 (X, ). (15)

Using conservative averaging method (see [2] —
[8], etc), we are going to transform the given
mathematical model into a more usable form.

3.1 Solution for theFin
At first we are going to approximate the function
V(X,Y,t) by itsmean value over theinterval [0,b] :
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b
v(x,t) = p[V(x,y,t)dy. (16)
0
Namely,
V(X y.t) = v(x,t). (17)
When integrating the partia differential equation (4)
from O to b, we get
v, v 1
ax oy y=0 502 ot
The difference of the derivatives is found via the

boundary conditions (8) and (11). Thereby the
differential equation becomes

GRY 1 ov

— = A"(xt) = S—, 18
v vi(x,t) 52 ot (18)

where

= pf-
We apply the operator (16) on (10) and (14) to get
boundary and initial conditions for (18):

N B
(& + ﬂOV) _ =0 s (19)
b
V(x0)=p[Ve(x V)dy=u"(x.  (20)

3.1.1 Difference Schemefor the Fin
We are going to solve the stated 1D praoblem in
numerical way. For approximating the solution
we' Il use finite-difference method.
Let's begin by defining grid points in space and
time domains. The following notation is used:

I

X =ih,,i=0.N, h,=—
B jhy, ]=0.M,
i T b+ (j-My)h,, j=Mo+1.M’
b l, b
RO VIR Vv
0 —Wo
Similarly we partition [0,T] as
t,=nr, n:O,J,..,I.
T

We denote the approximation of v(x,t) at (X,t,)

by v, but vg ; is a difference approximation of

Vo(Y;,t,) . Asthe equation (18) is non-linear, we are
going to solve it using iterations. When the process
at the n- th time level has become stable, we don’t
use the iteration number.

For the differential equations we are going to
apply the so called three-point scheme with
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nonnegative weights. Additionaly we make a
linearization for the non-linear term through
iterative process. Hence for (18) we have the
following finite difference scheme:

Vin+l,k _ Vin Virljll,k _ 2Vn+1,k + Vin+11,k
ar 5
+ (1_ o) Via ~ 2hV2| +Via
_ 0_/12 (VirHl,kfl )m -1 n+l k (1 0)/12( ) ’ (21)

wherei =1,..,,N —1 and theweight 0< o <1.
We can rewrite the scheme (21) as

Avin_+11k Cn+1k an+1k + Bvlrljll,k — _Fin1 (22)
where
o
A F = B y
20 m1 1
C»n+l’k_1 /12 n+1,k-1 —_,
2 ol
V" + V"
= (- o) 2
19
- 221- n V_n
ok 2

To get second order approximation to the first
derivative in the boundary condition (19), let's use
the differential equation (18) and its approximation
(21) (see[2], [3], [7], [8], and [14]):

Vn+l,k _ Vn+l,k Vn _ Vn
o N N-1 + (1_ O') N N-1
h, h,
n+1k n
Vy -

12 n+1,k-1 Vn+l,k
+i a’r Tto ( ) N
2 m
(1— J)/IZ(V,T‘)
+ofvitt + (- o)Vl =0,
Let’srewritethisin the form

V:rl k — w_lml k- 1V:|+llk + ZU_;Jrl,k—l (23)
with coefficients
-1
(o2
—+ O',BO

n+1,k-1 o hx

' _hx & 1 /12 n+1,k-1 J
; [W+ e
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X

+%(% +0A? (vﬁ,“’k‘l)mlj

o)+ oo
Using new notations

n+1,k-1 n+1,k-1 n+1,k-1 n+1,k-1
SN =, /N =w, , (24

(23) becomes
n+1 k gn+1 k- 1Vn+l k + 77'r\1|+1 k- l (25)

Let'ssolve (22) for v andtake i = N -1:

n
Vn+1,k _ A Vn+1,k + B Vn+l,k + l:i
i - Cn+1,k—l i-1 Cn+1,k—1 i+1 Cn+l,k—l :
i i i

Substituting this in (25) and rearranging terms
yields

n+1k n+1,k— l n+1,k n+l,k-1
=GN N-1 TN

with

n+l,k-1 _ A
SN-1 T oLkl Bkt

n+1,k-1 n
nik1l BTy +Fyy
N-1 CrkL _

Bgn+l,k—1 '
Doing the same procedure for the indices
i=N-=-2.1,itfollowsthat
Vin++11k glrrilk -1 In+1k n nlrrilk 1= 0,..,N —1,(26)
with (24) and
n+1,k— l A

n+1,k-1 n+1,k-1 "’
C B i+1

Si

n+1,k-1 _ BmTilk 1+Fn

i Cn+lk -1 Bgln+lk -1’
Having used the recurrence relations to find the
coefficients, the values of v"*** are easily obtained
from (26). The only problem here is that we don’'t
know vn+lk yet. We'll find it in due course.

=N-1..1.

3.2 Solution for the Wall
We use the same method of conservative averaging
to describe the 2D temperature field in the wall.

Let'sapproximate V, (X, y,t) inthe Xx-direction by
Vo(%,1) = Go(¥:1)
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e -2, (v.0) +a-e%)g,(v.). @)
with d=5". Once again we use appropriate
boundary conditions to solve for the unknown
functions g, (y,t), i =01,2.

Before we proceed, let’ s introduce integral averaged
value function defined by

Vo (y,t)=d _T'Vo(x, y, t)dx.

After integrating (27) over the segment [—5,0], it
gives

Vo(y,t) =

= go(y.) +(e-2)g,(y.) + g, (v.1). (28)
As the function V, (X, y,t) satisfies the boundary
condition (6), we apply the condition to (27) to find
g, (Y1)

9,(y,) =eX(y,t) €’ g, (y,1) . (29)
Then by combining (28) and (29) together, we have

gl(y’t) =

= (80 Vo (y.) + Qu(y:D). (0

Putting the last two expressions, (29) and (30), in
formula (27), it becomes

Vo (X, Y1) =
1 —dx 2 1 dx
=go(y,t)(1+§(e ~1)-e E(1—e )j

+Vo (Y, 1) -

+Qy (Y1) (31)

+(6e—e2 %5)(1—@’*) |

Before continuing, we divide the wall into two parts,
the right part of which occupies the domain

xe(-6,0), ye(b,l,), but the left one is for
xe(~5,0), ye(0,b).

3.2.1 TheRight Part of the Wall
Let us apply the boundary condition (9) to (31) to

compute g, (Y,t):
Go(y,1)(— d + 28 + de? )+ v, (v,1)(d — de?)
+ Qo(y,t)(—l— 2e+ ez) =0.

And thus

9 (y’ t) = Vo(yat)ao + Qo(yl t)bo ,
where

(32)
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~ d-de? _ 1+2-¢
YT 25 —de d-2pt—de*’
Plugging (32) into the representation (31), we obtain
Vo(% y,t) =

a, o1 (3, —1fe ™ -1)

=V, (Y1)
+€? > (1-a, J1-e*)

O:

b, + 1(b0 + 5)(e‘dX - 1)

+(5e—e2 %(5+ bo)j(l—edx)

From (33) it follows that the function V,(X,Y,t)
now depends on one unknown - V,(Yy,t). Let's
integrate the main equation (5) with respect to X:
V| 8% v,
d—2 > _ 1N (34)
OX oy

+Qu (Y1) (33)

a2 ot

X=—5 aO

Now, owing to the boundary conditions (6) and (9),

and the formula (33), equation for the right part of

thewall resultsin
0%V,

1 ov,
KV (Y, t) = = —=
ayZ

0
52 ot +7Qo(Y:1), (35)

where

x* = dfga,, 7:d( ob _1)'
Integrating (7,), the boundary condition for (35)
becomes

ov,
ay y=lo

For 1D initial condition we take (15) and integrate it
with respect to x:

Vo (¥,0)=d [V7 (x y)dx=ug(y).  (37)

=0. (36)

3.2.2 ThelLé€ft Part of the Wall
We are still left with finding the unknown functions

0o(Y,t) and v,(y,t) for the temperature in the
left part of the base. To get those we are going to
use the conjugation conditions (12) and (13). From
the first condition and the expression (17) for
V(X,y,t) we get that
9oy, 1) =V(0,1).

But Vv, (Y,t) isfound solving 1D equation (34) that
is modified for the left part of the base. As the
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functions V,(x, y,t), V(X V,t) saisfy (13) at
x =0, from (13) and (21) it follows that

% = d@_V = d@ (38)
aX x=-0 aX x=+0 ax x=0
x=0
So, now we can remove the term d—2 in(34)
X=—0

by using (38) and the boundary condition (6). And
eguation (34) becomes
2
M aY dgy == (39
ay aX x=0 aO at

In addition we have a boundary condition that we
get from (74):

Mol _g (40)
|,
and initial condition (37).
For smplicity we assume the function Q,(y,t) is
constant, that is, Q,(y,t) =Q,.

3.2.3 Difference Schemefor the Right Part of the
Wwall

The differentia equation (35) for the right part of
the wall is approximated by the scheme

n+1,k n n+1,k n+1,k n+1,k
Voo Vo Voja — 2y Vg
=2 -2 2
T hy’2
n n n
\VO,j+1 B 2V0,j Vo1
+@—0U
h2
y,2

- GzKZVS,J]Lk -1~ GZ)szg,j —
where i=M,+1.,M -1 and 0< o, <1. Which
we rewrite as
szgjl—t - szg,j'l'k + Bzvnﬂ’k = _Fzrjj '

0,j+1
using following notations:

o 20
A’ZZhTZZBZ' C2 :TZ+K20'2+7,
y.2 y,2 a'OT
n n n
En _(1 \Vo,j+1_2Vo,j+Vo,j—1
2 L= 0,) h2
y,2
Vn
2 n 0,j
-K (1_0'2)\/0,1' += -~ 1.
a7

When approximating the boundary condition (36),

we have

Vn+1,k —Vn+1'lf
oM oM-1 (1_

hy,

o,
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n+1,k n

V i
hy2 oM _ om GZKZVSﬁ’k
+7 aOT = O
2.0

+(1-0,)x Vom +7Qp
or

n+1,k _ n+1,k n

Vom =@ Vom-1 T @55

with

h A '
"‘%2((1_ Gz)KZVo,M _%4' 7’QOJ

On carrying through the similar analysis as for the
fin, the difference scheme for the right part of the
wall can be expressed as

n+l1k _ n+1,k n H
Vo =62,j+1V0,j 112 )

with

=M,,..M —1,(41)

Som = Wo1s 77;,M :w;,z-

_ A no_

=————— 1y, =

C,- Bz§2,1+1 C,- Bzgz,m
for j=M-1.,M,+1.

n n
B2zt Fa
Saj

3.2.4 Difference Scheme for the Left Part of the
Wall

The scheme for (39) is extended in thisway to give

n+1,k n n+1,k n+1,k n+1,k
Voo —Vo;  Voja AV A

=2 1 2
a7 hy’1

+(1-0,)

n n n
Vo~V +Vo,ia
n+1,k n+1,k

+dQ
h, 0
+d(avl Y% L 1-g)z

Vo
hX X

1

h
n+1,k n

=V, m-
h _ 0 4 512 (V8+1,k-1) 1V8+1,k
X aT . (42

+(1-0) 2 )"
It depends on the values of vJ*™** and v;"**. The
latter can be computed from (26):
V{Hl,k — g_1n+1,k—lv(r)1+l,k +n{1+1,k—1' (43)
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Substituting (43) into (42), the difference scheme
resultsin

n+1,k n+1,k n+1,k n+lk-1, ,n+1,k _
AVyir —CVpi + BV DV =

0.j-1 0,j+1
— Flynj,kfl, (44)
where
(o} 20. 1
A=—-=B,C ="+,
2,1 1 h;l aOZT
h .
£+_X ;+012(Vn+1,k—1) 1
Dn+l,k—1 =—d hx 2 aOZT 0
1 - ]
O niik-1
_h_ !
Vo, VAN, VRSV
SN PSS
v1
n+1,k-1 n_\,n
a’hh—+(1— o) s Vo : Yo
+d . X i X _
X Vi n\m
(- -ontar)

The boundary condition (40) has the following finite
difference representation:

n+1,k n+1,k n

Vi — v v, =V
0,1 0,0 01~ Voo
o, H + (1— 0'1) H
y.1 y,1
Vn+1k _Vn+lk n Vn
ot ° +(l-0)2-2
h, h,
h V(;Hl,k _V(r;
=2
+d %l a,7
h 1 \m-1
_EX + oA (V(r)1+1,k 1) V(r)1+1,k
2(,,n M
+(1-0)22(v)
n+1,k n
hy,l Vo,o _Vo,o hy,l d -0
2w 29
Which alows to be rewritten as
n+lk _ n+1,k n+1,k-1, ,n+1,k n,k-1
Voo = @1Vo1 — Ty ]Vo + i
h ]
. o, | o
Using @, = | 2 +—2-| ,
hy,l hy,l 2a;T

-1
h
n+lLk-1 _ 61 y,1
NENAE
1

E-ISSN: 2224-3461

Tabita Bobinska, Margarita Buike,
Andris Buikis, Hyung Hee Cho

y,1
n n
O  nitk-1 Vi — Vo
i+ (- 0)

X X

+dM

2| h(1 . S
+?X(%VO —(1—0')12(V0) j

After some  subgtitutions and  algebraic
manipulations the difference scheme (44) for
equation (39) becomes

n+lk _ n+1,k n+1,k-1, ,n+1,k n,k-1
Vo =SiaVojia —Win RVARMEE X (49)

for j=M,-1..,0, with coefficients

n+l,k-1 _ n+1,k-1 nk-1 _  nk-1
S=@,, ¥ =Wz N TH
and
P
j+1 = '
Cl - A_|.§J
n+1,k-1 n+1,k-1
Wn+l,k—l _ j - D1
j+1 - '
Cl - A1§J
n,k-1 n,k-1
Zn,k—l _ j + Fl,j
j+1
C1 - Aié:J
for j=1.M,-1.

3.3 Conjugation of Solutions

We see that the schemes (26), (41) and (45) can
only be used once the values of and vnglf are

found. They could be obtained using these
requirements:

n+1,k
VO

V(0,b,t) =V, (0,b,t), (46)
oV, G
== == (47)
N, Yl

that state that the temperatures V,(X,V,t),
V(X,y,t) must coincide a the contact point
x=0,y=Db between the fin and the right part of

the wall.
So, from (17) and (33) it follows that
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V(0,b,t) =v(0,t),
V; (0.b,t) = agvh (b,t) + Q.
and (46) becomes
Vo = agvg i + 0,Q,. (48)
But for the condition (47) we have
Vg,ﬁ': - g,ﬁ':—l n (1_ Gl)VS,MO _VS,Mo—l
hyvl hy,l

. hyl(vmoi Vo, on]
2 alr

O,

Vn+1,k Vn+lk _
oLt~ 4(1-g)rt—0 A

I"I

s ) ar _

m-1
Ny +o%2( n+LKk- 1) V8+1k

+(1-o)2(v )"

n+1,k n+1,k n n
Vo Mo+l Vo,MD VO,M0+1 - Vo,M0
g, oMot T YoMy (9 ) TOMor1 T oM,

-2 h,., h,.,

Vn+1,k "
0,Mq 0,M, 2, ,n+1,k
h —+O'2K' VOMO

- a’r : (49)
+(1- O'z)KZVg,M0 + Qo
According to formulas (26), (41) and (45) when
i=0, =M, and j =M, -1, respectively,

n+1k n+1,k-1, ,n+1,k n+1,k-1
=G ]V +m )

n+1,k n+1,k
VoM, = Samy1Vom, +772M Y

n+1k n+1k n+1k n+1,k n,k-1
Vo.M, -1 §M0 o.M, 1V v, -

Let usinsert these into (49) and thereafter compute
Hlvg'ﬁ;k + J1n+1,k—1vg+l,k — _Gln,k—l, (50)
where
(l_ 5 Mg ) h

_ y,1
H =0, +

hy’1 25(;’17

-1) h
_O_Z(gz,Mo+1 )+ y,2(~]2- +O'2K2],
hy'2 2 \asr

1 2 (k-1 m-1
B o)
+

J1n+1,k—1 —d ;1 aOT

n+1,k— 1)

e
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+I’<‘7_1l//’\r;l+01,k71’ Glnk a_ Z&: 1
Y “hy
Vo, —Vou . ho. [V
+(1—(71) O,Moh OMo-1 ;1( 0,M, on]
y1 &t
_771n+lk 1+(1—G) V1 _Vo
&LV _(1-0)2() ]
aOT
O, n VS,M0+1_V8,M0
——Z (1m0, ——=
hy’2 2,My+1 2 hy‘2
h (A
+L22(— ;0’\2'0 +(1-0,)KV) oM +7/Q0].

Itiseasy to eiminate v{)‘*l"‘ from (50) and (48):
Hlvgj\;ll.,uk + Jln+l,k—lao n+1k Jn+1k 1on0 Gln,k—l'

n+1,k

Solving this equation for Vo, » We get
Vn+1,k _ Gln,k -1 + bOQOJln+1k -1 . (51)
0,M, H + aO\J n+1,k-1
Substitution into the expression (48) for v ™ ¥ then
gives
o n,k-1 + .J n+1,k-1
Vi = —a, G B, Q; +hQ,. (52

Hl + ao\]{1+l,k—l
Then given the resulting values (51) and (52) for
VoM and vy, equations (26), (41), (45) together

Wlth approximations of the initial conditions (20),
(37) that give the values for al nodes at the first
timelevdl,

vi=u’,i=0,,N,
Vo, =Ug;, j=0,.,M,

constitute the approximate solution of the given
systemin 1D.

4 Numerical Results
To get some kind of notion if this model could
describe the actual situation in computer cooling
systems for L-shaped micro elements, we used the
following geometrical parameters:

0 =5um,

| =1um,

b=5-10"%um,

l, =1-10" um.
But for the termophysical properties we chose:

Volume 9, 2014



WSEAS TRANSACTIONS on HEAT and MASS TRANSFER

h, = 4.48-10"Wum K

k, =1.412-10*Wum K ™ (for silicon)

Q, =10Kum™

C, = 700Jkg K * (for silicon)

Do = 2.33-10 " kgum™ (for silicon)

v(x,0)=25C, v,(y,00=35C, T =8s.

The temperature distributions are calculated
for both transient and stationary problem with linear
3" type boundary conditions,

x\y 0 0.01 0.02 0.03 0.04 0.05
1 9.80 9.80 9.80 9.79 9.79 9.78

0.9 9.98 9.98 9.98 9.97 9.97 9.96
0.8 | 10.34 | 10.34 | 10.34 | 10.33 | 10.33 || 10.32
0.7 | 10.88 | 10.88 | 10.88 | 10.87 | 10.87 || 10.86
0.6 | 1160 | 1160 | 1160 | 11.59 | 1159 || 11.58
0.5 ] 1250 | 12,50 | 12.50 | 12.49 | 12.49 || 12.48
0.4 | 1358 | 13.58 | 13.58 | 13.57 | 13.57 || 13.56
03] 1484 | 1484 | 1484 | 1484 | 1483 || 14.82
0.2 | 16.29 | 16.29 | 16.29 | 16.28 | 16.28 || 16.27
0.1 | 1792 | 1792 | 1792 | 1791 | 1791 || 17.90

0| 19.73 | 19.73 | 19.73 | 19.73 | 19.72 (| 19.71

Table 1. Temperature distribution in thefin, in C°;
transient case

x\y 0 0.01 0.02 0.03 0.04 0.05
0] 19.73 | 19.73 | 19.73 | 19.73 | 19.72 || 19.71
-0.5 | 2037 | 2037 | 20.37 | 20.37 | 20.37 | 20.36
-1 | 2139 | 2139 | 2139 | 2138 | 2138 | 21.38
-1.5 | 22,78 | 22.78 | 22.78 | 22.78 | 22.78 | 22.78
-2 | 2457 | 2457 | 2457 | 2457 | 2457 | 2457
-25 | 26.78 | 26.78 | 26.78 | 26.78 | 26.78 | 26.78
-3 | 2942 | 2942 | 2942 | 2942 | 29.43 | 29.43
-3.5 ] 3253 | 32,53 | 32,53 | 32.53 | 32.53 | 32.54
-4 | 36.12 | 36.12 | 36.13 | 36.13 | 36.13 | 36.14
-4.5 | 40.25 | 40.25 | 40.25 | 40.26 | 40.26 | 40.27
-5 | 4495 | 4495 | 4495 | 4496 | 44.96 | 44.96

Table 2. Temperature distribution in the left part of the
base, in C°; transient case

X\y 0.05 0.06 0.07 0.08 0.09 0.1
O 19.71 (| 19.71 | 19.71 || 19.71 || 19.71 || 19.71
-0.5| 2036 | 20.36 | 20.36 | 20.36 | 20.36 | 20.36
-1 2138 | 2138 | 21.38 | 21.38 | 21.38 | 21.38
-1.5 | 2278 | 2278 | 22.78 | 22.78 | 22.78 | 22.78
-2 | 2457 | 2458 | 2458 | 24.58 | 24.58 | 24.58
-25 | 26.78 | 26.79 | 26.79 | 26.79 | 26.79 | 26.79
-3 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43
-3.5| 3254 | 3254 | 3254 | 3254 | 32.54 | 32.54
-4 | 36.14 | 36.14 | 36.14 | 36.14 | 36.14 | 36.14
-4.5 | 40.27 | 40.27 | 40.27 | 40.27 | 40.27 | 40.27
-5 | 44.96 | 44.97 | 44.97 | 44.97 | 44.97 | 44.97

Table 3. Temperature distribution in the right part of the
base, in C°; transient case
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x\y 0 0.01 0.02 0.03 0.04 0.05
1 9.81 9.80 9.80 9.80 9.79 9.78

0.9 9.99 9.98 9.98 9.98 9.97 9.96
0.8 | 10.34 | 10.34 | 10.34 | 10.34 | 10.33 || 10.32
0.7 | 10.88 | 10.88 | 10.88 | 10.88 | 10.87 || 10.86
0.6 | 1160 | 1160 | 1160 | 11.60 | 11.59 || 11.58
0.5 | 1250 | 12,50 | 12.50 | 12.50 | 1249 | 12.48
0.4 | 13.58 | 13.58 | 13.58 | 13.58 | 13.57 || 13.56
03| 1485 | 1485 | 14.84 | 14.84 | 14.83 || 14.83
0.2 | 16.29 | 16.29 | 16.29 | 16.29 | 16.28 || 16.27
0.1 1792 | 1792 | 1792 | 17.92 | 17.91 || 17.90

0| 1974 | 19.74 | 19.73 | 19.73 | 19.72 || 19.72

Table 4. Temperature distribution in the fin, in C°;
stationary case

x\y 0 0.01 0.02 0.03 0.04 0.05
0] 19.74 | 19.74 | 19.73 | 19.73 | 19.72 || 19.72
-0.5 | 20.38 | 20.38 | 20.38 | 20.37 | 20.37 | 20.36
-1 2139 | 2139 | 2139 | 2139 | 21.39 | 21.38
-1.5 | 2279 | 22.79 | 22.79 | 22.79 | 22.78 | 22.78
-2 | 2458 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58
-25 | 26.78 | 26.78 | 26.78 | 26.79 | 26.79 | 26.79
-3 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43
-3.5 | 3253 | 3253 | 32.53 | 32.53 | 32.54 | 32.54
-4 | 36.13 | 36.13 | 36.13 | 36.13 | 36.14 | 36.14
-4.5 | 40.26 | 40.26 | 40.26 | 40.26 | 40.26 | 40.27
5| 44.96 | 44.96 | 44.96 | 44.96 | 44.96 | 44.97

Table 5. Temperature distribution in the left part of the
base, in C°; stationary case

x\y 0.05 0.06 0.07 0.08 0.09 0.1

O 19.72 || 19.72 || 19.72 || 19.72 || 19.72 || 19.72
-0.5 | 2036 | 20.36 | 20.37 | 20.37 | 20.37 | 20.37
-1 | 2138 | 21.38 | 21.38 | 21.38 | 21.39 | 21.39
-1.5 | 2278 | 22.78 | 22.78 | 22.79 | 22.79 | 22.79
-2 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58
-25 ] 26.79 | 26.79 | 26.79 | 26.79 | 26.79 | 26.79
-3 29.43 | 2943 | 2943 | 2944 | 29.44 | 2944
-3.5 | 3254 | 3254 | 32.54 | 32.54 | 32.54 | 32.54
-4 36.14 | 36.14 | 36.14 | 36.14 | 36.14 | 36.14
-4.5 | 40.27 | 40.27 | 40.27 | 40.27 | 40.27 | 40.27
-5 | 44.97 | 4497 | 44.97 | 4497 | 44.97 | 44.97

Table 6. Temperature distribution in the right part of the
base, in C°; stationary case

From the tables we can conclude that at the end of
the process there isn't much difference between the
two cases. So, the transient temperature tends to the
stationary one.

5 Conclusion

Here in the paper we have formulated a transient
heat conduction problem for double wall with
double fins in 2D when partia boiling is present.
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Conservative averaging method and finite difference
method is used to construct numerical solution.
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