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Abstract:  Solute or contaminant transport in porous media can be described by Advection – diffusion 
equations. In this research, the differential quadrature method (DQM) is employed to solve ADE in solute 
transport in a double-layered porous medium. This method is applied to two examples with different boundary 
conditions and the results are compared with analytical solutions. Also, the effect of various parameters on 
interface conditions are discussed in all examples. Using DQM, provides relatively exact results, while the 
needed mesh size is much smaller than the traditional approaches which reduces computational time and 
needed computer storage capacity. Another advantage of this numerical method is that applying the boundary 
and initial conditions can be performed easier than the other numerical methods. 
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1 Introduction 

In a subsurface environment, the characterization of 
fate and the transfer of solutes is essential  for 
remediation practices specially at last decades . 
Porous media are seldom homogeneous and the 
transport properties of these media will vary 
spatially and sometimes also temporally. Accurate 
mathematical analyses of transport in heterogeneous 
media are not easily carried out. However, the 
formulation and mathematical solution of the 
transport problem becomes possible if the medium 
is assumed, somewhat simplistically, to be 
composed of a series of homogeneous layers. In soil 
science, composite media have been used for 
representing stratified soil profiles in which 
horizons parallel to the soil surface. In order to 
prevent or make slow the transfer process of a 
special material, sometimes, this layering in the 
form of artificial barriers is constructed. Hence, 
applying the homogeneity assumption for 
simplifying the problem may lead an inaccurate 
evaluation of the real case.  
Solute transport in soils is usually described 
deterministically by the Advection - Dispersion 
Equation (ADE), although alternative stochastic 
approaches also exist [1]. Exact and approximate 
analytical solutions for transport in layered soils are 
now available for a limited number of situations. In 

most cases. Leij et al investigated the solute transfer 
in layered soil [2]. They addressed mass balance at 
the interface between the layers by considering 
different interface continuity conditions. Leij and 
van Genuchten presented an analytical solution for 
the solute transport in a double-layer porous 
medium with a zero concentration initial condition 
[3]. Recently, a comprehensive investigation has 
been conducted by Li et al in which an analytical 
solution for ADE in a double-layered porous media 
has been presented [4]. The analytical solutions 
basically are able to render perception into the 
governing physical processes, provide useful tools 
for validating numerical approaches and are rarely 
applicable to practical problems. Also, finding the 
simplest and optimal techniques to solve the partial 
differential equation like ADE has attracted a great 
importance. A diversity of numerical methods are 
available now for solving the initial- and/or 
boundary value problems in physical and 
engineering science. The frequently used numerical 
techniques for solving such equations are the 
standard finite difference method (FDM), finite 
element method (FEM) and boundary element 
method (BEM). Usually, above-mentioned methods 
require a large number of grid points in order to 
produce a moderately accurate solution and involve 
complex computer programming algorithms. 
However, there exist a number of alternative 
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methods such as Differential Quadrature Method 
which can provide relatively accurate results with 
inexpensive computation. The method has been 
applied successfully to solve a wide range of 
problems, with a diversity of boundary conditions 
easily and precisely.  
After acquiring the correct result as a base in 
simulations of solute transport which usually is 
performed by analytical methods, finding the 
optimal techniques to solve the ADE has attracted a 
great consideration. One of these effective 
techniques is the Differential Quadrature Method 
which in spite of anonymity can provide relatively 
accurate results depending on the computational 
efforts. However, there exist a number of alternative 
methods such as Differential Quadrature Method 
which can provide relatively accurate results with 
inexpensive computation. DQM first developed by 
Bellman and Casti (1971) and has made a noticeable 
success over the last four decades [5]. The main idea 
of this method is on the basis of the integral 
quadrature. Additional developments achieved by 
Shu et al. (1994) based on Polynomial-based 
differential quadrature (PDQ) as in [6], [7], [8], 
Fourier expansion-based differential quadrature 
(FDQ) as in [9], [10] and Radial basis function 
based differential quadrature (RBF-DQ) (Shu et al. 
2003, 2005) [11], [12]. 
In this study, the DQM has used to solve one 
dimensional ADE on solute transport problem in 
double-layered porous media. Two problems with 
different boundary conditions was assumed to 
provide more insight into the solution of the 
problem.  The DQM results are verified to be in an 
extremely good agreement with the analytical 
solution by using a small number of grid points. 
 
 
2 Mathematical Problem Formulation 
Please, A porous medium consisting of two 
homogeneous layers subject to the steady water 
flow perpendicular to the layer interface is 
assumed. The transport and flow properties of 
both layers are the same in time and space as 
depicted in Fig. 1. The thickness of the layer is 
set to H, also, 1 2H h h= + . Each layer has its 
own properties. The z axis is consistent with 
the constant Darcy velocity. The solute 
transport in the double layer porous media in 
one-dimension is well explained by 

2
*

2 ( 1,2)i i i
i di i i

c c cn R n D i
t zz

υ′ ′ ′
′ ′ ′ ′

∂ ∂ ∂ ′= − =
∂ ∂∂

        (1) 

Where in ′  denotes the porosity, *
iD ′  stand for 

constant effective diffusion coefficient, diR ′ is 
retardation factor,  ν denotes the Darcy velocity and 

iC ′  provides the solute concentration in layers. It is 
noteworthy that subscript i ′ indicates the layer's 
number. For example 1i ′ =  denotes the inlet layer 
and 2i ′ = indicates outlet layer.  

 
Fig. 1. Schematic of solute transport through a double-layered 

porous media 
Since the apparent velocity in i ′ th layer is equal 

to / inν ′ , Eq. (1) can be written as follows: 
2

*
2 ( 1,2)     i i i

di i si
c c cR D i
t zz

υ′ ′ ′
′ ′ ′
∂ ∂ ∂ ′= − =
∂ ∂∂

   (2) 

In this work the initial condition for all problems are 
the same and is defined by the following function: 

i ic (z,t)=c (z,0),  i =1,2′ ′ ′                        (3)  
The additional continuity conditions are considered 
at the interface between the layers. The Drichlet and 
Robin conditions are used to make us sure that both 
concentration and solute flux continuities are 
satisfied. 
The Drichlet and the Robin continuity conditions at 
the interface can be conveyed as follows, 
correspondingly: 

( ) ( )1 1 2 1C , t C , t    h h=                        (4) 
                       

1

1

* 1
1 1 1 1

* 2
2 2 2 1

( , )
( , )

( , )
( , )

z h

z h

C z tn D v C h t
z

C z tn D v C h t
z

=

=

∂
− + =

∂

∂
− +

∂

                (5)                                                                                     

Equation (5) becomes a Neumann continuity 
condition after substitution of Equation (4) yielding 

1 1

* *1 2
1 1 2 2

( , ) ( , )

z h z h

C z t C z tn D n D
z z= =

∂ ∂
− = −

∂ ∂
       (6)                                                                                     

But the boundary conditions for the two 
problems are quite different and will be 
investigated separately in three types of 
problems as follows: 
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2.1 Problem type 1 
Dirichlet or first type inlet and outlet boundary 
conditions 

1 0Dirichlet inlet BC :   C (0, )     t C=       (7a) 

      2 ( , )
Neumann outlet BC: 0 

z H

C z t
z =

∂
=

∂
         (7b) 

Which signifies fixed solute concentration situations 
 
 
2.2 Problem type 2 
Dirichlet inlet and Neumann or second type outlet 
boundary conditions 

* 1
1 1 1 0

0

( , )Robin 's inlet BC:  -n (0, )  
z

C z tD C t C
z

ν ν
=

∂
+ =

∂
 (8a) 

2 ( , )Neumann outlet BC :  0  
z H

C z t
z =

∂
=

∂
         (8b) 

 
That represents fixed solute concentration and zero 
gradient condition, respectively. 
 
 
2.3 Problem type 3 
Problem 3: Robin's or third type inlet and Neumann 
outlet boundary conditions 
Robin 's inlet BC: 

* 1
1 1 1 0

0

( , )
- (0, )  

z

c z tn D c t c
z

ν ν
=

∂
+ =

∂
     (9a) 

Neumann outlet BC : 
2 ( , )

 0   
z H

c z t
z =

∂
=

∂
                  (9b) 

Fixed flux and zero gradient condition as shown in 
(9a) and (9b), respectively. 
   Where 0c and Hc  stand for constant solute 
concentrations at the inlet and outlet boundaries, 
accordingly. 

In this paper, the numerical solution for three 
types of problems  subjected to various inlet and 
outlet boundary conditions are represented (Table 
1). 

Table 1. Three types of problems with diverse blend of inlet and 

outlet boundary condition 

 
 

3. Differential Quadrature Method 
DQM is a numerical method developed to solve 
both linear and nonlinear partial differential 
equations. This method was first proposed by 
Bellman and Casti and further extended by Shu 
[13]. Also, many researchers have made important 
improvements to this method and its applications. 
For example, to simplify the computational efforts 
to evaluate weighting coefficients for high order 
derivatives in DQM, Mingle suggested a linear 
transformation [14]. 
 Civan and Sliepcevich further extended this method 
to multi-dimensional problems [15]. 
In the DQM, a partial derivative of a function with 
respect to a space variable at a discrete point is 
approximated as a weighted linear sum of the 
function values at all discrete points along the 
corresponding coordinate axes. Its weighting 
coefficients do not depend to any particular 
condition and only depend on the grid spacing. 
Thus, any partial differential equation can be easily 
reduced to a set of algebraic equations using these 
coefficients. In this way the n th-order derivative of 
the function )(xf  at point ix  is calculated by Eq. 
(10). 

,
1

( ) . ( ) 1, 2,...,
N

n n
i i j j

j
f x A f x for i N

=

= =∑      (10) 

Where 
 =n

jiw , weighting coefficients, ( )jf x = value of the 
function at point j, )( i

n xf = the n th-order derivative 
value at point ix . 
Calculating the weighting coefficients can be a 
crucial part of a problem. It influences the accuracy 
of the results, seriously. The weighting coefficient 
( ,

n
i jA ) can be approximated by a high-order 

polynomial or by the Fourier series expansion or the 
harmonic functions as its test functions. In this work 
Lagrange interpolation basis function is used as the 
test functions to determine the weighting 
coefficients [16], [17]: 

( )
( ) ( )

(1)

, (1) ,     i
i j

i j j

M x
a for j i

x x M x
= ≠

−
    (11)                                                                          

, ,
1,

            
N

i i i j
j j i

a a
= ≠

= − ∑                 (12)                                                                                                                 

, , ,
12 ,i j i j i i

i j
b a a for j i

x x

 
= − − ≠  − 

     (13)                                                                         

, ,
1,

N

i i i j
j j i

b b
= ≠

= − ∑                       (14) 
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Where ( ) ( )(1)

1,

N

i i k
k k i

M x x x
= ≠

= − −∏ , ija and ijb are 

the weighted coefficients of first order derivatives 
and second order derivatives, respectively. 
 
 
4. Problem Solution 
In this section, application of  DQM in 
discretization and  formulation of the governing 
equations for three chosen to study problems is 
presented. In the developed model in this study, all 
spatial derivatives are discretized by DQM and 
temporal derivatives by first order forward FD 
scheme. Since the cited problems are transient they 
can be solved by each of the explicit, implicit and 
semi implicit Crank-Nicholson schemes. 
In the explicit scheme the value of any parameter 
of time 1+nt  or 1+n -th time step is calculated 
directly from discretized equations knowing their 
value in the previous time step n -th or nt . This 
method only uses information in time step n  for 
computing parameters in time step 1+n , so we 
have to select the small time step t∆  
( nn ttt −=∆ +1 ) to have convergence. In the 
implicit scheme the value of parameters at time step 

1+n
 

has been used for discretizing spatial 
derivatives. Therefore, discretized equations 
represent a set of algebraic equations that must be 
solved simultaneously to evaluate new values of the 
parameters in time step 1+n . The semi implicit 
Crank-Nicholson scheme is similar to an implicit 
scheme except that in this way, for solving the 
problem, the value of parameters in both time step 
n  and 1+n  is used for discretizing spatial 
derivatives.  
The general form of discretized Eq. (2) can produce 
Eq. (15) and Eq. (16): 

11 2
*

2
*(1 )                                 (15)

1,2,...,  and 1.

nn n
i i i i

di i si
i i

n
i i

i si
i

C C C CR D
T Z Z

C CD
Z Z

for i N i

θ ν

θ ν

++
′ ′ ′ ′

′ ′ ′

′ ′
′ ′

   − ∂ ∂ = −    ∆ ∂ ∂       

 ∂ ∂ + − −  ∂ ∂   
′= =  

11 2
*

2

2
*

2(1 )                                (16)

1,2,...,  and 2.

nn n
i i i i

di i si
j j

n
i i

i si
j

c c c cR D
t zz

c cD
zz

for j M i

θ ν

θ ν

++
′ ′ ′ ′

′ ′ ′

′ ′
′ ′

   − ∂ ∂ = −    ∆ ∂∂        

 ∂ ∂ + − −  ∂∂    
′= =

 

Which Eq.(15), Eq.(16) are applied to the inlet and 
outlet layer, correspondingly and 0θ = , 1θ =  and 

0.5θ =  result in explicit, implicit and semi implicit 
Crank-Nicholson scheme respectively. In order to 
establish an equation for water solute concentration 
calculation, DQ will be used to discretize spatial 
derivatives in time step n  and 1+n  in Eq. (17) and 
Eq.(18) for any scheme. The form of spatial 
discretization is depicted in Fig. 2. The first 
subscript of C indicates the layer number and the 
second subscript denotes the grid point number 
which ,N M show that how many grid points are 
recognized in inlet and outlet layer, respectively. 

 
Fig 2. The form of spatial discretization 

The general equation then would be:  

( )

( )

1
, , * 1

, , , , ,
1

1
, , , ,

1

1

1                                        (17)

 1,3,..., 1 and  i =2.

n n M
i j i j n n

di i j i j k i k i k
k

M
n n

si i j k i k i k
k

C C
R D b C C

T

a C C

for j M

θ θ

ν θ θ

+
′ ′ +

′ ′ ′ ′ ′
=

+
′ ′ ′ ′

=

−
 = + − ∆

 − + − 

′= −

∑

∑    

Using equations in the form of Equations (17, 18) 
for each grid, a set of nonlinear equations will be 
assembled that must be solved simultaneously for 
each layer.                                       

( )

( )

1
, , * 1

, , , , ,
1

1
, , , ,

1

1

1                                           (18)

 1,3,..., 1 and  i =2.

n n M
i j i j n n

di i j i j k i k i k
k

M
n n

si i j k i k i k
k

C C
R D b C C

T

a C C

for j M

θ θ

ν θ θ

+
′ ′ +

′ ′ ′ ′ ′
=

+
′ ′ ′ ′

=

−
 = + − ∆

 − + − 

′= −

∑

∑

By some simplifications, a set of equations will be 
acquired in the following: 

( )1 * 1
, , , , , , ,

1

*
, , , , , , ,

1

1

                       (19)

2,3,..., 1  and 1                                 

N
n n
i i si i i k i i i i k i i

kdi
N

n n
i i i i i i k si i i k i i

kdi

TC a D b C
R
TC D b a C

R
for i N i

θ ν

θ ν

+ +
′ ′ ′ ′ ′ ′

=

′ ′ ′ ′ ′ ′
=′

∆  + − − = 

∆  + − 

′= − =

∑

∑
              

( )1 * 1
, , , , , , ,

1

*
, , , , , , ,

1

1

                     (20)

1,3,..., 1  and 2                                  

M
n n
i j si i j k i j i j k i j

kdi
M

n n
i j i j i j k si i j k i j

kdi

TC a D b C
R

TC D b a C
R

for j M i

θ ν

θ ν

+ +
′ ′ ′ ′ ′ ′

=′

′ ′ ′ ′ ′ ′
=′

∆  + − − = 

∆  + − 

′= − =

∑

∑
            

 

  Using DQM to discretize different type of 
boundary condition equations, a set of linear 
equation is created to determine the boundary values 
of solute concentration in time step 1+n . 
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Problem type 1 boundary values: 
1

1,1 0

1
, 2,k

1

C =C                                                                       (21a)

C =0                                                            (21b)

n

M
n

M k
k

A

+

+

=
∑
Problem type 2 boundary values: 

1
1,1 0c =c    n+                                        (22a) 

1
, 2,k

1
c =0

M
n

M k
k

A +

=
∑                                (22b) 

Problem type 3 boundary values: 
* 1 * 1

1 1 1,1 1,1 1 1 1, 1,k 0
2

( )C C            (23a)
N

n n
k

k
v n D A n D A v C+ +

=

− − =∑
1

, 2,k
1

C =0                                                      (23b)
M

n
M k

k
A +

=
∑  

Which are corresponding to Eqs.(7 and 8). 
 
5. Simulation Results 
Two types of problem are considered to verify the 
correctness of the proposed numerical method and 
also to investigate the influence of various 
parameters on the transport process in a double-
layer porous medium. The numerical results will be 
compared with the analytical results presented by Li 
and Cleall and Leij  and van Genuchten [18], [19]. 
In all  cases the effect of various parameters on 
transport process regarding the dimensionless 
relative parameters , , ,δ ρ θ ϕ  is investigated. These 
parameters are assumed to provide more insight into 
the solution of the problem and are obtained as 

 
*

22 2 2
*

1 1 1 1
,  = ,  = ,  =     d

d

Rh n D
h n R D

θ ϕ ρ δ=       (24) 

 
 

5.1 Problem 1 
For the first problem, the two layers are defined to 
initially have a zero solute concentration. The solute 
concentration at the inlet boundary is equal to zero 
and at outlet boundary solute concentration gradient 
is fixed to zero, which is often considered as 
appropriate. The effect of various parameters on the 
interface and the transport process are shown in 
Figs. 3a, 3b, 3c and 3d by dimensionless relative 
parameters , , ,δ ρ θ ϕ  to provide more insight into the 
solution of the problem. These dimensionless 
parameters are:  

*
22 2 2

*
1 1 1 1

,  = ,  = ,  =       d

d

Rh n D
h n R D

θ ϕ ρ δ=       (25) 

In this investigation each parameter varies, while 
others are assigned constant values. the effect of the 
effective dispersion coefficient ( *D ) on transport 
process in the double-layered porous medium with 

constant values of 1ρ θ ϕ= = = , 94 10 /m sν −= ×  
and 1H m= at the 2 years is depicted in Fig. 3a. It is 
clear from Fig. 3a that the change of the relative 
effective dispersion coefficient (δ ), will vary the 
concentration gradient between the two layers. This 
show that interface condition depends on the 
effective dispersion coefficient. 

 
Fig. 3a. Solute concentration profiles in problem 1 with 

various δ  
 

 
Fig. 3b. Solute concentration profiles in problem 1 with 

various ρ  

 
Fig. 3c. Solute concentration profiles in problem 1 with 

various ϕ  
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Fig. 3d. Solute concentration profiles in problem 1 with 

various θ   
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C/C0

z
(m

)

 

 

ANALYTICAL ν=0.0126 m/yr
DQM                ν=0.0126 m/yr

ANALYTICAL  ν=0.0630 m/yr

DQM                 ν=0.0630 m/yr

ANALYTICA   ν=0.1261 m/yr

DQM                 ν=.1261 m/yr

ANALYTICAL  ν=0.2522 m/yr

DQM                ν=0.2522 m/yr    

ANALYTICAL  ν=0.6307 m/yr
DQM                 ν=0.6307 m/yr(e)

2 yrs
ρ=δ=2
φ=1.5, θ=1
H=1 m

 
Fig. 3e. Solute concentration profiles in problem 1 with 

various ν   
The further results represent the effect of retardation 
factor on solute transport and is provided in Fig. 3b 
using following simulation parameters 1ρ θ ϕ= = = , 
Darcy velocity = 94 10 /m s−× , thickness of the layer 
is 1m and time is 2 years. Next, ϕ  is assumed to be 
variable and the rest of the relative variable are 
assumed fixed ( 1ρ θ δ= = = ). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
C/C0

z(
m

)

 

 

ANALYTICAL  t=0.5yr
DQM                 t=0.5yr
ANALYTICAL  t=1yr
DQM                 t=1yr
ANALYTICAL  t=2yr
DQM                 t=2yr
ANALYTICAL  t=4yr
DQM                 t=4yr
ANALYTICAL  t=steady state
DQM                 t=steadystate(f)

δ=ρ=2, φ=1.5
θ=1
H=1 m
ν=0.1261 m/yr

Fig. 3f. Solute concentration profiles in problem 1 at 
various times 

These parameters are kept the same to know the 
impact of the  porosity of layers on solute transport 
process (Fig. 3c). The impact of the variation of the 
porosities between the two layers can be clearly 
seen with a distinct change in the concentration 
gradient at the 
 interface in Fig. 3c. to show the impact of the layer 
thickness of concentration profile the following 
values for parameters are used 2ρ δ= = , 1H m=  

94 10 /m sν −= ×  and the processing time is 
considered 2 years. The results are shown in Fig. 3d. 
In Fig. 3e the velocity effect on the layer thickness 
are demonstrated. The solute transport at various 
times are also investigated using 1θ = , 1.5ϕ =  

2ρ δ= = , 1H m= at 0.5, 1, 2, 4 years period while 
steady state is assumed. Simulation results are 
provided in Fig. 3f. 
In the numerical solution, different number of grid 
points were used. Selecting the different number of 
grid points reveals that mesh size can affect the 
accuracy of the results. To confirm the validity of 
the results, they are compared with the analytical 
solution results. Root Mean Square Error (RMS) 
values for DQ method are calculated for different 
grid numbers and are given in Table 2 in the Fig. 3a 
with 8δ =  as a case.   
 From different grid numbers, RMS Error is 
calculated using Eq. 26 as follows: 

2

numerical
1

1;  
R

analytical i
i

h h h RMS h
R =

∆ = − = ∆∑    (26) 

Where h∆  is the difference between analytical and 
numerical results for different points and R  is the 
number of data.  
The RMS error values for non-uniform mesh size of 
5, 11, 21, and 41 using a semi-implicit Crank-
Nicholson scheme is compared with analytical 
solutions as in [18]. The RMS error values can be 
seen in Table 2 Which indicate there are a good 
agreement between numerical and analytical results. 
Table 2 shows the results for solute concentration at  

8δ =  corresponding to Fig. 3a. It can be concluded 
that numerical results obtained from DQM are very 
close to the analytical results. Also, when the mesh 
sizes increase, the RMS error values will reduce. 
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Table 2. RMS values for solute concentration in Fig. 3a at 8δ =  

 
 
 
5.2 Problem 2 
In this problem it is assumed that the two layers 
initially have a zero solute concentration and    
concentration at the inlet boundary is set to 0C  and 
at outlet boundary solute concentration gradient is 
equal to zero. Six types of problem analogous to 
prior section are assumed to show the effect of 
various parameters on contaminant transport. 
For the four series (depicted in Figs. 4a to 4d), one 
of the dimensionless relative parameters is varied 
while the rest are kept constant. In these four cases 
the Darcy velocity is equal to 94 10 /m s−× , the 
thickness of the porous media is 1H m=  and the 
time of the process is considered 2 years.  
In Fig. 4a effect of the effective dispersion 
coefficient ( *D ) is probed with 1ρ ϕ θ= = = . The 
results show that all curves with different values of 

0.5,  1,  2,  4,  8δ =  cross each other at one point. 
In Fig. 4b, the impact of retardation factor is 
investigated considering the different values for ρ  
while 1δ ϕ θ= = = . In the third case 1δ ρ θ= = =  is 
assumed to determine the variation of the porosity 
on transport process between the two layers. It can 
be seen that the interface condition is independent of 
porosity (Fig. 4c). 
 The next case has been depicted in Fig. 4d 
with 2δ = , 0.5ρ = , 1.5φ = for various values of 

1,  1/ 3,  3δ =  to demonstrate the effect of two layer 
thickness on solute transport. In the next case, Darcy 
velocity and its effect on solute transport is 
investigated. The parameters 2δ = ,  0.5ρ = , 
 1.5ϕ = , 1θ =  and 1H m= are used in this case and 
results have been shown in Fig. 4e. The last case 
with properties equal to prior case except that in this 
case 94 10 /m sν −= × are assumed at different times. 
The outcomes are depicted in Fig 4f. 

 
Fig. 4a. Solute concentration profiles in problem 2 with 

various δ  
 

 
Fig. 4b. Solute concentration profiles in problem 2 with 

various ρ  
A very good agreement is concluded. Normally, 
selecting the different number of grid points will 
affect the accuracy of the results. The RMS error 
values in the case of 0.5 ρ = (depicted in Fig. 4b) 
are given in Table 3 (as an example). It can be 
concluded that the DQM with a rather smaller 
number of grid points can produce very good results 
and negligible RMS error values may occur in DQM 
results. 
 

Distance 
(m) 

Analytical 
result 

Mesh size 

N=5 N= 11 N= 21 N=41 

0.2 0.7571 0.7417 0.755 0.7559 0.7575 

0.4 0.4037 0.3679 0.3969 0.404 0.404 

0.5 0.1693 0.1619 0.1698 0.1702 0.1702 

0.6 0.1391 0.1302 0.1368 0.1377 0.1377 

0.8 0.0716 0.0665 0.0698 0.0704 0.0704 

RMS  0.0183 0.0034 0.0010 0.0009 
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Fig. 4c. Solute concentration profiles in problem 2 with 

various φ   

 
Fig. 4d. Solute concentration profiles in problem 2 with 

various θ  
 
 

Table 3. RMS values solute concentration in Fig. 4b 
with 0.5 ρ =  

 
 

 
Fig. 4e. Solute concentration profiles in problem 2 with 

various ν  

 
Fig. 4f. Solute concentration profiles in problem 2 at 

various times 
 
 

5.3 Problem 3 
The final problem we studied in this paper is a 
problem with constant solute flux at the inlet 
boundary equal to 0Cν and a zero concentration 
gradient at the outlet boundary as in Eq. (9). The 
needed parameters to analyze this problem are 
provided in Table 4. 
 

Table 4. Parameters used in the second problem verification.  

( )h m
 

n  dR  2*( / )m sD
 

Layer 

 
0.1 0.4 1.0 82.315 10−×  Inlet layer 

0.1 0.25 1.0 85.787 10−×  Outlet layer 

 
 In both layers 0.1 ,  1dh m R= = , at inlet layer 

* 8
1 2.315 10  m/sD −= ×  1n 0.4=  and at outlet layer 

Distance 
(m) 

Analytical 
result 

Mesh size 

N=5 N= 11 N= 21 N=41 

0.2 0.8694 0.8718 0.874 0.874 0.874 
0.4 0.7292 0.7502 0.7381 0.7381 0.737 
0.5 0.6697 0.6907 0.6786 0.6786 0.6786 
0.6 0.6307 0.6477 0.6298 0.6298 0.629 
0.8 0.5477 0.576 0.5501 0.5501 0.5491 

RMS  0.0198 0.0079 0.0058 0.0057 
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2n 0.25,= * 8
1 5.787 10  m/sD −= ×  and pore-water 

velocity 61.1574 10 /m s−× (10 /cm day ) are assumed. 
This problem has been probed previously by Leij 
and van Genuchten  and Li and Cleall. The results at 
various times of 0.2,  0.4,  0.6,  0.8 day are depicted in 
Fig. 5. The results of the two analytical solutions 
and DQM show a good match when 0.2t = day but 
in larger times Leij and van Genuchten as in [3] 
analytical solution results are less than Li and Cleall 
work as in [4] and the present work. Indeed, the 
DQM results are close to the Li and Cleall analytical 
solution results in Fig 5. 
It is seen from Fig 5 that at 0.6t = day and 

0.8t = day the solute concentration near the outlet 
boundary are not correlated with  Leij and van 
Genuchten and Li and Cleall works. In this case, the 
DQM  results are close to Li and Cleall analytical 
solution.  
The RMS error values at 0.2 t day= are presented in 
Tables 5. In this case a good agreement can be seen 
between Leij and van Genuchten and Li and Cleall 
analytical solutions. So, the DQM results are 
compared with Leij and van Genuchten and Li and 
Cleall  analytical solutions simultaneously.  
 
Table 5. Leij and van Genuchten  and Li and Cleall  Analytical 
and DQM solute concentration represented in Fig. 5 at 0.2t =  

 
In the case where 0.6t = day (Fig. 5) there is not a 
good match between the solute concentration for 
Leij and van Genuchten and Li and Cleall near the 
outlet boundary. It is seen that the DQM results are 
in a good agreement with Li and Cleall analytical 
solution rather than Leij and van Genuchten . Also, 
negligible errors occur in DQM and Li and Cleall  
analytical solution. 
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Li (2010)    t=0.6day
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Leij (1995) t=0.8day
Li (2010)    t=0.8day
DQM         t=0.8day

 
Fig. 5. Solute concentration profiles in problem 3 

 
 
6. Conclusion 
The DQM has been widely used for solving PDE's, 
recently. However, this method has not been used 
extensively in solute transport problems and more 
specifically, in solute transport in layered porous 
media. In this work, a DQM solution was utilized 
for solute transport problem in double layered 
porous media. Three different types of problems 
were solved and the results were compared with 
analytical solutions. The comparisons of this work 
show lower RMS error value, less computational 
time, rapid convergence than the other numerical 
methods while a good agreement with the exact 
results. Furthermore, applying the boundary 
conditions in conservative numerical methods (FE, 
FD, FV) accompanies with many difficulties which 
is not the case for DQM. 
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