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Abstract: - A cantilevered tapered slender pipe conveying an incompressible, inviscid fluid of one 

material is not a conserved system. For certain large fluid velocity, the pipe with uniform cross section 

would go unstable via flutter Hopf bifurcation. In this paper, the flow induced vibration for cantilever 

tapering pipe transporting a fluid is presented. Euler Bernoulli and Hamilton’s theories are applied to 

develop the mathematical model which will be solved using well known Galerkan’s procedure. The 

effect of smooth tapering of the circular cross sectional area, flow velocity and pipe to fluid mass 

fraction on the complex natural frequencies and stability will be investigated. 
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1 Introduction 

Due to its practical applications, cantilevered tubular 

pipes are common in many practical application 

such as chemical plants, hydraulic systems, and heat 

exchangers. Hence, several studies addressed the 

vibration and dynamics of such systems to reveal 

the impact of several factors on the behavior of 

vibrating pipe system such as conveying flow 

velocities, pipe material properties and boundary 

conditions [1]-[10]. Benjamin [1] used lagrangian 

approach and presented theoretical and experimental 

the vibration characteristics of piping system with 

free end. Gregory et al.[2] used different method to 

define the unstable regions for a cantilever system 

and validated the results experimentally with very 

good results. Paidoussis [15] considered the hanging 

and standing continuous cantilever pipes and 

investigated the stability maps for different 

parameters. Paidoussis et al.[16] considered the 

constant steady and variable flow velocity. They 

confirmed the flutter mode of instability for 

cantilever system, and flutter and bucking mode for 

simply supported systems. Ariaratnam et al.[17] 

used the method of averaging in studying the 

dynamics of pipe when the flow is pulsating. 

Johnson et al.[18] considered compressible flow for 

a cantilever tubular pipe using Newton’s and 

Muller’s methods. Sugiyama et al.[19] revealed 

theoretically and experimentally the influence of 

mass lumped system on vibration stability of 

cantilever uniform pipe containing flow fluid. 

Vibration features of a pipe with functionally graded 

material containing a flow liquid was conducted 

analytically by Wang et al.[20]. In efforts to 

enhance the dynamic stability of pipe conveying air, 

Pisarski et al.[21] used electromagnetic tools. An 

increase of 50% of the critical fluid velocity is 

reached when they attached the actuators at the mid 

of the pipe span. Bai et al.[22] considered the 

dynamics of cantilever pipe with variable density 

and correlated to the system’s stability. Wang et 

al.[23] addressed geometric and electromechanical 

coupling nonlinearity for a piezoelectric 

cantilevered pipe. They concluded that the added 

resistive piezoelectric damping decreases the flutter 

velocity. In most of the above studies, the pipe was 

assumed uniformed cross section along the span. 

Very few who considered the tapered pipes 

conveying fluid but with sudden change in pipe 

diameter [24],[25]. Pipes conveying fluid with 

variable cross section can be found, for instant, in 

many nuclear engineering like pipe expanding and 

nozzle. Gaith [26], [27] considered the non-uniform 

cross section of a simply supported pipe containing 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2021.16.2 Mohamed Gaith

E-ISSN: 2224-347X 8 Volume 16, 2021



running fluid resting on Winkler viscoelastic layer. 

He presented the ranges of the buckling and 

coupled-mode flutter. 
    In this paper, the tapered slender cantilevered 

tubular pipe conveying constant steady flow 

velocity will be considered. The effect of tapering 

pipe and fluid pipe mass fraction on the natural 

frequencies and stability will be discussed.  

  
 

2 Formulation of the Problem 

Fig. 1 shows the pipe of finite length of L along the 

axial coordinate x-direction, with inlet diameter b, 

outlet diameter a, and pipe and fluid mass 

fraction
( )

( ) ( )

p

f p

m x

m x m x
with constant inlet flow 

velocity ov .  

 
Fig. 1. Variable cross sectional Cantilever pipe 

containing flow fluid. 

 

 

The pipe is with fixed-free supports and variable 

cross section is mathematically modeled by 

applying energy variation method [2]: 
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(1) 

 

( , )y x t represents the vertical vibration of the 

piping system, ( )EI x is the variable flexural 

rigidity, ( )V x is the variable flow speed along the 

axial span with end conditions defined as:  
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The complete solution of the vertical displacement 

of the pipe system could possess a 

nondimensionalized expression 

( , ) ( ) i TY X T W X e  , eq (1) becomes: 
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Where   is the complex circular frequency and 

*
( )

( ) ( )

p

f p

m x

m x m x
 


 is resembling mass 

fraction. 

 
The fundamental natural frequency is obtained by 

applying fixed and free boundary conditions at both 

ends. The mode shape solution of the system can be 

calculated through the Galerkin’s procedure 

assuming the mode function as [2] [26]: 
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3 Results and Discussion: 
In order to validate the model, the natural 

frequencies for are compared as shown in the Table 

1 for the case B=0.200, b/a=1.0 at different 

velocities. Table 1 shows excellent comparison 

between the current model and the well-known 
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results found in literature [2] for the first two 

complex natural frequencies. A finite element 

package is used to model the system in order to 

compare with current numerical results. For the case 

of b/a=1.42, B=0.223, the first three natural 

frequencies and corresponding mode   

 

 

Table 1. Comparison for first natural frequencies between current and literature values for 

B=0.200, b/a=1.0. 

 

U 
Re ( 1 ) Im ( 1 ) Re ( 2 ) Im ( 2 ) 

current exp [2] current exp [2] current exp [2] current exp [2] 

0 3.5160 3.519 0 0 22.034 22.034 0 0 

2 3.552 3.558 1.889 1.888 20.993 20.996 1.688 1.691 

4 4.274 4.277 4.784 4.811 17.441 17.445 2.371 2.375 

6 3.084 3.090 12.187 12.191 13.424 13.431 -1.454 -1.457 

8 0 0 12.447 12.449 12.740 12.745 -5.548 -5.551 

10 0 0 14.834 14.838 12.664 12.668 -8.870 -8.874 

         

shapes where obtained and compared to the current 

results and found to be in excellent agreement.   
 

 

Fig. 2 The first three mode shapes for b/a=1.42, 

B=0.223. 

 

The argand diagram for complex real and imaginary 

part of the first fundamental frequency for different 

b/a ratios are presented in Fig. 2. The effect of b/a 

ratios on the behavior of such complex frequency is 

complicated in which it has nonzero pure real part 

then becomes real and imaginary parts at certain 

flow velocity, namely, U= 4.4, 1.6 and 1 for b/a=1, 

1.8 and 2, respectively. This indicates that in case of 

pure real part, the system goes only in oscillating 

pattern, while when it moves to have real and 

imaginary parts, they system will have the damping 

oscillating effect which may possess instability for 

negative imaginary part as clearly shown in 

literature [2] for second natural frequencies at 

certain configuration. Hence, the main challenge for 

the design requirement for the cantilevered pipe 

conveying fluid is to set up the parameters in an 

attempt to avoid unstable regions. Therefore, it 

would be more convenient to present these complex 

parts of fundamental frequencies separately in an 

attempt to understand the effect of physical 

parameters. Fig. 3 shows the effect of increasing 

flow velocity on the imaginary part of the first 

natural frequencies for different cross section ratio, 

b/a, at mass fraction B=0.200. in this figure, the 

imaginary part for, b/a=1.0, remains zero until the 

fluid reaches a velocity U=4.5 where the imaginary 

part becomes nonzero  indicating oscillating 

damping behavior, meanwhile this behavior starts at 

smaller flow velocities for b/a = 1.8 and 2.0. It can 

be stated that this behavior is dependent on the 

value of mass fraction B and cross section ratio b/a 

as it will be shown later. The behavior of the real 

part of the first natural frequency is dependent on 

each value of U as shown in Fig. 4. The system 

oscillation is fading at U = 1.8 for b/a = 2.0 in an 

earlier stage compared to b/a=1.0 (U = 10.5). The 

effect of cross section diameters b/a on the real 

(dashed) and imaginary (solid) parts of the first two 

fundamental frequencies, at velocity U = 4, and 

mass fraction, B = 0.2, is shown in Fig. 5. In 

general, there is a reciprocal behavior between real 

and imaginary parts when varying the cross section 

ratio. 
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Fig. 3 The complex diagram for first natural 

frequency for different b/a ratios with B = 0.2. 
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Fig. 4 The impact of flow velocities toward the 

imaginary part of the first frequency for different b/a 

ratios with B = 0.2. 
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Fig. 5 The impact of flow velocities toward the real 

part of the first frequency for different b/a ratios 

with B = 0.2. 
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Fig. 6 The effect of b/a on the real (dashed - - - -) 

and imaginary (solid ____) parts for 1 2and    with 

B = 0.2. 

Fig. 6 displays the complex diagram with real and 

imaginary of 1 2and  , and revealing the influence 

of mass fractions B. As gradually elevating the fluid 

velocity, the real part of second fundamental 

frequency is decreasing with nonzero imaginary 

parts till certain velocity. This figure shows that the 

imaginary part for 2  (solid line) is decreasing and 

passing from positive to negative part flow velocity 

U = 5.9, 7.8, 8.9 for B= 0.2, 0.4, 0.6, respectively,  

leading to unstable flutter behavior. Fig. 7 shows the 

effect of b/a on the real part of 2 for different mass 

fractions B. In general, by increasing the cross 

section ratio, the value of the real part is decreasing 

as minimum at b/a= 1.5 and noting that the effect of 

mass ratio is insignificant on the real part of 2 . 

Meanwhile, the effect of mass ratio is significant on 

the imaginary part of 2  as shown in Fig. 8 which 

affect the damping behavior. Some other relevant 

studies can be found in [27] and [28]. 
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Fig. 7 The complex diagram with real and 

imaginary of 1 2and   for different mass fractions 

B. 
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Fig. 8 The real part of second natural frequency vs 

b/a for different mass fractions B. 
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Fig. 9 The imaginary part of second natural 

frequency vs b/a for different mass fractions B. 

 

   

4 Conclusiion 
The mathematical model for a pipe containing 

flowing flow with fixed-free ends are derived using 

energy methods. The effect of mass fraction B and 

non-uniformity cross sectional ratio b/a is 

investigated by analyzing its influence on the 

natural frequencies. It was shown that critical 

velocity is elevated upon raising the tapering ratio 

b/a. The results revealed that when varying the mass 

fraction B, the unstable fluttering region was altered 

significantly. Furthermore, it was found that the 

complex second fundamental frequency 2 and its 

corresponding stability is sensitive to the values of 

mass fractions.   In the next paper, online health 

monitoring for leakage detection will be presented 

for the current model with open edge crack using 

fracture mechanics and finite element method.  
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