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Abstract: The structure of the velocity field induced by internal solitary waves of the first and second modes is 

determined. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is 

estimated for the models of almost two- and three-layer fluid density stratification for solitons of positive and 

negative polarity. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of 

zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for 

the leading-order wave field they are horizontal. Also the wave field accounting for the nonlinear correction for 

mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of 

elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for 

the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities 

and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical 

for hydrological conditions of low and middle latitudes, the situation is the opposite. II mode soliton’s velocity 

field in almost two-layer fluid reaches its maximal absolute values in a middle layer instead of near-bottom and 

near-surface maximums for I mode solitons. 
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1 Introduction 
Research on nonlinear internal waves’ dynamics 

have quite a long history, originating in the first half 

of the twentieth century. Such waves have an 

influence on the hydrological regime of natural 

water bodies due to horizontal and vertical 

exchange, redistribution of heat, mixing of water, 

forming of the bottom topography etc. It is proved 

that such waves can create considerable loads and 

bending moments on the underwater parts of the 

hydraulic engineering constructions, as well as 

contribute to the sediment resuspension. In the 

context of the impact on the environment internal 

solitary and breather-like waves are of greatest 

interest as the most intensive formations. Solitary 

waves are observed almost everywhere on the ocean 

shelves and they are clearly visible on satellite 

images [1]. 

The shape and properties of these waves are 

studied well enough in the framework of various 

theoretical models, in particular within the weakly 

nonlinear theory of long waves, represented by the 

Korteweg-de Vries equation and its extended 

versions, such as the Gardner equation, the modified 

Korteweg-de Vries equation, “2 + 4” Korteweg-de 

Vries equation [2], and others. In the majority of 

classical studies devoted to internal solitary waves 

emphasis placed on the dynamics of such waves 

during the propagation over a rough bottom (see, 

e.g., paper [3], dedicated to the transformation of 

solitons over a sloping bottom and the paper [4] 

devoted to the dynamics of breather-like waves in 

the shelf zone of the Baltic sea), the interaction of 

such waves, or estimation of such local 

characteristics, as near-bottom and near-surface 

velocity and pressure variations at the bottom and 

on the pillars induced by the propagating waves. 

However, it is necessary to represent the structure of 

the velocity field in the entire water column for a 

more complete understanding of what is happening 

in the ocean during the propagation of internal 

solitary waves. Some peculiarities of the internal 

solitary waves’ spatial structure are investigated in 

the framework of the Korteweg-de Vries equation 

[5] and the modified Korteweg-de Vries equation 

for the ocean with two pycnoclines [6]. 

 

2 Theoretical model 
The weakly nonlinear theory of long IWs in a 

vertical section of stratified basin assumes, that the 

internal wave field (in particular, the vertical 
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isopycnal displacement (z, x, t)) can be expressed 

as a series (up to the 2
nd

 order in amplitude) [7]: 

)(),(ε)(),(ε),,(δ 2 zFtxztxtxz  ,        (1) 

where x is horizontal axis, z is vertical axis directed 

upwards, t is time, (x, t) describes the transforma-

tion of a wave along the axis of propagation and its 

evolution in time. Function (z) (the vertical mode) 

describes vertical structure of long internal wave, 

and F(z) is the first nonlinear correction to (z). 

(z) is a solution of an eigenvalue problem, which 

can be written in the form (in Boussinesq 

approximation usually valid for natural sea 

stratifications): 
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Here eigenvalue c is the phase speed of long linear 

internal wave, H is the total water depth, N(z) is the 

Brunt-Väisälä frequency (BVF) determined by the 

expression: 
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g is gravity acceleration and (z) is undisturbed 

density profile. It is well known, that problem (2) 

has an infinite number of eigenvalues c1 > c2 > c3 > 

… and corresponding eigenfunctions 1, 2, 3, …. 

We consider only the first (lowest) mode, when the 

function  has a single zero at z=0 and z=H. This 

mode is usually the most energetic in the internal 

wave spectrum. It is convenient to normalize the 

solution so that the maximum of (z) is max =       

= (zmax)  = 1. 

In this case the leading order solution (x, t) 

coincides with the isopycnal surface displacement at 

zmax: 

),(ε),,(ς max txtzx  .               (4) 

Function F(z) can be found as a solution of the 

inhomogeneous boundary problem: 
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where the auxiliary normalization condition 

F(zmax)=0 is used to determine the solution uniquely. 

In this model, the function (x, t) satisfies the 

nonlinear evolution equation (extended Korteweg-

de Vries (KdV) or Gardner equation): 
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This equation contains cubic nonlinearity, the 

presence of which provides better predictions of 

wave form, especially in the coastal zone. The 

coefficients of this equation are determined through 

the Φ(z) and F(z): 
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Let us consider the single-soliton solution of Eq. 

(6): 
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where the soliton velocity V = c + 
2
 is expressed 

through the inverse width of soliton, , and the 

soliton amplitude, a, or the extremum of the 

function (8), is 
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When the cubic nonlinear coefficient 1 is 

negative, soliton solutions of single polarity, with 

 > 0, exist with amplitudes between zero and a 

limiting value 
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With the use of Eq. (1) the components of 

velocities of particles (u, w) in the vertical section 

(x, z) can be expressed as follows: 
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The horizontal velocity component u gives the 

greatest contribution into the local current speed. 

This is typical for long waves and this characteristic 

of internal wave field must be considered in the 

analysis of near-bottom processes connected with 

sediment transport. The first terms in Eqs. (11) and 

(12) correspond to the leading order of the 

asymptotic expansion. The remaining additives 

result from the first nonlinear correction in the 
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asymptotic series. Thus, for the forecast of the local 

current speed one has to determine the isopycnal 

displacement (x, t) at the level of zmax (see (5)), the 

vertical IW mode (z) and its nonlinear correction 

F(z). The amplitude of (x, t) is not known a priori, 

it depends upon a large number of background 

conditions of internal wave generation, and can be 

found by means of the detailed simulation. 

 

3 Results. Quasi-two-layer density 

stratification 
Structure of the linear part and the contribution of 

the correction terms to the horizontal velocity can be 

estimated for the model stratification. A typical 

density stratification profile is taken as a two-layer 

fluid with a smooth density change on the 

pycnocline 

p

p

w

zz
z


 th

2
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)(ρ ,                 (13) 

where ρ is the value of the density “jump” 

(assumed here equal to 10 kg/m
3
), zp is the position 

of the “jump” center along the vertical (here it 

corresponds to 35 m from the surface, with a total 

depth of 100 m), wp – typical width of the “jump” 

along the vertical coordinate (here it is equal 8 m). 

This profile of the fluid density and the vertical 

profile of the Brunt - Väisälä frequency are shown 

in Fig. 1 

 

 
Fig. 1. Left panel: model vertical profile of sea 

water density; right panel: Brunt - Väisälä frequency 

The function (z) and the nonlinear correction 

F(z) for the first (lowest) mode are shown in Fig. 2 

for such density stratification. The coefficients of 

the Gardner equation (6) under such background 

conditions are given in Table. 1. 

 
Fig. 2. Left panel: typical form of the first linear 

mode function for internal waves; right panel: 

nonlinear correction to it. 

 

Table 1. The coefficients of the Gardner equation 

for internal waves of the first and second modes 

Mode number 1 1 

c [m/s] 1.35 0.38 

β [m
3
/s] 582 27 

α [s
-1

] -0.0262 0.0622 

α1 [m
-1
s

-1
] -0.00157 0.00131 

 

It can be noted that for the first mode both 

nonlinear coefficients α and α1 are negative and in 

such a fluid only solitons of negative polarity 

bounded by the limiting amplitude alim = –16.7 m 

can exist.  

The contours of equal density (isopycnic lines) 

and the contours of the horizontal velocity in the 

linear approximation during the propagation of 

internal solitary wave of the first mode with an 

amplitude of –Н/10 are shown in Fig. 3. 

The spatial structure of the nonlinear correction 

to the horizontal velocity and its total field are 

shown in Fig. 4. These figures demonstrate a quasi-

two-layer structure of horizontal velocity with a thin 

transition layer of width 2wp. Particle velocity is 

considered positive when direction of its motion 

coincides with the direction of the soliton’ 

propagation (here it is the direction of the positive 

values of the horizontal axis). For the chosen 

density stratification, the particle velocities for a 

negative-polarity soliton are positive in the upper 

layer and negative in the lower layer. 

The velocities in the upper and lower layers 

reach the maximum absolute values at the surface 

and at the bottom of the fluid, respectively. The 

influence of the nonlinear correction is manifested 

primarily in the form of an isoline of zero horizontal 

velocity (shown in bold in Fig. 4): it is a horizontal 

line in the linear approximation, but when the 
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nonlinear correction is taken into account, it is 

curved. Its shape depends on the amplitude of the 

soliton. Accounting for the nonlinear correction also 

leads to a slight increase in the absolute values of 

the particle velocity near the bottom and to an 

insignificant decrease in near-surface velocities. 

Thus, the linear part of the horizontal velocity in 

(11) gives an upper estimate for the flow velocity at 

the surface and the lower – for the bottom. 

 

 
Fig. 3. Left panel: wave field represented as a 

vertical displacement of isopycnic lines at different 

horizons, when the perturbation at the maximum of 

the first linear mode is the soliton of the Gardner 

equation with an amplitude equal to -H/10 (solid 

lines are the linear component, the dashed lines – 

vertical displacements with consideration of 

nonlinear correction. Right panel: the horizontal 

velocity field corresponding to a linear wave field 

on a left panel (bold solid line is the isoline 

corresponding to the zero velocity value, thin solid 

lines are the isolines of positive values, the dashed 

lines are the contours of negative values; the interval 

between the contours corresponds to 0.05c).  

 

The vertical structure of the second mode and the 

its nonlinear correction F(z) are shown in Fig. 5. 

The function (z) vanishes once inside the interval 

(0, H) in this case. As one can see from Table 1, 

both nonlinear coefficients are positive for the 

second mode. In this case, there are two families of 

soliton solutions: the first one with positive polarity, 

for which there is no upper or lower amplitude 

limitation, and the second family with negative 

polarity, for which the absolute value of amplitude 

should be greater than the modulus of the amplitude 

of the algebraic soliton (aalg = 2/1). 

 

 
Fig. 4. Left panel: nonlinear correction to the 

horizontal velocity; right panel: field of horizontal 

velocity with consideration of nonlinear correction 

for the internal solitary wave of the first mode. 

(Solid line - isoline, corresponding to zero velocity 

value, the interval between the contours corresponds 

to 0.05с). Both characteristics are normalized to the 

phase velocity of the first mode. 

 

 

Fig. 5. Structure of the second linear mode function 

for internal waves (left); nonlinear correction 

(right). 

 

The displaced isopycnic lines and the contours of 

the horizontal velocity in the linear approximation 

during the propagation of internal solitary wave of 

the second mode with an amplitude of Н/20 (having 

a positive polarity at the maximum of the linear 

mode) are shown in Fig. 6. Such solitary waves of 

the second mode are usually called “convex” [8]. 
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Fig. 6. Left panel: wave field represented as a 

vertical displacement of isopycnic lines at different 

horizons, when the perturbation at the maximum of 

the second linear mode is the soliton of the Gardner 

equation with an amplitude equal to H/20 (solid 

lines are the linear component, the dashed lines – 

vertical displacements with consideration of 

nonlinear correction. Right panel: the horizontal 

velocity field corresponding to a linear wave field 

on a left panel (bold solid line is the isoline 

corresponding to the zero velocity value, thin solid 

lines are the isolines of positive values, the dashed 

lines are the contours of negative values; the interval 

between the contours corresponds to 0.05c). 

 

 
Fig. 7. Left panel: nonlinear correction to horizontal 

velocity. Right panel: field of horizontal velocity 

with consideration of nonlinear correction for the 

internal solitary wave of the second mode. Both 

characteristics are normalized to the phase velocity 

of the second mode. 

 

The nonlinear correction to the horizontal 

velocity and its total value for an internal solitary 

wave of second mode are shown in Fig. 7. Maximal 

absolute values of the horizontal velocity are 

positive located inside the fluid. The range of 

positive and negative velocity values is asymmetric 

with respect to zero (the maximal absolute values of 

negative velocities are much less than maximal 

positive velocities’ values). Near-bottom and near-

surface velocities are small in relation to velocities 

in the “middle” layer of the fluid and they are 

negative. There are two lines of zero velocity in the 

water column. Taking into account the nonlinear 

correction for the vertical structure of the mode 

leads to their bending. 

 

4 Results. Quasi-three-layer density 

stratification 
It is obvious that the spatial structure of the velocity 

field of a solitary wave will differ substantially for 

both modes if we will use, for example, a three-

layer model for which the wave regimes in the 

framework of the Gardner equation were studied in 

detail in [9].  

The profile of the density for three-layer fluid 

and the vertical profile of the Brunt - Väisälä 

frequency for such fluid are shown in Fig. 8. 

 

 
Fig. 8. Left panel: model vertical profile of three-

layer fluid; right panel: Brunt - Väisälä frequency  

 

The coefficients of the Gardner equation (6) 

under such background conditions are given in 

Table. 2. 

 

Table 2. The coefficients of the Gardner equation 

for internal waves of the first and second modes in 

the three-layer fluid 

Mode number 1 1 

c [m/s] 1.33 0.69 

β [m
3
/s] 561 88 

α [s
-1

] –0.0471 0.0538 

α1 [m
-1
s

-1
] 0.0007 –0.0074 
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The function (z) and the nonlinear correction 

F(z) for the first mode are shown in Fig.9 for such 

density stratification. 

 
Fig. 9. Left panel: typical form of the first linear 

mode function for internal waves in a three-layer 

fluid; right panel: nonlinear correction to it. 

 

The contours of equal density and the contours of 

the horizontal velocity in the linear approximation 

during the propagation of internal solitary wave of 

the first mode with an amplitude of –Н/10 are 

shown in Fig. 10. 

 
Fig. 10. Left panel: wave field represented as a 

vertical displacement of isopycnic lines at different 

horizons, when the perturbation at the maximum of 

the first linear mode is the soliton of the Gardner 

equation with an amplitude equal to -H/10 (solid 

lines are the linear component, the dashed lines – 

vertical displacements with consideration of 

nonlinear correction. Right panel: the horizontal 

velocity field corresponding to a linear wave field 

on a left panel (bold solid line is the isoline 

corresponding to the zero velocity value, thin solid 

lines are the isolines of positive values, the dashed 

lines are the contours of negative values; the interval 

between the contours corresponds to 0.05c).  

Structure of the isopycnal displacement field and 

the field of horizontal velocity for the soliton of the 

first mode in the selected three-layer fluid are 

qualitatively similar to that for the soliton of the first 

mode in a two-layer fluid. The spatial structure of 

the nonlinear correction to the horizontal velocity 

and its total value for such a case are shown in Fig. 

11. Here we can also see qualitative agreement with 

the results presented in Fig. 4. 

 

 
Fig. 11. Left panel: nonlinear correction to the 

horizontal velocity; right panel: field of horizontal 

velocity with consideration of nonlinear correction 

for the internal solitary wave of the first mode. 

(Solid line - isoline, corresponding to zero velocity 

value, the interval between the contours corresponds 

to 0.05с). 

 

The vertical structure of the second mode and the 

first nonlinear correction to it are shown in Fig. 12 

for three-layer fluid. 

 

 
Fig. 12. Left panel: typical form of the second linear 

mode function for internal waves in a three-layer 

fluid; right panel: nonlinear correction to it. 
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Fig. 13. Left panel: wave field represented as a 

vertical displacement of isopycnic lines at different 

horizons, when the perturbation at the maximum of 

the second linear mode is the soliton of the Gardner 

equation with an amplitude equal to H/20 (solid 

lines are the linear component, the dashed lines – 

vertical displacements with consideration of 

nonlinear correction. Right panel: the horizontal 

velocity field corresponding to a linear wave field 

on a left panel (bold solid line is the isoline 

corresponding to the zero velocity value, thin solid 

lines are the isolines of positive values, the dashed 

lines are the contours of negative values; the interval 

between the contours corresponds to 0.05c). 

 

 
Fig. 14. Left panel: nonlinear correction to 

horizontal velocity in the three-layer fluid. Right 

panel: field of horizontal velocity with consideration 

of nonlinear correction for the internal solitary wave 

of the second mode. Both characteristics are 

normalized to the phase velocity of the second 

mode. 

 

The displaced isopycnic lines and the contours of 

the horizontal velocity in the linear approximation 

during the propagation of internal solitary wave of 

the second mode with an amplitude of Н/20 that has 

a positive polarity at the maximum of the linear 

mode (this wave is also of convex type) are shown 

in Fig. 13. The spatial structure of the horizontal 

velocity for an internal solitary wave of the second 

mode in three-layer fluid is shown in Fig. 14 in 

detail. From this figures, we can see that spatial 

structure of horizontal velocity field and field of 

isopycnal displacements induced by internal solitary 

wave of the second mode are qualitatively similar in 

two- and three-layer fluid. Maximal absolute values 

of the horizontal velocity are obtained in the mid-

layer and near the surface for this example. Spatial 

structure of nonlinear correction to horizontal 

velocity in a three-layer fluid differs markedly from 

such a nonlinear correction in a two-layer fluid. 

 

5 Conclusion 
The structure of the velocity of flows induced by 

internal solitary waves of the first and second modes 

for the model profiles of the fluid density is 

investigated in the framework of weakly nonlinear 

theory of ideal stratified fluid. The characteristics of 

the medium strongly vary along the vertical. The 

thickness of the pycnocline(s) is rather small, and 

the horizontal velocity of the current in the soliton 

varies in a jumplike manner in the pycnocline(s), 

providing the conditions for the development of a 

Kelvin–Helmholtz instability and turbulization of 

the current in case when the viscosity is taken into 

account [10]. Turbulent processes in the pycnocline 

and the near-bottom layer will influence particle 

transport. Meanwhile, integral characteristics of the 

current, which are necessary for calculations of 

dynamical loads on underwater elements of marine 

engineering, are influenced insignificantly, when the 

viscosity is taken into account, and spatial evolution 

of the soliton and its attenuation occur at very large 

distances. 
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