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Abstract: - On the basis of resonance theory the possibility of the longitudinal structures generation was fixed 
in the compressible boundary layer by an external vorticity. It takes place under a condition when parameters of 
externally vortex wave become the close to parameters of eigen stationary perturbations of a boundary layer. 
Researches are conducted as in case of subsonic numbers of the Mach, and in case of a supersonic flow at M=2. 
Data of the resonance theory agree with direct calculations of an interaction external vorticity with boundary 
layer satisfactorily. Parameters of two-dimensional stationary perturbations of a subsonic boundary layer 
completely match with data of Grosch C. E., Jackson T. L., Kapila A. K. (1992). In particular, the infinite set of 
eigen functions is installed, which are damped by a power law of the longitudinal coordinate, kx

 . Researches 
of three-dimensional perturbations showed, that the damping degree of perturbations down a flow depends on a 
wave number in the lateral direction poorly. However, there are the optimal values of the wave number in the 
lateral direction, in which perturbations damped down by a stream the most poorly. If in case of subsonic 
speeds decrements of perturbations of the first mode doesn't depend neither on a Reynolds number, nor on 
value of a lateral wave number, then in case of M=2 the nature of a perturbations reduction on longitudinal 
coordinate depends both on a wave number, and on a Reynolds number.   
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1 Introduction 
The first works on the development of small two-
dimensional stationary disturbances in the 
incompressible boundary layer on a flat plate were [1, 
2]. In them it was shown that perturbations of flow 
parameters in the boundary layer fade down on a flow 
under the degree law. They had shown that the 
parameters disturbances of the flow qi in the boundary 
layer damped down the flow of power law, 1/ ( ) kx

 . 
Exponents k  were eigen numbers of the formulated 
problem on eigen values. Interest in a study of 
longitudinal structures in many respects was defined 
by [3] where they were found experimentally. Their 
nature could be associated both with a nonlinear 
interaction of perturbations, and linear interaction of 
an external turbulence with boundary layer. An 
interaction of external turbulence with a subsonic 
interface on a flat plate was researched 
experimentally in [4-7] and in some other papers 
which review can be found in [8]. It was noted in all 
these works that in the interaction result of an external 
turbulence with boundary layer in stable region 
relatively small perturbations in the subsonic 
boundary layer longitudinal structures were observed.   

Longitudinal velocity profile of stationary 
disturbances excited by an external turbulence, at 
least in the low frequency range, has a bell-shaped 
type, maximum which is located at a distance from 
the wall max 2.5Y  , where δ ─ Blasius thickness. For 
the first time theoretically an interaction of an 
external longitudinal vorticity with a subsonic 
boundary layer is explored in [9]. There it was set that 
under the influence of the periodic external vorticity 
in the lateral direction the amplitude of longitudinal 
structure increased linearly down a flow and was 
inversely proportional to its period.   

 It completely matched with the dependence of the 
perturbation amplitude on the boundary layer 
thickness given in [4].  At the same time the 
dependence of the perturbations amplitude of the 
longitudinal velocity on the normal coordinate was 
coincided with data [1-3] which were obtained for 
two-dimensional perturbations.   

It should be noted that the theory [9] is applicable 
only in case of enough large periods of an external 
vorticity. More exact results, using parabolized 
stability equations, were obtained in [10]. The 
calculations revealed that the form of longitudinal 
velocity perturbations profiles does not depend on the 
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structure period practically. Its amplitude increased in 
proportion to the thickness of the boundary layer. 

In the subsequent theoretical and numerical study 
of the stationary disturbances generation in the 
supersonic boundary layer by external waves were 
continued in [9-19].     

To some extent the external turbulence interaction 
with a boundary layer can be described by means of a 
continuous spectrum of the stability task. For the first 
time a connection between the continuous spectrum 
and the task of an interaction of external disturbances 
(acoustic) with a parallel flow in the boundary layer 
was specified in [20]. Perhaps the most actively the 
possibility of the description of vortex perturbations 
interaction of an external flow with a boundary layer 
by means of a continuous spectrum began to be used 
after appearance of papers [22, 22].  

Another explanation for a generation of the intense 
perturbations in the boundary layer by external waves 
is qusi-resonant interaction of external disturbances 
with their eigen waves. Apparently in [23] for the first 
time an attention was paid to quasi-resonant 
generation of oscillations within the considered flow 
area under the influence of harmonic perturbations in 
the time. There the system of the differential 
equations of first order with harmonic in time the 
right part had been considered. Homogeneous system 
has set of eigen frequency ωi. Therefore disturbance 
amplitude will significantly exceed values of the right 
part if its frequency ω differs a little from eigen 
frequency ωi. 

The aim of this work was to study the 
development of internal stationary perturbations in the 
compressible boundary layer on a flat plate and to 
describe theirs on the basis of resonance theory.     

 

 

2 Problem statement and basic 

equations 
The linear statement is considered. The flow of a 
compressible gas in a boundary layer on a flat plate is 
taken as an initial undisturbed flow. Disturbances in a 
boundary layer we shall consider in orthogonal 
coordinate system  , , z   [15] connected with 
stream-surfaces of basic flow and look like
   , expa i i z i t      . Here   - flow function; 

for a plate  2Rex O   ; Re u x   ; ,u  
 - 

speed and kinematical viscosity of a ram airflow; 
, ,x y z  - longitudinal, normal to a wall and transversal 

co-ordinates of the Cartesian system with the 
beginning on an edge of a plate. Gas is perfect with a 
constant Prandtl number, Pr. Resulting a set of 
Navier-Stokes equations to a linear view, using 

estimations on the whole degrees of a Reynolds 
number, Re, rejecting the members order 2Re  respect 
to the main ones, the properties of a critical layer [15] 
and neglecting by a deformation of a perturbations 
distribution with changing of coordinate x it is 
possible to receive the dimensionless equations: 

 

 

0

2 1 2 ,
w cv T v T f u u u i T r

f T T f T u f T





      

    

  12 23 2 ,c h x z r wp i r u v i i u          

 12 1

2 2

x c

T

i p i f u u u

f u r i f u u v





      

    

rtx Tuviu  12
~~~~  , 

 23 2 ,z c a z r wi p i w i u f w       

rzviw  23
~~~  ,                                   (1) 

   

2 2

1 2 2 Pr ,
t

c c a

q i RT p H v f H r ui f uu

i u f H f u u f h i h

 



       

       

 12Pr Pr ,t Rh u u h T q u          
where the stroke means a derivative on Y; 

/ RedY d u ; , , , ,p v u w h - amplitudes of  pressure; 
normal to a surface of a  plate, longitudinal and 
transversal speeds; enthalpy disturbances. The 
expressions for 

12 23, ,q  can be found in [15].  
Additional members of the system are of the form: 

wiuiu zxw
~~~  ; uuii awrxt

~~~
  ; 

Tpgr m

~~~~   ;    uiui cc ReRe
; Tiix Re ; Tiiz Re ;   rzxa ii  22 

Tfufhrh
 101Re ; uff 10  ; 

uff 12  ; Re r ; dTdT  ln , , , 
 2

1 2 Ref u  , Re . 

The system (1) was normalized with the help of 
following scales:  u - length, 2

 u  - time, 

  -  viscosity and flow function, u  - velocity and 

its disturbances, T  - temperature,   - density , 2

u  

- enthalpy, 2
u  - pressure and disturbances of 

viscous stresses, 3
u  - value  q~ ,  Tu2  - specific 

heat (the index   corresponds to values in the 
incident airflow). In this case: 2Mmg , 

  2
1 M1 mg , where Vp cc - relation of 

heat capacities, M  – Mach number.  
The system (1) can be represented in the form: 

( ,Re, , , , )A M    Z Z .                                      (2) 
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 12 23, , , , , , ,p v u w h q Z , Aquadratic matrix of 

given functions of Re  andY .  
In the absence of external perturbations the system 

of equations (3) is solved with the following boundary 
conditions. The disturbances of speeds and a 
temperature on a surface and in infinity are equals to 
zero:                

2 3 4 5 5

2 3 4 5

(0) (0 (0) (0) 0,  ( (0) 0)
( ),  ( ),  ( ),  ( ) 0

z z z z z

z z z z

    

    
            (3)  

Thereby the task on own values (the task of stability) 
is formulated. For example, at given values of Re, M, 
ω and β, the value of a wave number α is searched. In 
case of positive values of an imaginary part of a wave 
number αi the flow is stability and vice versa. 

In the presence of external perturbations of a type 
of    0 0, expa i i z i t       in a matrix of A it is 
necessary to replace α on α0. Boundary conditions 
take the form: 

'

0

(0) (0 (0) (0) 0,  ( (0) 0);   
 ( )
v u w T T    

 Z Z
             (3) 

 
 

3 Results  
 

 

3.1 Egen stationary disturbance  
In this paper the case of stationary perturbations is 
researched, which parameters differ from parameters 
of nonstationary perturbations a little in case 

2 62 / 10f u   
   , f ─ the frequency in Hertz. 

All distributions given below were normalized on 
maximum values of the longitudinal velocity which 
located in the range: 2.5<Y<3.5.  

For the greater confidence in calculations, 
comparison of our results with data of [3], received at 
M=0 and β = 0, was carried out. There within of 
boundary layer equations, the stationary and 
nonstationary perturbations are researched.   There 
has been shown, that longitudinal logarithmic 
derivative of kx

  on longitudinal coordinate has the 

form ln( ) ( ) /k
r i k

u
i i x

x
  


   


.  

k - an infinite set of numbers. The first four of them 
with a precision of three digit are equal: 1.0, 1.89, 
2.81, 3.76.  

 The distribution of the longitudinal velocity 
perturbation in a boundary layer is given in Fig.1: 
present calculations at M=0.1, β=0, Re= 200, 

αi=2.50ˑ10
-5 (symbol) and data of [3] at M=0, 1 1   

(solid line).  

Dependence of a rate amplification αi and 
2

1 Rei   on a Reynolds number is given in Fig. 2.  

Data show that 21/ Rei , and 1 1  (in the full 
accordance with the results of [2, 3]). 

Along with two-dimensional perturbations in 
subsonic boundary layer (M=0.1) calculations carried 
out for three dimensional stationary disturbance,

0  , in subsonic and supersonic boundary layer, 
unlike researches of [2, 3] (M=0, 0  ).  

 
200 300 400 500 600 700 800 900 1000

Re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(1)

(2)

Fig. 2 Dependence of a rate amplification  
αi (1) and 2

1 Rei  (2) on a Reynolds number, 
M=0.2.  

Fig. 1 Comparison of calculation results 
(M=0.2) of the longitudinal velocity 
distribution with data of [3] (M=0). 
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Distributions of longitudinal, normal and lateral 

velocities perturbations (u, v, w) on a boundary layer 
are shown in Fig. 3 and Fig. 4, when Re=200 and 10

3 
(M=0.2, β=0.7ˑ10

-4). In addition distributions of 
phases of longitudinal velocities are shown in Fig. 4. 

   

 

If in case of low numbers of Renolds (Re=200) there 
is no influence of a wave number β on the velocities 
perturbations distribution, then with increase in Re it 
not so. Especially it is visible on phase shift. If in case 
of Re=200 phase shift on a boundary layer is equal to 
zero, as well as in a case β =0, then in case of Re=10

3 
it reaches about one radian, (about 60 °). At the same 
time the phase decreases with an increase of the 
coordinate Y. It is connected with the fact that a 

Reynolds number (coordinate x), boundary layer 
thickness, an effective wave number Re   and a 
product w increase. And it carries to more strong 
influence of a lateral velocity on longitudinal velocity 
through a continuity equation. 

From presented data (Fig. 3) it is visible that 
normal and lateral velocities have an order 1/Re. 

In case of supersonic speeds along with velocities 
perturbations disturbances of the mass flow play an 
important role. Moreover, at hot-wire anemometer 
using in experiments the mass flow perturbations are 
measured as a rule. Therefore in Fig. 5 the mass flow 
perturbation m distribution in a boundary layer is 
shown in case of M=2 not only velocity perturbations.  
Symbols show the distribution of the velocity 
perturbation for M = 0.1. It is interesting to note that 
for the small Reynolds number (Re=200) velocity 
perturbation distribution does not depend on the Mach 
number. 

Fig. 4 and 5 show that deformation of a 
longitudinal velocity profile in a supersonic boundary 
layer in case of a Reynolds number change is similar 
to its change in a case of a subsonic boundary layer. 
 

 

 
However, full phase shifts of velocity and mass flow 
perturbations on a boundary layer  in case of M=2 are 
approximately equal π=3.14 and they are positive 
while in case of a subsonic interface they are much 
less and negative (Fig. 4). At small Reynolds numbers 
the influence parameter β is insignificantly, the phase 
shift on boundary layer is absent. 

 Dependences of decrements and their product on 
Re2 for two-dimensional ((01), (02)), and also three-  
dimensional ((b1),(b2)) perturbations on the Reynolds 
number are shown in Fig. 6 (M=2). Here, for 

0 1 2 3 4 5 6 7 8 9
-3

-2

-1

-0

1

vRe(1)
wRe(1)
u(1)
u(2)
vRe(2)
wRe(2)

Y

0 1 2 3 4 5 6 7 8 9
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IuI    (2)

u      (2)

-ph  (2)

IuI,u (1)

ph    (1)

Y
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-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

u       (2)

m      (2)

phu   (2)

phm  (2)

u       (1)

m      (1)

u(M=.1)

Y

Fig. 3 Distributions of longitudinal, normal 
and lateral velocities perturbations and a phase 
shift on a boundary layer at Reynolds numbers 

200(1)  и  10
3 (2), (M=0.2, β =7ˑ10

-4). 

 

Fig. 5 Distributions u, m и ph on a boundary 
layer at M=2. Re=200 (1), 10

3 (2); β =7ˑ10-4 
Fig. 4 Distributions of maximum, /u/,  and 
actual, u, values of velocity perturbations and a 
phase shift on a boundary layer at Re =200(1) 
and 10

3
(2) (M=0.2, β=7ˑ10

-4). 
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comparing, dependence αiRe2 on the Reynolds 
number is given for a case of subsonic speeds 
(M=0.2) at β=7ˑ10

-4. These data show that the spatial 
decrements weakly dependent on the Mach number. 
 

 

At Re<400 three-dimensional perturbations 
decrements (β=7ˑ10

-4) are smaller than the two-
dimensional perturbations decrements. At Re>400 on 
the contrary, decrements of three-dimensional 
perturbations are greater than two-dimensional 
perturbations decrements perturbations. In case of 
Re=1000 they are about 1.5 times more than 
decrements of two-dimensional perturbations. 

  

In Fig. 7 dependences of decrements on a wave 
number β are shown. It is possible to note that in the 
given dependences there are minima at β=β

*. 

Calculations show that if M= 2 then β*Re=0.1 at 
all Reynolds numbers. At subsonic speeds (M=0.2) 
value β*Re ≈ 0.08 . 

 
 

3.2 Resonance theory of the interaction of 

external perturbations with boundary layer  
In the presence of external perturbations, problem (2), 
(4) can be reduced to solving of inhomogeneous 
differential equation with zero boundary conditions 
similar to the conditions (4). Indeed, let's introduce a 
vector-function W= Z-φ(Y)Z0. The function φ (η) 
must satisfy to conditions: φ(0)=0, φ(∞)=1. Then 
instead of the system (2) we have a non-uniform 
system of equations 

0 0

0 0

( ,Re, , , , )
( ) ( )

A Y M L

Y A Y

  

 

   

 

W W W

Z Z
                    (5) 

with boundary conditions similar to (4): 
2 3 4 5 5

2 3 4 5

(0) (0 (0) (0) 0,  ( (0) 0)
( ),  ( ),  ( ),  ( ) 0

w w w w w

w w w w

    

    
    (6) 

 It is possible to show that in case of small values 
0  amplitudes any component of a vector W and 

components of a vector Z will be proportional to
01/   . For example longitudinal speed 

perturbations can be taken as 
0

0
0

0
n

u
u

u

 

 





. 

Results of calculations on interactions of external 
perturbations of the form  0 expa i z  with a subsonic 
boundary layer are given below. Similar 
investigations were done in papers: [9, 10, 15, 16].  

200 300 400 500 600 700 800 900 1000
Re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b1)

(b2)

(01)

(02)

M=0.2

iRe2

i

0 1 2 3 4 5 6 7
bat

0.0

0.5

1.0

1.5

2.0

2.5

3.0
al

Re=200
       250
       400
     1000

Fig. 7 Decrements dependences on a lateral 
wave number at M=2 (al = αiˑ10

5
, bet =βˑ10

4
). 

Рис. 8. Dependences of velocity perturbations 
amplitudes on the Reynolds number at M=0.2 
and different values bet=βˑ10

4. 

Fig. 6 Decrements dependences, αi, and 
product αiRe2

 for β=0 ((01),(02)) and β=7ˑ10
-4 

((b1),(b2)) on Reynolds number at M=2.  

200 300 400 500 600 700 800 900 1000
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        5
        3
        1
        0

un
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Рис. 9. Dependences of velocity perturbations 
amplitudes on wave number at M=0.2 and 
different values Re. 

Dependences of amplitude peaks of a longitudinal 
velocity on a Reynolds number in case of M=0.2 and 
different values of a wave number β are given in Fig. 
8. Here u

0 is the amplitude peak of a longitudinal 
velocity at Re=200.  From the presented data it is 
visible that in case of small wave numbers (bet =0; 1) 
amplitudes of stationary perturbations, grows 
proportionally to longitudinal coordinate x ~Rex = Re2 
as it was predicted in [4, 9]. In case of large wave 
numbers (bet=7) it grows proportionally to 
Re Rex .  

 Dependences of the amplitude peaks of a 
longitudinal velocity on wave number β=betˑ10

-4 at 
different Reynolds numbers are shown in Fig. 9. Here 
u

0
 is the amplitude peak of a longitudinal velocity at 

β=0.These results show that perturbations amplitude 
of a longitudinal velocity rises with β linearly in the 
area of small values of wave number that are also 
consistent with the findings of [4, 9]. 
From fig. 9 it is possible to conclude that  in case of 
the fixing Reynolds number the maximum of 
perturbations are achieved approximately at 
β

*Re=0.1. Calculations of paper [10] showed that the 
amplitude of excited stationary perturbations, which 
were proportional to  exp ( / 3)i z y  , reached its 
maximum also when β*Re≈0.1. 

 

 

 Due to the fact that for the data, presented on Fig. 
9,  the value of un changes slightly in the range 1 < bet 
< 1.5, for dependences of the disturbances amplitude 
excited by external waves on the Reynolds number it 
is possible to use the curve of Fig. 8, corresponding to 
bet=1. In papers [15, 16] it was obtained that the 
maximum values of the excited velocities amplitudes 
are observed at β*Re≈0.5. With regard to the 

dependencies shown in Fig. 8 it is different from the 
amplitude dependencies of disturbances on  Reynolds 
number presented in [10,  15, 16], where there are 
peaks.  

One reason is related to the exponential 
dependence of a amplitude of an external wave on 
β

2
х=–β

2Re2, exp(–β
2Re2). Taking into account such 

attenuation dependences u=unexp(–β
2Re2) on a 

Reynolds number at M=0.2 for three values of a wave 
number β is shown in Fig. 10. Taking into account 
such correction it is possible to notice that β*Re≈0.8 
what is coordinated with data [16]. 
 

  

  
 
4 Conclusion 

As a result of the conducted researches it was 
received: 

1. Calculations results of Eigen two-dimensional 
stationary disturbances under the classical theory 
completely coincide with data [3]. 

2. Data on the eigenvalue problem of three-
dimensional stationary disturbances as for subsonic 
and supersonic boundary layers are received. In case 
of low numbers of Renolds there is no influence of a 
wave number β on the velocities perturbations 
distribution. With increasing of Reynolds number the 
longitudinal velocity phase shift on the boundary 
layer appears. Decrements of three-dimensional 
perturbations decrease in inverse proportion to 
longitudinal coordinate at small Reynolds numbers, 
and in inverse proportion to thickness of a boundary 
layer at large numbers of Reynolds.  

3. The direct connection of an excitation of 
internal perturbations of the boundary layer by 
external waves with resonant theory of their 

0 1 2 3 4bet

0.9

1.0

1.1

1.2

1.3

Re=400
      600
      800
    1000

un

100 600 1100 1600 2100 2600
Re

0

1

2

3

4

5

6

7

8

bet=5

       7

       6

u

Fig. 10 Dependences of velocity perturbations 
amplitudes, u, on the Reynolds number at 
M=0.2 and different values bet. 
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interaction with the boundary layer is established. 
Obtained on its basis amplitude dependences of 
internal perturbations excited by an external vorticity, 
on a wave number and a Reynolds number are 
coordinated with direct calculations which are 
available in the known literature.   

This paper has been supported by Russian Science 
Foundation (project No. 17-19-01289) 
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