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Abstract: At the end of the 19th century, Kirchhoff studied dynamical problems involving vortex flows of inviscid
incompressible fluids focusing on flows having the shape of a vortex tube (vortex filaments). In 1906, Da Rios, a
student of Levi-Civita, analyzed the motion of a vortex filament and obtained the remarkable equation describing
its evolution, which, under mild conditions, is equivalent to the so called binormal evolution equation. Motivated
by this, in this work we use fundamental facts of the theory of submanifolds to analyze the evolution of curves
under binormal flows with curvature dependent velocity in pseudo-riemannian 3-space forms. The compatibility
conditions for these systems are given by the Gauss-Codazzi equations, which here are expressed with respect to
a geodesic coordinate system in terms of the Frenet curvatures of the evolving curves. Then, an existence result is
derived from the Fundamental Theorem of submanifolds. Moreover, we show the connection between travelling
wave solutions of the Gauss-Codazzi equations and the Frenet-Serret dynamics of curves. In fact, travelling wave
solutions of the Gauss-Codazzi equations are shown to lead to the Euler-Lagrange equations of extremal curves for
curvature dependent energies with a penalty on the total torsion and the length (generalized Kirchhoff centerlines).
A characterization of generalized Kirchhoff centerlines in terms of Killing vector fields allows us to construct
binormal evolution surfaces with prescribed velocity by using them as initial conditions for the evolution. Binormal
surfaces obtained in this way evolve without change in shape. Finally, we particularize the previous findings to
three significant cases which give rise to Hasimoto surfaces, Hopf tubes, and constant mean curvature surfaces

Key–Words: binormal flow, curve evolution, Frenet-Serret dynamics, extremal curves, submanifolds, real space
forms.

1 Introduction
In 1906 Da Rios [15] modeled the movement of a thin
vortex filament in a viscous fluid by the motion of a
curve propagating in R3 according to

∂x

∂t
=

∂x

∂s
× ∂2x

∂s2
, (1)

which is known as the localized induction equation,
(LIE). For notation consistency along this paper, LIE
is often to be written as

xt = xs × xss . (2)

Hasimoto discovered [9] that LIE is equivalent to the
non-linear Schrödinger equation (NLS) which is a
well known example of soliton equation. If t repre-
sents time, γt(s) := x(s, t) describes a curve evolving
in R3 according to (1). Moreover, if the initial vor-
tex filament is arc-length parametrized, then (2) can
be written in terms of B, the Frenet binormal to the
curve γt(s)

xt = κB ,

and the curve is said to be evolving by the binormal
flow. It locally determines a regular surface in R3

which is usually called a Hasimoto surface.
On the other hand, by choosing a geodesic co-

ordinate system in an isometrically immersed surface
(U, x) of R3, one can check that the following equa-
tion is satisfied on U

xt = ϕxs × xss , (3)

where ϕ is a function which depends on the surface
metric coefficients with respect to (U, x). If ϕ = 1, we
have the Hasimoto surfaces. The following question
naturally arises: given an arbitrary ϕ, when can we
find a parametrized surface, (U, x), such that (3) is
satisfied?

Along this paper a geometric generalization of
the LIE will be studied within more general ambient
spaces. To be more precise, let M3

r (ρ) denote a Rie-
mannian or Lorentzian real space form (for details, see
next section) then the following equation will be con-
sidered

xt = f(s, t)xs × ∇̃xsxs , (4)
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where, x : U ⊂ R2 → M3
r (ρ), f(s, t) is a C∞(U)

function and ∇̃ denotes the Levi-Civita connection on
M3

r (ρ). Of course, if f = 1 and M3
r (ρ) = R3, then

we get the original LIE. Actually, we will be more
interested in evolution equations of the type

xt = f(|∇̃xsxs|)xs × ∇̃xsxs , (5)

where the initial curve γ(s) := x(s, 0) is assumed
to be arc-length parametrized. Then, so is γt(s) :=
x(s, t) for all t and (5) becomes

xt = Q (κ)B , (6)

κ and B being, respectively, the Frenet curvatures and
binormals of the evolving curves, and Q a certain
smooth function. Here, surfaces in M3

r (ρ) evolving
by (6) will be referred to as binormal evolution sur-
faces with velocity Q.

In section 2 we revise fundamental formulas and
equations of the theory of submanifolds, which are
used in section 3 to find compatibility conditions for
(4) in terms of the geometric invariants of the evolving
curves. These conditions are basically a simplified
version of Gauss and Codazzi equations for surfaces
with respect to a geodesic coordinate system, and we
will see that they extend to Mn(ρ) backgrounds the
classical Da Rios equations for LIE in R3, [15]. Then,
an existence result and a few geometric evolution in-
variants are given. To end this section, we use the
complex wave function introduced by Hasimoto [9] to
find a non-linear equation which is equivalent to Co-
dazzi equations (it reduces to NLS in case of LIE in
R3). In order to construct explicit examples of binor-
mal evolution surfaces, in section 4 we introduce what
we call the generalized Kirchhoff centerlines as a fa-
mily of curves representing particle trajectories under
an specific Frenet-Serret dynamics. Then, in section
5 we find travelling wave solutions of the Codazzi-
Da Rios conditions and show that they correspond to
generalized Kirchhoff centerlines what allows us to
construct binormal evolution surfaces spanned by fila-
ment motions involving no change in shape. Finally,
in section 6 some applications to concrete choices of
the evolution surface velocity are given. For the sake
of brevity and simplicity, long computations will be
omitted along this paper.

2 Preliminaries

For more details in this section, one may wish to con-
sult [7]. Let Mn

r (ρ) be a complete, connected, sim-
ply connected, pseudo-Riemannian n-manifold with
constant sectional curvature ρ (a pseudo-Riemannian

space form) with metric ⟨, ⟩ and Levi-Civita connec-
tion ∇̃. If γ : I → Mn

r (ρ) is a smooth immersed
curve in Mn

r (ρ), γ̇(t) will represent its velocity vec-
tor dγ(t)

dt and the covariant derivative of a vector field
X(t) along γ will be denoted by DX(t)

dt . A non-null
curve can be parametrized by the arc-length and this
natural parameter is called proper time. For a non-null
immersed curve, the first Frenet curvature, or simply,

the curvature, is defined as κ1 =

√
ε2⟨Dγ̇(t)

dt , Dγ̇(t)
dt ⟩,

where ε2 denotes the causal character of Dγ̇(t)
dt . A

geodesic is a constant speed curve whose tangent vec-
tor is parallel propagated along itself, i.e. a curve
whose tangent, γ̇(t) = T (t), satisfies the equation
DT (t)
dt = 0. Obviously, geodesics have zero curva-

ture. As it can be shown, extremals of the variational
problem we will be concerned in section 4 can be con-
sidered to live in a 3-space so we take n = 3, so from
now on we restrict ourselves to pseudo-Riemannian 3-
space forms, M3

r (ρ). When working in three dimen-
sions, there are only two different options for the in-
dex r. The case r = 0, denoted simply by M3(ρ), re-
presents the Riemannian 3-space forms (the Euclidean
space, R3, if ρ = 0; the 3-dimensional sphere, S3(ρ),
when ρ > 0; and the hyperbolic space, H3(ρ), when
ρ is negative). The other case is r = 1 and now
M3

1 (ρ) represents the Lorentzian 3-space forms (the
Minkowski flat space, L3, when ρ = 0; the de-Sitter
3-space, S31(ρ), for positive ρ; and the anti-de-Sitter 3-
space, H3

1(ρ), for ρ < 0). The cases r = 2 and r = 3
are equivalent to r = 1 and r = 0, respectively.

Consider the Euclidean pseudo-space Em
ν . That

is, Rm endowed with the canonical metric of in-
dex ν, denoted by ⟨·, ·⟩, and the Levi-Civita connec-
tion, denoted by ∇̄. Then, pseudo-Riemannian 3-
space forms can be isometrically immersed in E4

ν , the
4-dimensional Euclidean pseudo-space in a standard
way, [7]. As usual, the cross product of two vector
fields X,Y in M3

r (ρ), denoted by X × Y , is defined
so that ⟨X × Y,Z⟩ = det(X,Y, Z) for any other vec-
tor field Z of M3

r (ρ).
An immersed curve in a pseudo-Riemannian

manifold M3
r (ρ) is called a Frenet curve of rank m,

2 ≤ m ≤ 3, if m is the highest integer for which
there exists an orthonormal frame defined along γ,
{e1(t) = γ̇(t), e2(t), e3(t)} and non-negative smooth
functions on γ, κi(t), t ∈ I, 1 ≤ i ≤ m−1, called the
Frenet curvatures, such that the Frenet-Serret equa-
tions are satisfied (for more details see [8]). Let γ be
a unit speed non-geodesic curve contained in M3

r (ρ)
with non-null velocity γ̇ = T . If it also has non-null
acceleration Dγ̇

ds , then γ is a Frenet curve of rank 2 or
3 and the classical standard Frenet frame along γ is
given by {T = γ̇, N = ε2

κ1
∇̃TT,B}, and B is chosen
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so that det(T,N,B) = 1. From now on, the first and
second Frenet curvatures {κ1, κ2} will be denoted by
{κ, τ}, and will be referred to as the curvature and
torsion of γ in M3

r (ρ), respectively. Then, the Frenet
equations can be written as

DT

ds
= ∇̃TT = ε2κN ,

DN

ds
= ∇̃TN = −ε1κT + ε3τB , (7)

DB

ds
= ∇̃TB = −ε2τN ,

where εi, 1 ≤ i ≤ 3, denote the causal character of
T , N and B, respectively, and the following relations
hold

T = ε1N ×B , N = ε2B×T , B = ε3T ×N . (8)

In a pseudo-Riemannian space form any local geome-
trical scalar defined along Frenet curves can always be
expressed as a function of their curvatures and deriva-
tives.

Now, for a given isometric immersion of a sur-
face, x : N2

ν → M3
r (ρ), ν ∈ {0, 1}, we denote

by ∇ the Levi-Civita connection of the immersion
(N2

ν , x). As it is also customary, for a surface N2
ν

in any 3-dimensional space form M3
r (ρ), we require

the first fundamental form to be non-degenerate. Take
X,Y, Z,W tangent vector fields to N2

ν and choose ξ a
normal vector field to N2

ν . Then the formulas of Gauss
and Weingarten are [7]

∇̄XY = ∇̃XY − ρ⟨X,Y ⟩x
= ∇XY + h(X,Y )− ρ⟨X,Y ⟩x , (9)

∇̃Xξ = −AξX +D⊥
Xξ . (10)

where x is the position vector, h denotes the second
fundamental form of N2

ν in M3
r (ρ), and D⊥ denotes

the connection on the normal bundle of N2
ν .

Denoting by R and R̃ the Riemann curvature ten-
sors associated to ∇ and ∇̃, respectively, we have

R̃(X,Y )Z = ρ(< Y,Z > X− < X,Z > Y ) , (11)

while the equations of Gauss and Codazzi are given
respectively by, [7]

⟨R̃(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩ (12)
−⟨h(X,W ), h(Y,Z)⟩
+⟨h(X,Z), h(Y,W )⟩ ,

(∇h)(X,Y, Z) = (∇h)(Y,X,Z) , (13)

where

(∇h)(X,Y, Z) = D⊥
Xh(Y, Z)− h(∇XY,Z)

− h(Y,∇XZ).
(14)

We will often resort to the standard abuse of notation
and identification tricks in submanifold theory.

3 Binormal Evolution Surfaces

Given a smooth map x : U ⊂ R2 → M3
r (ρ), x(s, t),

we want to investigate the following evolution pro-
blem

xt = f(|∇̃xsxs|)xs × ∇̃xsxs , (15)

where f is a suitable smooth function. If x(s, t) des-
cribes the evolution of γ(s) = x(0, s) under (15), we
assume that the initial condition γ(s) is a unit speed
Frenet curve of rank 2 or 3, and we denote by γt(s) :=
x(s, t) the evolving copy of γ at time t which will be
called the filament at time t. It is easy to show that
if s is the proper time for γ(s), that is the arc-length
parameter, then so is for every t. In fact, we have

∂

∂t
⟨xs(s, t), xs(s, t)⟩ = 2 ⟨∇̃xsxt, xs⟩ = 0 , (16)

where the last equality is obtained from (15). That
is ⟨xs(s, t), xs(s, t)⟩ does not depend on ”time” t, so
since ⟨xs(s, 0), xs(s, 0)⟩ = ⟨dγds ,

dγ
ds ⟩ = ⟨T, T ⟩ = ε1,

then so is for every t. Thus, (15) is length-preserving
evolution.

From now on, we will assume that s is the arc-
length parameter and that ∇̃xsxs is non-null every-
where. Then for any fix t we may consider the asso-
ciated Frenet frame {T = γ̇, N,B}(s, t) on x(s, t) =
γt(s) described in (7). We are going to assume also
that f is never zero so that x(s, t) defines an immersed
surface in M3

r (ρ). Take P (u) as any solution of the
following differential equation

Ṗ (u) :=
dP

du
= ε2ε3uf(u) . (17)

Since our curves γt are arc-length parametrized, we
can combine (7), (8) and (15) to obtain

xt = f(κ)xs × ∇̃xsxs = f(κ)T × DT

ds
= ε2κf(κ) T ×N = ε2ε3κf(κ)B

= Ṗ (κ)B .

(18)

This means that γ(s) = x(s, 0) evolves by the bi-
normal flow with velocity Ṗ (κ). The corresponding
immersed surface (U, x) in M3

r (ρ) swept out by γ(s)
will be denoted Sγ and called a binormal evolution
surface with initial condition γ (and velocity Ṗ ). If
every filament curve γt is a closed curve, then the bi-
normal evolution surface Sγ will be called binormal
evolution tube. As γt(s) = x(s, t) is not a geodesic
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in M3
r (ρ) then ∇̃xsxs is not null and the unit Frenet

normal to γt(s), N(s, t), is parallel to the unit normal
to Sγ , ξ, for s sufficiently small. This means that our
filaments γt(s) are geodesics in Sγ for any t and that
(18) can be written as

xt = Ṗ (κ)Nγ , (19)

where {T,Nγ} is the Frenet frame along γ in Sγ .
Hence, x(s, t) are geodesics of Sγ evolving also by
a normal flow within Sγ .

Let x : U → M3
r (ρ) denote the immersion of the

surface x(U) = Sγ ≡ N2
ν in M3

r (ρ) with local orien-
tation determined by the unit normal vector ξ. As be-
fore, denote by {T (s, t), N(s, t), B(s, t)} the Frenet
frame of γt(s) and choose the following local adapted
frame on Sγ

e1 = xs = T , e2 =
xt

Ṗ
= B ,

e3 = ξ = T ×B = −ε2N .
(20)

With respect to the local parametrization of Sγ given
by x

x(s, t) = γt(s) , (21)

we have that the coefficients of the metric are
(reparametrizing the geodesics if needed) g11 =
⟨xs, xs⟩ = ε1, g12 = g21 = ⟨xs, xt⟩ = 0 and
g22 = ⟨xt, xt⟩ = ε3Ṗ

2. That is, with respect to the
parametrization (21) the metric of Sγ can be written
as

g = ε1ds
2 + ε3Ṗ

2dt2. (22)

Using the metric coefficients, gij , one may com-
pute the Christoffel symbols of the Levi-Civita con-
nection of (22) with respect to this parametrization
(see, for instance [7], Proposition 1.1). Combining
this with the Gauss and Weingarten formulas, (9),
(10), and Gauss and Codazzi equations, (12), (13), all
the geometric relevant information about the immer-
sion (U, x) can be expressed in terms of the chosen
parametrization (21). This requires bringing in some
computational stuff and very long calculations whose
details are omitted here (for technical background see,
for example, [7]).

On the other hand, the second fundamental form
can be considered as a quadratic form given by
h(X) := ⟨AξX,X⟩, and it admits the following ex-
pression with respect to the parametrization (21)

ε2h = −κds2 + 2τṖ ds dt+ ε2Ṗ
2h22dt

2 , (23)

where κ(s, t), τ(s, t) denote the curvature and torsion
of the curves γt(s) and h22 is given by

h22 =⟨∇̃e2e2, e3⟩

=
1

κ
{ε3

Ṗss

Ṗ
− ε2τ

2 + ε1ε3ρ} .
(24)

Also, it can be shown that Gauss and Codazzi equa-
tions boil down to

κt = −2Ṗsτ − τsṖ , (25)
ε3τt = (26)

(
1

κ

(
ε2Ṗss + ε1Ṗ (κ2 − ε1ε3τ

2 + ε2ρ)− ε1κP
))

s

.

Finally, it can be shown that a binormal evolution sur-
face, with velocity Ṗ (18), Sγ , parametrized by (21),
x : U → M3

r (ρ), satisfies the PDE system

xss = − κ

Ṗ
xs × xt − ε1ρx , (27)

xts =
Ṗs

Ṗ
xt −

τṖ

κ
xss − ε1

τṖ

κ
ρx , (28)

xtt = −ε1ε3Ṗ Ṗsxs − ε2
h22Ṗ

2

κ
xss (29)

−
(
ε2ε1h22

κ
+ ε3

)
Ṗ 2ρx+

Ṗt

Ṗ
xt ,

where h22 is given in (24). Now, we have

Proposition 1. Let G : U ⊂ R2 → R be a smooth
function. For any pair of functions κ(s, t), τ(s, t) sa-
tisfying

κt = −2Gsτ − τsG , (30)
τt = ε1ε3κGs + ε2(h22G)s . (31)

where

h22 =
1

κ
{ε3

Gss

G
− ε2τ

2 + ε1ε3ρ} , (32)

there exists an isometric immersion x : U → M3
r (ρ)

foliated by a family of geodesics γt(s) = x(s, t)
evolving by

xt(s, t) = G(s, t)B(s, t) ,

B(s, t) being the Frenet unit binormals defined on
γt(s), i.e., (U, x) is a binormal evolution surface with
velocity G(s, t). Moreover, if P : R → R is smooth
and G is chosen so that G(s, t) = dP

du (κ(s, t)), then
(U, x) evolves by (18).

Proof: Substituting Ṗ by G in (27)-(29) we obtain
PDE system for which (30) and (31) are the compa-
tibility conditions. Thus, the fundamental theorem of
submanifolds says that given functions κ(s, t), τ(s, t)
and G(s, t) smoothly defined on a connected domain
U and satisfying (30)-(31), there exists a solution of
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(27)-(29) determining a smooth isometric immersion
(U, x) of a surface in M3

r (ρ) whose metric is given by

g = ε1ds
2 + ε3G

2dt2 , (33)

and the second fundamental form by

ε2h = κds2 − 2Gτds⊗ dt− ε2h22G
2dt2 , (34)

where h22 is defined in (32). Consider the coor-
dinate curves γt(s) := x(s, t). The first coe-
fficient of the metric tells us that γt(s) are arc-
length parametrized ∀t, then we denote by {xs =
T (s, t), N(s, t), B(s, t)} the Frenet frame along the
coordinate curves γt(s). By computing the Christoffel
symbols we see that γt(s) are geodesics. Then, com-
bining Gauss equation (9) and Frenet formulas (7), we
see that the unit normals N(s, t) are perpendicular to
the surface (U, x). Hence, xt = λ(s, t)B(s, t), but
then the second coefficient of g implies that G(s, t) =
λ(s, t). 2

The above parametrized surface (U, x) is foliated
by geodesics having κ(s, t) and τ(s, t) as curvature
and torsion. If, in addition, U is simply connected,
then the immersion (U, x) would be unique (up to
rigid motions in M3

r (ρ)). Moreover, for binormal evo-
lution tubes (closed filaments) length, total torsion and
curvature energy are invariant. More precisely

Proposition 2. With the previous notation, let Sγ be
a Binormal evolution surface with velocity Ṗ , having
by initial condition a Frenet curve of rank 2 or 3 in
M3

r (ρ), γ(s), parametrized by proper time. Denote
by x(s, t) the parametrization of Sγ determined by
(15) and assume that s ∈ [0, 1] and all filament curves
γt(s) = x(s, t) are C4-closed in [0, 1]. Then, length
of γt(s), the total torsion

∫ 1
o τ ds, and

∫ 1
o P (κ) ds, are

independent of t.

Proof: Assume that s ∈ [0, 1] and that for every t,
x(s, t) is C4-closed in [0, 1]. If the initial condition
γ(s) is parametrized by proper time, then so are the
filaments γt(s), so length is preserved. The invariance
of the total torsion

∫ 1
o τ ds is a direct consequence of

(26). Finally, multiplying (25) by Ṗ , we have

d

dt

∫ 1

0
P (κ) ds =

∫ 1

0
κtṖ ds

= −
∫ 1

0

d

ds
(Ṗ 2τ) ds = 0 .

(35)

Thus,
∫ 1
o P (κ) ds attains the same value at every fila-

ment curve. 2

Corollary 3. Under the conditions of the above
proposition, if a copy of the filament is a closed mini-
mizer for the energy

∫
γ P (κ), then so is any other copy

of the filament.

To end this section, we rewrite the Gauss-Codazzi
equations (25) and (26) in terms of the complex wave
function. The Hasimoto transformation [9] maps any
curve γ(s) with positive curvature κ > 0 and torsion
τ into its complex wave function Ψ defined by

Ψ(s, t) = κ(s, t)ei
∫ s
so

τ(s∗,t)ds∗ . (36)

Moreover, the curve can be recovered (up to congru-
ences in M3

r (ρ)) from its complex wave function Ψ,
in terms of its curvature and torsion, by taking

κ = ⟨Ψ,Ψ⟩
1
2 , (37)

τ = Im(
Ψs

Ψ
) . (38)

Using this transformation and a choice of a suitable s0
(such that,

∫
τtds

∗|s0= 0), we can see that the Gauss-
Codazzi equations (25) and (26) are equivalent to

Ṗss(1− ε2ε3) = iΨt +

(
Ṗ

Ψ

|Ψ|

)
ss

+ ε1ε3

(
Ṗ

|Ψ|
(
|Ψ|2 + ε3ρ

)
− P

)
Ψ .

(39)

Thus, we have that each solution of (39) gives rise to
two functions (37) and (38), such that the only curves
having them as curvature and torsion (up to rigid mo-
tions in M3

r (ρ)) give a foliation of a binormal evolu-
tion surface with velocity Ṗ , (18). The converse is
clear, so we have

Proposition 4. x(s, t) evolves by (18), if and only if,
the complex wave function Ψ evolves by (39).

4 Generalized Kirchhoff Centerlines

Remember that we are assuming for all our curves
that γ̇(t) and Dγ̇

dt are not lightlike vectors along the
curve. We shall denote by Ωpop1 the space of smooth
immersed curves of M3

r (ρ) joining two points of it,
i.e.

Ωpop1 = {β : [0, 1] → M3
r (ρ),

dβ

dt
(t) ̸= 0,

∀t ∈ [0, 1], β(i) = pi, i ∈ { 0, 1}} ,
(40)

where pi ∈ M3
r (ρ), i ∈ {0, 1}, are arbitrary fixed

points of M3
r (ρ). As before the arc-length or natu-

ral parameter is represented by s ∈ [0, L] , L being
the length of γ. We are going to consider curvature
energy functionals acting on Ωpop1 of the following
form

Θ(γ) =

∫
γ
F(κ) + µτ + λ

=

∫ L

0
(F(κ)(s) + µτ(s) + λ) ds ,

(41)
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where F(u) is a C∞(R) function and µ, λ ∈ R. By
computing the first variation formula for (41) acting
on Ωpop1 (under arbitrary boundary conditions) and
using the Frenet frame (7), the following proposition
can be shown

Proposition 5. The Euler-Lagrange equations for the
curvature energy functional Θ(γ) =

∫
γ F(κ) + µτ +

λ, acting on Ωpop1 can be written as

ε1ε2µκτ − ε1ε2κ(F + λ) − ε2(ε3τ
2 − ε1κ

2)Ḟ
+ Ḟss + ε1ρḞ = 0 , (42)

2ε3τ Ḟs + ε3τsḞ − ε1µκs = 0 , (43)

where the subscript s denotes the derivative with res-
pect to s, and Ḟ = dF

dκ .

For reasons that will be made clear later, along
this paper curves satisfying above equations (42) and
(43) will be called generalized Kirchhoff centerlines.
A vector field W along γ, which infinitesimally pre-
serves unit speed parametrization is said to be a
Killing vector field along γ if it evolves in the direc-
tion of W without changing shape, only position. In
other words, the following equations must hold

W (v)(t̄, 0) = W (κ)(t̄, 0) = W (τ)(t̄, 0) = 0 , (44)

(v = |γ̇| being the speed of γ) and this is independent
on the choice of the tangent variation of γ to W . The
following proposition extends a result of [12] to the
pseudo-riemannian case

Proposition 6. Let M3
r (ρ) be a complete, simply con-

nected, pseudo-Riemannian space form and γ a non-
null immersed curve in M3

r (ρ). A vector field W on
γ is a Killing vector field along γ, if and only if, it
extends to a Killing field W̃ on M3

r (ρ).

Finally, by using a family of variation formulas
computed along the derivation of the Euler-Lagrange
equations, we are able to characterize generalized
Kirchhoff centerlines in terms of vector fields along
the curve γ.

Proposition 7. The vector field I = ε1ε3µT + ṖB
is a Killing vector field along γ, if and only if, γ is a
generalized Kirchhoff centerline.

5 Travelling Wave Solutions

Here, travelling wave is understood to be a function
u(x, t) of the form u(x, t) = f(x − ηt), η ∈ R
for some smooth function f . We are going to ana-
lyze travelling wave solutions of the Gauss-Codazzi
equations (25) and (26) associated to a binormal

evolution surface with respect to the parametrization
x(s, t) = γt(s). Define ι = s − ε1ε3µt and take
κ(s, t) = κ(ι), τ(s, t) = τ(ι). Differentiating the
Gauss-Codazzi equations (25) and (26) we get

ε1ε3µκι = Ṗ τι + 2Ṗιτ , (45)
−ε1ε2µκτ = Ṗιι + ε1ε2Ṗ κ2 − ε2ε3Ṗ τ2 (46)

+ ε1ρṖ − ε1ε2κP − ε2ε3cκ ,

for some c ∈ R. Then, calling λ = ε1ε3c, it is
easy to verify that (45) and (46) are precisely the
Euler-Lagrange equations, (42) and (43), for Θ(γ) =∫
γ P (κ)+µτ+λ. In other words, γ must be the a gen-

eralized Kirchhoff centerline. Hence, the next propo-
sition shows how to construct solutions of binormal
evolution surfaces in M3

r (ρ)

Proposition 8. Travelling wave solutions of Gauss-
Codazzi equations (25) and (26) correspond to the
curvature and torsion of generalized Kirchhoff cen-
terlines. Moreover, generalized Kirchhoff centerlines
evolve following (18) by isometries of M3

r (ρ) and sli-
ppery.

Proof: The first part has been just stated. As for
the second one, consider γ(s) a generalized Kirchhoff
centerline. Then, by Proposition 7, I = ε1ε3µT +
ṖB is a Killing vector field along γ. Denote by V
the Killing vector field on M3

r (ρ) which extends I
(Proposition 6) and denote by {ϕt}, t ∈ R, the 1-
parameter group of isometries associated to V, i.e., the
flow of V . Define the surface y(s, t) := ϕt(γ(s)).
Since {ϕt}, t ∈ R are isometries, we have yt =

ε1ε3µT + ṖB and we see that, after reparametriza-
tions, y(s, t) evolve by (18). �

So travelling wave solutions of the Gauss-
Codazzi equations represent binormal evolution sur-
faces Sγ , where the initial condition γ is a generalized
Kirchhoff centerline. In this case γ evolves by rigid
motions and slippery. Observe that the last asser-
tion can be also derived combining Proposition 6 and
Proposition 7. On the other hand, solutions evolving
by congruences correspond to travelling wave solu-
tions with µ = 0 and it is a straightforward compu-
tation to verify that the Gauss-Codazzi equations (25)
and (26) are equivalent to the Euler-Lagrange equa-
tion for Θ(γ) =

∫
γ P (κ) + λ. Then, γ evolves under

(18) by isometries of M3
r (ρ), if and only if, γ is an ex-

tremal of Θ(γ) =
∫
γ P (κ) + λ. So, we get a foliation

of the binormal evolution surface by critical points of
Θ, that are also geodesics of the surface Sγ .
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6 Applications

Let us consider now different choices of the velocity
in the evolution equation

xt = f(κ)xs × ∇̃xsxs = Ṗ (κ)B . (47)

6.1 Hasimoto Surfaces in M3
r (ρ).

We first choose f(u) = 1. In other words, we are go-
ing to consider the evolution in M3

r (ρ) of a unit speed
Frenet curve, γ(s), of rank 2 or 3 under LIE, (2). Let
x(s, t) describe the evolution of γ(s) under LIE. Since
our curves γ are arc-length parametrized, LIE can be
simplified in terms of the binormal flow

∂x

∂t
= ε2ε3κB (48)

and the corresponding evolution surfaces are known
as Hasimoto surfaces. Then (25) and (26) reduce to

κt = −ε2ε3(2κsτ + κτs) , (49)

τt = ε2(ε2
κss
κ

− ε3τ
2 +

1

2
ε1κ

2 + ε1ε2ρ)s . (50)

Notice that if we were considering evolution un-
der LIE in the standard Euclidean case, then εi = 1,
for i = 1, 2, 3, and (49), (50) would be precisely
the da Rios equations, [15]. In other words, in the
Euclidean case da Rios equations are nothing but
the Gauss-Codazzi equation of Hasimoto surfaces ex-
pressed with respect to the geodesic coordinate system
(21). By this reason the Gauss-Codazzi equations of
the general case, (49) and (50), will be referred to as
the Codazzi-da Rios equations in space forms.

On the other hand, now we have Ṗ = ε2ε3κ, so
that the complex wave equation corresponding to (49)
and (50) boils down to

|Ψ|ss(1− ε2ε3) = i ε2ε3Ψt +Ψss

+ ε1ε3

(
|Ψ|2

2
+ ε3ρ

)
Ψ .

(51)

So we see that in the Euclidean space, M3
r (ρ) =

R3, (51) is nothing but the focusing nonlinear
Schrödinger equation, while in the Minkowsy 3-space
case, M3

r (ρ) = L3, we obtain the defocusing nonlin-
ear Schrödinger equation if ε2ε3 = 1.

For Hasimoto surfaces the energy Θ given in (41)
is nothing but Θ(γ) =

∫
γ κ

2 + µτ + λ. In R3, ex-
tremals of this functional are known to be centerlines
of a Kirchhoff elastic rods, [13]. The converse is also
true [10]. In other words, in R3 travelling wave so-
lutions of the Gauss-Codazzi-Da Rios equations (49)

and (50) determine Hasimoto surfaces Sγ whose ini-
tial conditions γ are centerlines of Kirchhoff rods.
They evolve under LIE by rigid motions and slippery
in R3, [13]. In [11] the notion of Kirchhoff elastic rods
is extended to riemannian space forms, M3(ρ), and
it is shown that centerlines of Kirchhoff elastic rods
provide solutions to the Euler-Lagrange equations for
Θ(γ) =

∫
γ κ

2 + µτ + λ in M3(ρ). This motivates
our definition after Proposition 5. Moreover, classi-
cal elasticae in M3(ρ) evolve by rigid motions and
correspond to soliton solutions of LIE. We also re-
mark that centerlines of Kirchhoff elastic rods can be
identified with magnetic trajectories of Killing mag-
netic fields in M3(ρ), [3].

6.2 Hopf Cylinders and Pure Binormal Evo-
lution in M3(ρ).

Consider now the binormal evolution equation given
by

xt = B (52)

in M3(ρ). In this case Θ given in (41) is nothing but

Θ(γ) =

∫
γ
κ+ µτ + λ .

Critical curves for Lagrangians of the form
Θηµλ(γ) =

∫
γ ηκ(s)+µτ(s)+λ, where η, µ, λ ∈ R,

have been used to construct models of spinning
relativistic particles, both massive and massless, in
Lorentzian backgrounds, [14]. If the ambient space
is a riemannian space form, M3(ρ), it is known that
a curve γ ∈ M3(ρ) is critical for Θηµλ, if and only
if, γ is a Lancret helix in M3(ρ) [1] (i.e., a curve
making constant angle with a fix unit Killing field in
M3(ρ)). Hence, Lancret curves evolve under (52)
by congruence and slippery. The most interesting
case is when M3(ρ) = S3(ρ) in which case Lancret
curves are geodesics of Hopf tubes. Also, one can
find a huge family of closed Lancret helices in S3(ρ)
giving rise, therefore, to compact binormal evolutions
surfaces in S3(ρ) verifying (52). However, these
surfaces will show self-intersections, in general.
Moreover the S3(ρ) background is the only case
in which the variational problem associated to the
total curvature energy, µ = λ = 0, makes sense,
[1]. Assuming without loss of generality ρ = 1,
critical curves of

∫
γ κ in S3(1) are characterized by

having torsion τ2 = 1. Hence, horizontal lifts via
the Hopf map of arbitrary curves β of S2(12) evolve
under xt = B by rigid motions and the corresponding
binormal surface is a Hopf tube of S3(1) shaped on β.
In this case we can find binormal Hopf Tori with no
self-intersections. Lorentzian versions of these results
can be checked in [4].
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6.3 Constant Mean Curvature Binormal
Evolution Surfaces

The most important extrinsic invariant for a surface is,
probably, the mean curvature, [7]. This motivates our
interest in studying binormal evolution surfaces with
constant mean curvature, −H .

Let Sγ ⊂ M3
r (ρ) be a binormal evolution sur-

face and consider the coordinate system given in (21).
Then, using (23), the mean curvature of a binormal
evolution surface Sγ admits the following expression
with respect to (21)

H =
1

2κṖ
(Ṗ [ε1ε2κ

2 + ε2ε3τ
2 − ε1ρ]− Ṗss) . (53)

Thus, we have that Sγ has constant mean curvature H ,
if and only if,

Ṗ [ε1ε2κ
2 + ε2ε3τ

2 − ε1ρ]− Ṗss = 2κṖH , (54)

for a fixed real number H ∈ R. Now, we focus on bi-
normal evolution surface such that the initial filament
curve γ evolves by rigid motions. We know that this
is equivalent to the fact that γ is critical for the energy
(41) with µ = 0, that is, for Θ(γ) =

∫
γ(P (κ) + λ)ds.

So, the Euler-Lagrange equations (42) and (43) for
µ = 0 must be verified. Then, combining (43) and
(54) we get

Proposition 9. Assume that a binormal evolution sur-
face Sγ is obtained from an initial filament γ un-
der evolution by isometries of M3

r (ρ). Then, Sγ has
constant mean curvature, H , if and only if, the ini-
tial filament γ is critical for the curvature energy
Θ(γ) =

∫
γ(κ− ε1ε2H)

1
2 ds.

As an immediate consequence, we obtain for mi-
nimal surfaces H = 0 (maximal, if the surface is
spacelike)

Corollary 10. Under the above conditions, a binor-
mal evolution surface Sγ is minimal (maximal), if and
only if, γ is critical for Θ(γ) =

∫
γ

√
κ ds.

Actually, constant mean curvature surfaces in R3

which are either rotational or helicoidal have been
known for some time. A classical result says that sur-
faces of revolution in R3 with constant mean curva-
ture are precisely the Delaunay surfaces, i.e., surfaces
of revolution swept out by the roulette of a conic: the
plane, cylinder, sphere, the catenoid, the unduloid and
nodoid. Helicoidal surfaces in R3 with constant mean
curvature have been classified in [6]. What Propo-
sition 9 is telling us is that the ”profile” curves, γ,
which span constant mean curvature Sγ evolving by

congruences in M3
r (ρ), are critical curves for the cur-

vature energy Θ(γ) =
∫
γ

√
κ− ε1ε2H ds, where H

is a constant. The variational problem associated to
Θ(γ) =

∫
γ

√
κ ds in R3 has been investigated by

Blaschke, [5], as an special case of a Radon problem.
Blaschke proved that extremals in R3 are a special
family of Lancret helices and, in particular, extremals
in R2 are catenaries. A more detailed analysis of this
variational problem in M3

r (ρ) will be done in a forth-
coming work.

7 Conclusions

In this work, we analyze the evolution of curves un-
der binormal flows with curvature dependent veloc-
ity in pseudo-riemannian 3-space forms, using fun-
damental facts of the theory of submanifolds. The
compatibility conditions for these systems are given
by the Gauss-Codazzi equations which are expressed
in terms of the curvature and torsion of the evolving
curves. Then, an existence result is derived from the
Fundamental Theorem of submanifolds. On the other
hand, travelling wave solutions of the Gauss-Codazzi
equations are shown to be equivalent to the Euler-
Lagrange equations of extremal curves for curvature
dependent energies under two constraints on the to-
tal torsion and the length (generalized Kirchhoff cen-
terlines). A characterization of generalized Kirchhoff
centerlines in terms of Killing vector fields give us the
key to construct binormal evolution surfaces by using
generalized Kirchhoff centerlines as initial conditions
for the evolution. Binormal surfaces obtained in this
way evolve without changing shape by congruences
and slippery. Finally, we particularize the previous
findings to three notable choices of the velocity which
give rise to Hasimoto surfaces, Hopf tubes, and con-
stant mean curvature surfaces, respectively
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