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Abstract: An adaptive control is a kind of modern control methods with great theoretical background and various
modifications. This control approach could be used for system with negative control properties such as nonlinear-
ity, non-minimum phase behaviour etc. The adaptive control in this paper is based on the recursive identification
of the external linear model as a linear representation of the originally nonlinear system. The control synthesis is
based on the polynomial approach together with the spectral factorization and the pole-placement method. The
identification model in the continuous-time uses differential filters and so called delta-models in the discrete-time.
There were tested also two types of control configurations with the one degree-of-freedom (1DOF) that has con-
troller only in the feedback part and with the two degrees-of-freedom (2DOF) where the controller is separated into
two parts the first is in the feedback and the second is feedforward part of the control loop. Paper shows usability
of this control approach by the simulations on the mathematical model of the continuous stirred-tank reactor with
the cooling in the jacket as a typical nonlinear system with lumped parameters.

Key–Words: Simulation, Mathematical Model, Adaptive control, Continuous-time model, Delta-model, Continu-
ous Stirred-tank Reactor, 1DOF, 2DOF.

1 Introduction
The continuous stirred-tank reactor (CSTR) is typi-
cal nonlinear equipment used in the chemical and bio-
chemical industry for production of various chemi-
cals, drugs etc. [1].

The modelling and simulation is great tool which
helps with the observing of the systems behaviour and
designing of the appropriate controller. The mathe-
matical model of CSTR is usually described by the set
of nonlinear ordinary differential equations (ODEs)
which can be solved mathematically for example by
the Runge-Kuttas method.

The adaptive control [2] used here for the con-
trol is one of the approaches used for the nonlinear
systems because it produces good control results. Ad-
vantage of this method can be found in very good the-
oretical background and variety of modifications [3].

The control synthesis uses polynomial approach
which satisfies basic control system requirements
such as a stability of the control loop, a reference sig-

nal tracking and a disturbance attenuation. There will
be used two control configurations. The first is basic
control configuration with one degree-of-freedom (of-
ten denoted as ”1DOF”) that has controller only in the
feedback part of the control loop. The second config-
uration, the two degrees-of-freedom (2DOF) configu-
ration has controller separated into two parts - the first
one is in the feedforward part as previous and the sec-
ond one is in the feedforward part that produces good
results in the reference signal tracking [10].

The approach used here is based on the choice
of the External Linear Model (ELM) which describes
controlled, originally nonlinear, process in the linear
way for example by the discrete or the continuous
transfer function (TF) [3]. Parameters of ELM are
then identified recursively during the control and pa-
rameters of the controller are recomputed according
to identified parameters of the system. The advantage
of used polynomial synthesis is that it produces the
structure and also relations for computing controllers
parameters that reflect identified parameters of ELM.
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Two identification models with the continuous-
time (CT) model [4] and special type of the discrete-
time (DT) model called delta/model [5] where dis-
cussed here. Parameters of input and output variables
are related to the sampling period. It was proved that
parameters of the delta model approach to parameters
of the CT model for sufficiently small sampling period
[6]. This combination of the continuous-time con-
trol synthesis with the discrete-time identification is
called Hybrid adaptive control and some applications
can be found for example in [7] and [8]. The recur-
sive least-squares method is used for online identifica-
tion. This method is widely used because it is easily
programmable in standard programming languages at
one hand but it produces sufficiently good identifica-
tion results with various modifications.

All results in this paper are simulations made in
the mathematical software Matlab, version 7.0.1.

2 Continuous Stirred-Tank Reactor
The system under the consideration is Continuous
Stirred-Tank Reactor (CSTR) with so called Van der
Vusse reaction inside [9]:

A→ B → C
2A→ D

(1)

The mathematical model of this system comes
from material and heat balances inside the reactor and
results in the set of four nonlinear ordinary differential
equations (ODE):

dcA
dt = qr

Vr
(cA0 − cA)− k1cA − k3c2A

dcB
dt = − qr

Vr
cB + k1cA − k2cB

dTr
dt = qr

Vr
(Tr0 − Tr)− hr

ρrcpr
+ ArU

Vrρrcpr
(Tc − Tr)

dTc
dt = 1

mccpc
(Qc +ArU (Tr − Tc))

(2)
The mathematical model described by the set of

ODE (2) have state variables concentrations cA, cB
and temperatures of the reactant Tr and the cooling
Tc. This system provides theoretically four input vari-
ables – a volumetric flow rate of the reactant, qr, a
heat removal of the cooling, Qc, an input concentra-
tion cA0 and an input temperature of the reactant, Tr0.
The last two are only theoretical and could not be used
as an input variable from the practical point of view.
The scheme of this chemical reactor is in Figure 1.

Due to the simplification of the mathematical
model, other variables are supposed to be constant

Figure 1: Scheme of the Continuous Stirred-tank Re-
actor

during the control. The volume of the reactor is de-
noted as Vr, Ar is the heat exchange surface, ρr is
used for the density of the reactant, U is the heat trans-
fer coefficient, cpc and cpr are specific heat capacities
of the cooling and the reactant a mc is the weight of
the cooling mass. Values of these fixed parameters are
in Table 1 [9].

The first step of the simulation is the steady-state
analysis which observes behaviour of the system in
the steady-state where state variable does not change.
This analysis can help us with the choice of the op-
timal working point for control. Experiments in [8]
have shown working point defined by the volumetric
flow rate of the reactant qsr = 2.4 · 10−3 m3.min−1

and heat removal of the cooling liquid Qsc = −18.56
kJ.min−1.

The second, dynamic, analysis then observes the
behaviour of the system after the step change of the
input variable, in this case the heat removal of the
coolant, ∆Qc. The observed output is on the other
hand the change of the reactants temperature, Tr, i.e.

u(t) = Qc(t)−Qs
c

Qs
c
· 100[%]

y(t) = Tr(t)− T sr [K]
(3)

Results for various step changes of the input vari-
able, u(t), which comes from the dynamic analysis for
the range ∆u(t) =< −100%; +100% > and results
are in Figure 2.

Results clearly shows, that all outputs could be
described by the second order transfer function (TF)
with relative order one in the polynomial form

G(s) =
b(s)

a(s)
=

b1s+ b0
s2 + a1s+ a0

(4)
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Table 1: Fixed parameters of the reactor
Volume Vr = 0.01 m−3

Density of react. ρr = 934.2 kg.m−3

Heat capacity of react. cpr = 3.01 kJ.kg−1.K−1

Hmotnost chladiva mc = 5 kg
Tepeln kapacita chladiva cpc = 2.0 kJ.kg−1.K−1

Transfer area Ar = 0.215 m2

Heat transf. coef. U = 67.2 kJ.min−1.m−2.K−1

Speed const. 1 k01 = 2.145 ·1010 min−1

Speed const. 2 k02 = 2.145 ·1010 min−1

Speed const. 3 k03 = 1.5072 ·108 min−1.kmol−1

Activ. energy 1 to R E1/R = 9758.3 K
Activ. energy 2 to R E2/R = 9758.3 K
Activ. energy 3 to R E3/R = 8560 K
Enthalpy 1 h1 = -4200 kJ.kmol−1

Enthalpy 2 h2 = 11000 kJ.kmol−1

Enthalpy 3 h3 = 41850 kJ.kmol−1

Input concentration of A cA0 = 5.1 kmol.m−3

Input temp. of reactant Tr0 = 387.05 K

This will be later used for identification in the
adaptive control.

3 Hybrid Adaptive Control
The control approach here is based on the term ”Adap-
tivity” known from the nature, where plant, animals
or even human beings adapts their behaviour to the
actual environment.

At first we will start with the control synthesis
which uses advantages of the polynomial synthesis
[10] that satisfies basic control requirements such as
stability, disturbance attenuation and reference signal
tracking. Moreover, this method produces not only
the structure of the controller, but also the relations
for computing of controllers parameters.

3.1 1DOF Control Configuration

The simplest, most common known control scheme
with one degree of freedom (1DOF) [11] is shown in
Figure 3. The controller is here represented by the
TF Q(s) and the controlled system is described by TF
G(s) from (4).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0- 4
- 3
- 2
- 1
0
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4
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5 0 %
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- 2 5 %
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y(t
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]

t  [ m i n ]

- 1 0 0 %

Figure 2: Results of the dynamic analysis for the var-
ious changes of the input variable ∆u(t)

w e

-

y
v

Q(s) G(s)u

Figure 3: One degree-of-freedom (1DOF) control
configuration

The signal w in Figure 3 is reference signal (i.e.
wanted value), v denotes disturbance, u is an input
and y an output variable. It can be seen, that controller
is here only in the feedback part.

The TF of this controller Q(s) is generally:

Q(s) =
q(s)

p(s)
(5)

where degrees of polynomials p(s) and q(s) must
hold properness condition:

deg q(s) ≤ deg p(s) (6)

The condition for the reference signal tracking is
satisfied if the polynomial p(s) in the denominator of
the controllers transfer functions (7) is divided into

p(s) = f(s) · p̃(s) (7)

where f(s) is a least common divisor of the refer-
ence and the disturbance transfer functions. If we have
these TF in the form of the step function, f(s) = s and
(7) could be rewritten into
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Q̃(s) =
q(s)

s · p̃(s)
(8)

Parameters of controllers polynomials and q(s)
are computed from Diophantine polynomial equation
[10]

a(s) · s · p̃(s) + b(s) · q(s) = d(s) (9)

and they can be solved by the Method of uncer-
tain coefficients. Polynomials a(s) and b(s) in (9) are
known from the recursive identification which will be
discussed in the next subchapter. The polynomial d(s)
on the right side of Diophantine equations (9) is stable
optional polynomial which could affect the quality of
the control.

Degrees of controllers polynomials p̃(s) and q(s)
and the degree of the stable polynomial d(s) are

deg q(s) = deg a(s)

deg p̃(s) = deg a− 1

deg d(s) = 2 · deg a(s)

(10)

3.2 2DOF Control Configuration

The second control configuration has two degrees-of-
freedom often denoted as 2DOF control configuration.
This configuration is displayed in Fig. 4 and it can
be seen that it has controller divided into two parts -
feedback Q(s) and feedforward R(s) parts.

w

- y
v

Q(s)

R(s)

G(s)

Figure 4: Two degrees-of-freedom (2DOF) control
configuration

Signals are similar to those in Fig. 3 and transfer
functions of the controller Q(s) and R(s) are in the
general form:

Q(s) =
q(s)

p(s)
, R(s) =

r(s)

p(s)
(11)

Degrees of polynomials p(s), q(s) and r(s) must
satisfied

deg q(s) ≤ deg p(s),deg q(s) ≤ deg r(s) (12)

Transfer functions in (11) could be rewritten with
respect to Equation (7) to

Q̃(s) =
q(s)

s · p̃(s)
, R̃(s) =

r(s)

s · p̃(s)
(13)

Parameters of unknown polynomials p̃(s), q(s)
and r(s) are computed similarly to 1DOF control con-
figuration from Diophantine equations

a(s) · s · p̃(s) + b(s) · q(s) = d(s)

t(s) · s+ b(s) · r(s) = d(s)
(14)

The Method of uncertain coefficients was used
again for computing of these parameters. Polynomial
t(s) in equation (14) is an auxiliary stable polynomial
and coefficients of this polynomial are not used for
computing of coefficients of the polynomial r(s).

Degrees of the unknown polynomials p̃(s), q(s)
and r(s) are

deg q(s) = deg a(s), deg p̃(s) = deg a− 1

deg d(s) = 2 · deg a(s), deg r(s) = 0
(15)

Polynomials a(s) and b(s) in (14) are known from
the recursive identification and the polynomial d(s)
on the right side of Diophantine equations (14) is
again stable optional polynomial which could affect
the quality of the control.

3.3 Desing of the Polynomial d(s)

As it was already mentioned, polynomial d(s) is op-
tional polynomial which could be designed for exam-
ple by the Pole-placement method, generally

d(s) =

deg d(s)∏
i=1

(s− si) (16)

where roots si are generally in the complex form
si = αi+ωi ·j and the stability is satisfied for αi < 0.
If we want to obtain an aperiodic output response, ωi
must hold 0 and (16) is then

d(s) = (s+ α)deg d (17)
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The equation (17) is very general which could
be disadvantage of this method there is no recom-
mendation for the choice of roots in polynomial d(s).
Our previous experiments [8] have shown that is good
co connect the choice of this polynomial somehow
with the controlled system. The Spectral factoriza-
tion could be used for this task and it means that the
polynomial d(s) is divided into two parts

d(s) = n(s) · (s+ α)deg d−degn (18)

where one part is classic pole-placement method
and n(s) comes from the Spectral factorization of the
polynomial a(s) in the denominator of the controlled
systems transfer function (4):

n∗(s) · n(s) = a∗(s) · a(s) (19)

Advantage of the Spectral factorization can be
also find in the feature, that the polynomial n(s) is
always stable even if the polynomial a(s) is unstable.
This could happen for example by inaccurate estima-
tion at the beginning of the control when an estimator
does not have enough information about the system.

4 Identification Models
It was already mentioned that the controller is based
on the adaptivity. There are several adaptive ap-
proaches used in the control theory. The one used here
is based on the online recursive identification of the
External Linear Model (ELM) of the originally non-
linear system. Parameters of the controller are then
recomputed according to identified parameters of the
ELM. ELM could be for example TF in the form of
(4).

There will be discussed two types of identification
models continuous-time (CT) and discrete-time (DT)
in the next subchapters.

4.1 Continuous-Time Identification Model

The ELM of the controlled system is described by
continuous-time TF G(s) (4) and this relation is also
described to the fraction of the the Laplace transform
of the output variable, Y (s), to the input variable,
U(s), the ELM in the (4) could be also rewritten to
the form

a(σ) · y(t) = b(σ) · u(t) (20)

where u(t) denotes the input variable, y(t) is the
output variable and σ is the differentiation operator.

The identification of CT model in (20) is prob-
lem because the derivatives of the input and the out-
put variables are immeasurable but they could be re-
placed by the filtered ones denoted by uf and yf and
computed from

c(σ) · uf (t) = u(t)

c(σ) · yf (t) = y(t)
(21)

for a new stable polynomial c(σ) that fulfils con-
dition deg c(σ) ≥ deg a(σ), the Laplace transform of
(21) is then

c(s) · Uf (s) = U(s) + o1(s)

c(s) · Yf (s) = Y (s) + o1(s)
(22)

where polynomials o1(s) and o2(s) includes ini-
tial conditions of filtered variables. If we substitute
(22) into the Laplace transform of the Equation (20),
the relation for the Laplace transform of the filtered
output variable, Yf (s) is

Yf (s) =
b(s)

a(s)
· Uf (s) + Ψ(s) (23)

and Ψ(s) is a rational function which contains ini-
tial conditions of both filtered and unfiltered variables.

The dynamics of the differential filters c(s) in
(20) must be faster than the dynamics of the controlled
system [12] which is satisfied if parameters of this
polynomial sufficiently small.

The values of filtered values are taken in the dis-
crete time moment tk = k · Tv for k = 0, 1, 2, . . . N .
Tv is sampling period and the regression vector has
n+m parts where deg a = n = 2 and deg b = m = 1,
i.e.

φCT (tk) =
[
−yf (tk) ,−y

(1)
f (tk) , uf (tk) , u

(1)
f (tk)

]T
(24)

The vector of parameters

θCT (tk) = [a0, a1, b0, b1]
T (25)

is computed from the differential equation

ynf (tk) = θTCT (tk) · φCT (tk) + ΨLQ (tk) (26)

where Ψ(tk) includes immeasurable errors.
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4.2 Discrete-Time Identification Model

The discrete-time identification model is better for
practical purposes – it is more simple to read input
and output variables in the defined time intervals then
continuously. We can find also compromise between
practically better DT model and more accurate CT
model in so called delta-models [8] that are special
types of DT models where input and output variables
are related to the sampling period.

A new complex variable γ is defined generally as
[13]

γ =
z − 1

β · Tv · z + (1− β) · Tv
(27)

for Tv as a sampling period and β an optional pa-
rameter which holds 0 ≤ β1. It is clear, that there
could be an infinite number of delta-models as there
is modifiability of β. One of the most used model is
Forward delta-model for β = 0 was used here.

The complex variable γ is then

γ =
z − 1

Tv
(28)

It was proved for example in [6], that parameters
of the delta-model approaches to the CT ones for suf-
ficiently small sampling period Tv.

In delta-models, the CT model (20) can be rewrit-
ten to the form

a′(δ) · y(t′) = b′(δ) · u(t′) (29)

where a(δ) and b(δ) are discrete polynomials and
their coefficients are different from those in CT model
but we suppose, that they are close to them because
the sampling period is sufficiently small.

The regression vector is in this case for TF (4):

φδ(k − 1) = [−yδ(k − 1),−yδ(k − 2), ,

uδ(k − 1), . . . , uδ(k − 2)]T
(30)

and the vector of parameters is then

θδ(k) =
[
a′1, a

′
0, b
′
1, b
′
0

]T (31)

Parameters of this vector are computed again
from the differential equation

yδ(k) = θTδ (k) · φδ(k − 1) + e(k) (32)

for e(k) as a general random immeasurable com-
ponent.

4.3 Identification Method

The last what needs to be described is the online iden-
tification method which satisfies the adaptivity of the
controller. The Recursive Least-Squares Method [14]
could be used because it is simple, accurate with mod-
ifications and it is also easily programmable.

This method is described in detail for example in
[7] of [8].

Advantage of this method can be found also in
the fact, that it could be easily modified with some
kind of forgetting factor - for example exponential or
directional. The constant exponential forgetting was
used in this work for online identification.

5 Simulation Experiment
Proposed adaptive controller with two identification
models was tested by simulation on the mathematical
model of CSTR presented in Chapter 2. Also, both
control configurations with one degree-of-freedom
(1DOF) and two degrees-of-freedom (2DOF) men-
tioned in chapters 3.1 adn 3.2 were tested.

Due to comparability, both simulations were per-
formed for the same simulation parameters. The sam-
pling period was Tv = 0.3 min, the initial covariance
matrix P(0) has on the diagonal 1 · 106 and starting
vectors of parameters for the identification was cho-
sen θCT (0) = θδ(0) = [0.1; 0.1; 0.1; 0.1]T . The sim-
ulation was performed for 750 min and there were
done 5 changes of the reference signal w(t) during
this time.

The controller needs some time for adaptation and
our previous experiments have shown that it is good
to insert the first change of the reference signal as an
exponential function instead of the step function. The
next changes were step functions The input signal u(t)
was limited to the values u(t) =< −75%; +75% >
due to physical limitations.

As it was mentioned, the tuning parameter for this
adaptive controller is the position of the root α. There
were observed courses of the output variable y for
three values of α = 0.05; 0.08 and 0.4 for both identi-
fication models and results are shown in the following
figures.

The first analysis was done for the CT identifi-
cation model where the filtered polynomial c(σ) was
c(σ) = s2 + 1.4s + 0.49 and both control configura-
tions.

Results in Fig. 5 - 8 show that the tuning param-
eter α affect mainly the speed of the control. Increas-
ing value of α produces quicker output response but
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Figure 5: The course of the reference signal w(t) and
the output variable y(t) for CT identification model
and various parameter α, 1DOF
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Figure 6: The course of the the input variable u(t)
for CT identification model and various parameter α,
1DOF

could end with small overshoots which is evident for
α = 0.4. On the other hand, a smaller value of α has
smoother course of the input variable u(t) in Figure 5
which is better from practical point of view.

The comparison of 1DOF and 2DOF control con-
figuration shows very similar results, the only differ-
ence can be found in the course fo the biggest value of
α = 0.4, where 2DOF control configuration reduces
overshoots after the step change of the reference sig-
nal w(t).

The second analysis for DT delta model was per-
formed for Forward delta model and the same tuning
parameters α and both 1DOF and 2DOF control con-
figurations.

Obtained results are very similar to those in the
previous analysis. The biggest value of α = 0.4
has again the quickest course but overshoots and their
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 w ,   y  ( �� = 0 . 0 5 ) ,   y  ( �� = 0 . 0 8 ) ,   y  ( �� = 0 . 4 )

Figure 7: The course of the reference signal w(t) and
the output variable y(t) for CT identification model
and various parameter α, 2DOF
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Figure 8: The course of the the input variable u(t)
for CT identification model and various parameter α,
2DOF

value depends on the height of the change. The course
of the input variable is smoother for the lower values
of tuning parameter. We can also say, that 2DOF con-
trol configuration has better control results mainly in
the suppression of the overshoot of the output variable
which can be compared in Figures 9 and 11.

As we want to compare and discuss the results
more in detail, not only from the visual results, the
control quality criteria Su and Sy were introduced.
These criteria took resulted input and output variables
and compute values of criteria from the relations:

Su =
∑N
i=2(u(i)− u(i− 1))2 [−]

Su =
∑N
i=1(w(i)− y(i))2 [K2]

(33)

where N =
Tf
Tv

and final time Tf − 450 min.
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Figure 9: The course of the reference signal w(t) and
the output variable y(t) for delta identification model
and various parameter α, 1DOF
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Figure 10: The course of the the input variable u(t)
for delta identification model and various parameter
α, 1DOF

Values of these criteria for all simultions can be
found in tables 2 and 3. Results are also displayed in
bar graps in Fig. 13 and 14.

Values of both control quality criteria validate our
previous assumptions. Bigger value of tuning param-
eter α produces better control results from the out-
put point of view - i.e. value of Sy is , which dis-
play difference between actual output y(t) and desired
(wanted) value w(t), is lower for bigger α. Oppo-
sitely, lower value of α is better from the input vari-
able point of view because it produces lower values of
Su.

Both studies have very good control results except
the beginning of the control. This is caused by the
inaccurate identification which starts from the general
point and it needs some time for adaptation. On the
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Figure 11: The course of the reference signalw(t) and
the output variable y(t) for delta identification model
and various parameter α, 2DOF
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Figure 12: The course of the the input variable u(t)
for delta identification model and various parameter
α, 2DOF

other hand, after initial 50min the controller does not
have problem with the online identification.

Courses of the identified parameters are in Fig-
ures 15 – 18. These figures show that recursive least
squares method used for identification has no prob-
lem with the identification except the beginning of the
control in the adaptation part.

6 Conclusion
The paper shows one approach for controlling of
the nonlinear process represented by the continuous
stirred-tank reactor with the cooling in the jacket. The
mathematical model of this reactor is described by the
set of four nonlinear ODE that are easily solvable by
the numerical methods. Proposed control strategy is
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Table 2: Values of control quality criteria Su [-] for
various α and both 1DOF and 2DOF control configu-
rations

Delta-model CT-model
α 1DOF 2DOF 1DOF 2DOF

0.05 60 522 23 939 10 001 277

0.08 34 476 390 13 056 373

0.4 67 757 1 704 23 435 2 202

Table 3: Values of control quality criteria Sy [K2] for
various α and both 1DOF and 2DOF control configu-
rations

Delta-model CT-model
α 1DOF 2DOF 1DOF 2DOF

0.05 1 513 1 732 1 006 1 254

0.08 994 1 232 632 887

0.4 266 453 134 312

based on the choice of the ELM parameters of which
are identified recursively during the control and pa-
rameters of the controller are recomputed according
to the identified ones.

The controller could be tuned by the parameter α
as a position of the root in the pole-placement method.
The simulation experiments have shown that the in-
creasing value of this parameter affect the speed of
the control and overshoots – bigger value of α results
in quicker output response but overshoots. Results are
also qualified with the control quality criteria Su and
Sy.

Two control configurations with one degree-of-
freedom (1DOF) and two degrees-of-freedom (2DOF)
were tested. 2DOF control configuration which has
one part of the controller in the feedback loop and the
second one in the feedforward part works better for
bigger values of parameter α.

Two identification models with delta-models and
differential filters were also discussed and compared.
We can say, that both models has good and compara-
ble results and they are suitable for this type of model
with negative properties such as strong nonlinear be-
haviour etc.

Figure 13: The course of the the input variable u(t)
for delta identification model and various parameter
α, 2DOF

Figure 14: The course of the the input variable u(t)
for delta identification model and various parameter
α, 2DOF
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