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Abstract:- The flow and temperature distributions for a column of materially buoyant fluid, referred to 
as a Cartesian compositional plume, rising in a less buoyant fluid contained between two parallel 
vertical planes are identified, and the material, heat, and buoyancy fluxes associated with them are 
discussed. The stability of the system to linear perturbations is investigated. It is found to depend on six 
dimensionless numbers. The stability is discussed to find that the plume is unstable in the whole 
parameter space except when the plume is close to a wall and its thickness exceeds a certain value 
determined by the parameters of the problem, in which case a small region of stability appears in the 
parameter space. 
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1 Introduction 
Plumes are columns of fluid moving in a specific 
direction transporting heat and / or material. They 
occur in many situations in real life. Fumes 
emanating from chimneys of industrial 
establishments or from fires and polluting the 
surrounding environment are one form of plumes 
[1]. Hot material rising from the deep earth interior 
through the mantle and emerging on the Earth’s 
surface as volcanoes is another form of a plume [2]. 
The freckles that appear in iron bars are air pockets 
created by a plume flow of the air trapped at the 
bottom when iron ore is poured down a mold or 
design [3].  

The wide application of plume flow has 
generated considerable interest among researchers. 
A simple experiment to illustrate a real situation of 
plume formation is the aqueous ammonium chloride 
solution chilled from below [4]. The cooling from 
below lowers the temperature until it reaches the 
melting temperature of the ammonium chloride 
when it forms crystals releasing the lighter 
component (water). This process forms a layer of a 
mixture of solid and fluid at the bottom of the 
solution, which is referred to as mushy layer. As 
time passes and more crystals form releasing more 
water, the mushy layer grows in thickness and 
eventually becomes unstable [5] and water escapes 
to the top in the form of thin plumes. We shall refer 
to these plumes as compositional plumes since they 

are a result of the difference in composition between 
the released water and the overlying melt of aqueous 
ammonium chloride. The occurrence of this 
phenomenon was clearly illustrated by the 
experiments of Copley et al. [6]. The need to 
understand the dynamics of mushy layers generated 
many studies (see, e.g., [7 - 27]). It is now 
established that mushy layers are generally unstable 
if they reach a certain thickness depending on the 
type of melt used. Ammonium chloride solution in 
water is the most common in experiments because it 
is transparent and observation and measurements are 
comparatively easier, although metallic and organic 
solutions have been studied (see, e.g., [10]). 

Observations of plumes rising from mushy layers 
can reach the top of the melt or break up after a 
certain height. In an attempt to understand the 
dynamics of such plumes, a number of studies have 
been carried out. Eltayeb and Loper [28] obtained a 
flow structure for a fully developed plume and 
studied the stability of a single plume rising in an 
infinite fluid to find that the plume is always 
unstable to linear perturbations. This is found to be 
true whether the plume is a finite column bounded 
by two vertical planes or in the form of a cylinder of 
circular cross-section [23, 29, 30]. Further studies 
on the dynamics of plumes, motivated mainly by 
geophysical applications, have been carried out on 
plumes under the influence of rotation and magnetic 
fields [23 - 25, 31 - 35]. It is noticeable that all the 
theoretical studies on the dynamics of these plumes 
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are in unbounded domains. The present study is an 
attempt to investigate theoretically the influence of 
boundaries on the dynamics of a plume. A simple 
model is developed taking into account the main 
factors that are expected to influence the plume 
rising in a bounded domain. The model is illustrated 
in Fig. 1. The Cartesian geometry is used because it 
provides analytic solutions that allow a detailed 
investigation of the influence of the various 
parameters of the problem on its dynamics. This is 
expected to give results with good qualitative 
agreement with the more realistic form of plumes, 
as has been shown in [29, 30]. 

 
 
Fig. 1. The geometry of the problem showing the 
profile of the basic state concentration of light 
material representing a plume of width, 02x , and 
concentration, 1 , rising vertically in a finite fluid of 
width, d  , and concentration ,  0. Two vertical 
planes bound the plume on either side such that the 
centre of the plume is a distance 1a  from the wall on 
the right and 2a  from the wall on the left. 

 
2 Formulation of the problem 
We consider a two-component incompressible fluid 
in which the concentration of the solvent component 
(light material) is C  and the temperature is T . The 
two fluids have the same kinematic viscosity,ν , and 
thermal diffusivity, κ . The system is governed by 
the equations of motion, mass, heat, concentration, 
and state. These equations are  
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where u  is the velocity vector, p  the pressure, g 
the uniform acceleration of gravity, ẑ  is the upward 
unit vector, t  the time , α  the coefficient of thermal 
expansion , β  the coefficient of compositional  
expansion , ρ  the density, mk  is the material 

diffusivity, ( ), ,r r rT Cρ  reference values, and we 
have assumed that the fluid is Boussinesq. The 
equations (1) - (5) allow a hydrostatic balance 
governed by  
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   Motivated by the experimental work on plumes 
rising from mushy layers, we take a temperature 
profile  

,h rT z Tγ= +                           (7) 
where γ  is a positive constant so that the 
temperature increases with height making the fluid 
stably stratified thermally and any instabilities will 
be due to transport of material.  
   We now cast the equations (1) - (5) into 
dimensionless form. It is found that in order to 
maintain the effects of temperature variations and 
compositional variations, we use the salt-finger 
length scale defined by 

1
4

,  L
g

ν κ
αγ
 

=  
 

                      (8) 

 and a velocity unit with the definition 
1
2gU C κβ

ανγ
 

=  
 
 ,                  (9) 

so that the ensuing motions are driven by the plume 
flow transporting the light material, C, upwards. 
Here C  is the maximum amplitude of the 
concentration of light material. We further choose 

Cβ α  , L U  and ( )
1

3 4
r C gρ β ν κ αγ  as units 

of temperature, time and pressure, respectively, and 
express the equations in dimensionless form as  
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   Here the dimensionless parameters , , mR σ σ   are 
known as the Grashoff number, the Prandtl number 
and the inverse Schmidt number. They are defined 
by  

, ,    .m
m

kULR νσ σ
ν κ ν

= = =          (14) 

   We define a Cartesian coordinate system 
( , , )O x y z in which Oz is vertically upwards and 

Ox , Oy are horizontal with the x -axis normal to 
the bounding walls. The model we examine here 
consists of a column of fluid of finite thickness, 
2 0x , rising vertically upwards in a fluid of different 
concentration and bounded on either side by vertical 
walls, a distance d  apart. We choose the origin 
such that the plume interfaces are situated at 

0x x= ±  and the walls at 2x a= −  and 1x a=  (see 
Fig. 1). The region is unbounded in the y  and z  
directions. In comparison with the plumes observed 
in experiments on mushy layers (see, e.g., [16]), our 
model is different in that it is unbounded in the y  
and z  directions. We feel that both assumptions can 
be adopted for the following reasons: First, the 
studies in [29, 30] showed good agreement between 
the stability results of the circular cylindrical plume 
and the Cartesian plume adopted here. Secondly, 
experimental work on mushy layers and the 
formation of plumes shows that fully developed 
plumes rise to heights 200 times their thickness 
[11], and we can approximate the situation for a 
fully developed plume by considering it infinite in 
the vertical direction.  
   We can now  take the flow variables to have the 
form  

†ˆ( , , , ) ( , , , ) ,= + +x y z t w (x) z x y z tε0u u   (15) 
†( , , , ) ( , , , ) ,rC x y z t C C(x) C x y z tε= + +   (16) 
†( , , , ) ( , , , ) ,hp x y z t p p(x) p x y z tε= + + (17) 
†( , , , ) ( , , , ) ,hT x y z t T T(x) T x y z tε= + + (18) 

such that the variables with subscript h represent 
hydrostatic balance and given (in dimensionless 
form) by 

( ) ,r
h r

z zT T
Rσ

−
= +

                    
(19) 

( ) ( )2

.
2

r r
h r

z z z z
p p

RC σβ
− −

= − +


          
(20) 

   The variables with an ‘overbar ‘are basic state 
variables dependent only on the horizontal 
coordinate x , because the horizontal variations of 
the vertical plume flow caused by the difference in 
composition between the plume and the surrounding 
fluid imposes a horizontal advection of temperature. 
The variables with a ‘dagger ‘indicate a perturbation 
of small amplitude ( )1ε <<  . 
   Substituting the expressions (15) - (18) into the 
system (10) - (13) , the terms independent of ε  give 
the basic state equations, which depend on x  only. 

2
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2
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(22) 

2

20 .m
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These equations are discussed in section 3 below. 
   To find the linearised perturbation equations, we 
subtract equations (21) - (23) from the equations 
(10) - (13) after substituting the variables (15) - (18)
. We are interested in investigating the linear 
stability, so we neglect the terms of order 2ε  to get 
the following linearised perturbation equations 
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The perturbation equations are solved in section 4 
below. 
 
3 The Basic State  
   The material diffusion is taken to be negligible 
within the plume. In the melt, diffusion is again 
generally small, with mσ  taking values of the order 

of 310−  [11]. We shall then neglect diffusion except 
when the plume is very close to the wall and 
motions between wall and plume possess small 
dimensions. In this situation diffusion is potent only 
in the boundary layer between plume and wall. It 
follows that for plumes away from the wall, material 
diffusion is negligible and the basic concentration 
can be chosen to possess a top-hat profile 

2 0

0 0

0 1

0 ,
( ) 1 , .

0 ,

a x x
C x x x x

x x a

− ≤ < −
= − ≤ ≤
 < ≤      

(28) 

   If the plume is very close to the wall, then we 
must use equation (23)  for the narrow region 
between the plume and the wall. We will consider 
the case in which the plume is close to the wall at 

2x a= − .The profile of the concentration is  

( )2 2 0

0 0

0 1

/ ,
( ) 1 , ,

0 ,

+ − ≤ < −


= − ≤ ≤
 < ≤

x a a x x
C x x x x

x x a

δ
     (29) 

in which the thickness of the layer between sidewall 
and plume is 

( )2 0 1 .a xδ = − <<                       (30) 

   Here we have imposed the condition that the 
concentration is continuous at the interface of the 
plume with the diffusive layer but its derivative is 
not as the matching occurs at the interface of a 
diffusive region with a diffusionless region. 

   Consider the basic state equations (21) and (22). 
Define  

( ) ( ) i ( ) .F x T x w x= −                     (31) 

Then 

2

20,   i i .d Fp F C
dx

= − =           (32) 

The solution is subject to the boundary conditions 

that F and 
dF
dx

 are continuous across the interfaces 

0x x= ±  , and F  vanishes on the sidewalls at 

2x a= −  and 1x a= . If the plume is not close to a 
boundary, this leads to the solution 

1
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   If the plume is close to the boundary and diffusion 
is potent in the narrow region between the plume 
and boundary, the basic state solution takes the form  
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where 4F  , 5F   and 6F   are given by  
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and ( )1A   and ( )3A   are 
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   A sample of the profiles of the solutions ( )T x  
and ( )w x  when the plume is not very close to the 
boundary is plotted for different values of the plume 
thickness  02x  in Fig. 2. The profiles are symmetric 
when the plume is situated half-way between the 
sidewalls. The oscillatory nature of the velocity 
profile introduces negative flow (i.e., downwards 
flow) within the plume when it is wide, and this has 
an effect on the net transport of material by the 
plume. The wide plume is also associated with a 
temperature profile that is almost uniform in the 
main body of the plume. If the position of the plume 
moves towards a sidewall, symmetry is broken. 
Here the downward flow outside the plume is 
partially suppressed in the narrow region between 
the plume and the nearest wall and strengthened on 
the far side. Such behaviour will lead to the 
modification of the modes of instability in the 
absence of the sidewalls. 

   When the solution (36) of the plume close to the 
boundary is compared with the solution obtained 
without invoking material diffusion near the 
boundary, we find that the two solutions are very 
close. A sample of the comparison is presented in 
Fig. 3. It may be concluded that the growth rate for 
which the basic state is important will not be 
affected by the material diffusion. 

 

 

Fig. 2.  The profiles of the basic state velocity , 
( )w x  , and temperature , ( )T x  ,  for different 

values of plume thickness ,  02x  , and distance , 2a  
, from the wall on the left when 10d =  .  (a) and (c) 
refer to  w  and T , respectively, when the plume is 
positioned half-way between the two sidewalls and 
the labels i, ii, iii correspond to 0 0.5, 2.0, 4.5x = , 

respectively.  (b) and (d) refer to w  and T  when 

2 2a =  and the labels iv, v, vi  correspond to  

0 0.5,1.0,1.8x = , respectively. Note that when the 
plume is wide, the flow is oscillatory within the 
plume and it slows down in the middle of the plume, 
while the flow of the plume is enhanced in the 
centre of the plume when the plume approaches the 
wall. 

The basic state solution is associated with fluxes of 
heat, HF , material, mF ,  and buoyancy, BF , which 
are non-dimensionalised using the units  

( )1/42 2 3 7 3/C gβ κ να γ , ( )1/42 3 3 3/C gβ κ να γ  , 

( )1/42 2 3 3/C gβ ακ νγ ,  respectively. They are 
given by 
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−


= 



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

∫

∫
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H
a

a

m B H m
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F w x T x dx
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The integration is straightforward and leads to  

0 1 2

0

2 sinh( )sinh( )sinh( )1 1Im ,
sinh(2 )2
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A kx ka ka
F

kxk   (41)  
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where 1HF  , 2HF  and 3HF  are given by  

2 2
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(45) 

and we have defined  

{ }
{ }

1 0 2 0 2

2 0 1 0 1

sinh[2 ( )] 2 ( )
,

sinh[2 ( )] 2 ( )

= + − + 


= − − − 

k x a k x a

k x a k x a

ψ

ψ
  (46) 

3 0 2 0 2
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2
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4 2 0 0 2 0
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2

= − − −k a x kx k a xψ  (48) 

 

Fig. 3. Comparison of the profiles of the basic state 
velocity and temperature for the cases of no 
diffusion ( broken curve) and with diffusion (solid 
curve) when the plume is close to a boundary , 

0.1δ =  , 10d =   and 0x  takes three values (a) 

0 0.1x = , (b) 0 0.3,x =  and (c) 0 0.5x = . Note that 
they are indistinguishable macrospically. In (d) we 
show a magnified part of the curve of the case in 
which the difference is most pronounced (i.e., when 

0 0.3x =  shown in (b) and the plume is very thin) 
and even in this case the two profiles are very close. 

 

 

 

Fig. 4.  The contours of the basic state fluxes of the 
top-hat bounded plume in the ( )2 0,a x plane ; (a) 

material flux, mF  , (b) heat flux , HF , (c) buoyancy 
flux, BF  and (d) buoyancy flux per unit area 
( 0/BF x  ) when 10.0d = . Note that the heat and 
material fluxes are larger at the sidewall, the 
buoyancy flux has a maximum value of 0.215, when 

2 0( , ) (1.22,1.22)a x ≈  and the buoyancy flux per 
unit area has a maximum 0.212 at 2 0( , ) (1,1)a x ≈ , 
and both maxima lie on the sidewall. The fluxes are 
shown for half the interval because they are 
symmetric about the middle plane between the 
sidewalls. 

   The fluxes are presented in the ( )2 0,a x  plane in 
Fig. 4. The presence of the sidewalls has 
complicated the behaviour of the fluxes as 
compared to the case of infinite surrounding fluid. 
For a fixed position of the plume (i.e., fixed 2a ) 
relative to the wall, gradual increase in the thickness 
of the plume is associated with an increase in the 
downward heat flux. For plumes of thickness less 
than about 2.0, the heat flux is almost a constant as 
the plume moves towards a sidewall. For plumes 
with larger thickness, the heat flux increases as the 
wall is approached. The upward material flux 
behaves similarly if the distance from the wall is 
less than about 4.5. For larger distances from the 
sidewalls, the material flux increases as 0x  
increases from zero reaching a maximum before it 
decreases to a minimum and starts to increase again 
to a larger value as 0x  approaches 2a  and the plume 
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interface approaches a sidewall. The buoyancy flux, 
which is the net system flux, possesses two local 
maxima and a minimum. The local maximum with 
the largest value is situated on the boundary at 

0 1.3x = , while the other one is situated half-way 
between the two sidewalls and about the same value 
of 0x . The minimum occurs for 0 3.7x =  and lies 
half-way between the sidewalls. The buoyancy flux 
per unit area, illustrated in (d), has the same general 
behaviour as the buoyancy flux but the positions of 
the two local maxima and minimum are different.  

4 Solution of the eigenvalue problem 
   In this section, we solve the eigenvalue problem 
posed by the perturbation equations (24) – (27) and 
the boundary conditions to obtain expressions for 
the growth rate. Our interest lies in the instability 
produced by the buoyant fluid in the plume. We 
assume that the interface at the plane 0x x= is 
given a small harmonic disturbance of the form  

( )0 exp i ( ) . . ,x x t my nz c cε= + Ω + − +   (49) 

where m  and n  are the horizontal and vertical 
wavenumbers, . .c c refers to the complex conjugate, 
and Ω  is a complex constant, which can be 
expressed as   

ii .rΩ = Ω + Ω                        (50) 

rΩ  and iΩ  will be referred to as the real and 
imaginary parts of Ω . The stability of the plume is 
determined by the sign of rΩ . If it is negative for 
all possible values of the wavenumbers m and n , 
then the plume is stable, but the system is rendered 
unstable if any pair ( m , n ) of wavenumbers gives a 
positive value of  rΩ . If the preferred mode occurs 
for m , n  both non-zero, it is referred to as a 3-
dimensional mode but if any one of them vanishes it 
is 2-dimensional. If the maximum value of rΩ  
vanishes, the plume is neutrally stable.  

   The disturbance (49) will propagate into the 
system, and affect the second interface and the 
variables of the system to produce the perturbations. 
The disturbance at the interface 0x x= − can be 
written in the form 

( )0 1 exp i( ) . .= − + Ω + − +x x t my nz c cεη  (51) 

where 1η  determines the displacement of the 
interface at 0x x= − , and will be determined by the 
solution. 

The perturbation variables produced by the 
disturbance (49) can be expressed in the form 

{ } { }
( )

† † † †, , , i , , , , , i

exp i ( )

= − −

= Ω + −

C T p n u nmv w C T np E

E t my nz

u
(52) 

where the factors in− , nm , and in− are 
introduced in the variables u , v and p , 
respectively, for convenience.  

   Substituting the variables (52) into (24) – (27), we 
obtain the following ordinary differential equations 
in x  

2 0 ,Du m v w− + =                  (53) 

,u Dp R u∆ − = Ω                   (54) 

,v p R v∆ − = Ω                       (55) 

( )2 i ,w T C n p R w n u Dw∆ + + + = Ω − (56) 

( )i .T w R T nu DTσ∆ − = Ω −
         

(57) 

The equation for the concentration of light material 
will depend on whether the plume is away from the 
boundary, in which case diffusion is neglected, and 

0 ,CΩ =                            (58) 

or very close to a boundary, in which case diffusion 
is potent in the small region between the plume and 
boundary, and 

i ,
m

Rn u C
δ σ
 

− = ∆ 
 

                     (59) 

in the region between plume and boundary. Here we 
have used 

2 2 2

2 2

,  
.

, i ( )

= + ≡ 

∆ ≡ − Ω = Ω− 

db m n D
dx

D b n w x           
(60) 
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The boundary conditions across the interfaces are 
(see, [23, 29]) 

0

, , , , , , ,
,

are continuous across

=± 

u v w T p C Dv DT
x x        (61) 

( ) ( )
{ }

0 0 0 0

0 0 1 0 0

( ) ( ),

( ) ( ) ( ) ( )

+ − + −

+ − + −

′ ′− = − 


′ ′− − − = − − − 

w x w x C x C x

w x w x C x C xη
(62) 

[ ]
0 0

0 0 1

i ( ) i ( )
.

i ( ) i ( )
− =Ω− 

− − = Ω− − 

n u x nw x
n u x nw x η           (63) 

In addition, the sidewalls are maintained at the 
hydrostatic temperature so that 

1 20 at , .= = = = −u =v =w T =C x a x a  (64) 

   It was found that it is useful to derive the 
following three equations. First, differentiate (55) 
once and subtract (54) to get  

i ,  , ∆ = − + Ω = − R nv Dw Dv uς ς ς
  
(65) 

where ς  is related to the vertical component of 
vorticity. Secondly, differentiate (53) once and 
subtract (54) to obtain  

( )2 2n u m D w p R uς= − + − Ω .           (66) 

Thirdly, apply the operator ∆  to (53) and use (54) - 
(56) to find  

2i .p T R n u Dw∆ − =                   (67) 

   The previous studies on a compositional plume 
showed that the plume flow is unstable for small 
value of Grashoff number [29, 30]. This 
dimensionless number measures the strength of the 
plume, resulting from the maximum amplitude of 
the basic concentration. It transpires that instability 
is also present for small values of R  here too. We 
then write 

 

( ) ( )
0

1

1

, , , , , ,
,

∞

=

∞
−

=


= 


Ω = Ω


∑

∑

r
r

r

r
r

r

f x y z t f x y z t R

R     
(68) 

where ( ), , ,f x y z t  indicates any of the 
perturbation variables u , v , w , ,p C  and  T .  

   Substituting the expressions (68) into the system 
(53) - (59)  and the associated boundary conditions 
(61) - (64), and equating the coefficients of rR ( 
r = 0 , 1 , 2 , ….) to zero we get systems of ordinary 
differential equations which can be solved 
successively to find an expression for the growth 
rate. The two systems obtained for 0R  (referred to 
as Problem 0) and 1R  (referred to as problem 1) are 
sufficient to determine the stability of the interfaces, 
to leading order. The analysis showed that problem 
0, with a growth rate ( )1O   on the convective time 
scale is not affected by the basic state functions 
( ) ( ),w x T x  but diffusion is important when the 

plume is close to a sidewall. The analysis of both 
cases shows that instability is present only in part of 
the parameter space, and it is necessary to consider 
the next order of the growth rate governed by 
Problem 1. The growth rate at ( )O R  is strongly 

dependent on the basic state variables ( ) ( ),w x T x  
and since the basic state is very slightly affected by 
diffusion (see Fig. 3), diffusion does not play an 
important role at this stage and the details of the 
analysis with diffusion is therefore not included in 
Problem 1.  We will consider the solutions of the 
two problems and then discuss the results in section 
5 below. 

4.1 Problem 0   
   We will first consider the case when the plume is 
not too close to a sidewall and diffusion is 
negligible. Here equation (58) gives  

( ) 0 .C x =                             (69) 

   The coefficients of 0R  in the system (53), (55) - 
(57) ,(66) - (67)  then consist of the equations  

2
0 0 0 0 ,Du m v w− + =

                
(70) 

0 0 0 ,v p∆ − =                          (71) 

2
0 0 0 0 ,w T n p∆ + + =                   (72) 

0 0 0 ,T w∆ − =                         (73) 

0 0 0,∆ − =p T                         (74) 
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( )2
0 0 0n u D w p= − + ,                 (75) 

noting that (65)  and the appropriate conditions 
imply  that 0 0ς =  everywhere. Taking note of (75), 
the boundary conditions can then be expressed as 

( )0 0 0 0 0

1 2

0 ,
at ,

′ + = = = =


= = − 

w p v w T
x a x a          (76) 

( )0 0 0 0 0 0 0 0

0

, , , , , , ,
are continuous across

′′ +


=± 

v w T p Dv T w p
x x     (77) 

( ) ( )
{ }

0 0 0 0 0 0

0 0 0 0 1 0 0

( ) ( )

( ) ( ) ( ) ( )

+ − + −

+ − + −

′ ′− = − 


′ ′− − − = − − − 

w x w x C x C x

w x w x C x C xη
(78) 

0 0 1 0

0 0 1 0 1

i ( ) i ( )
.

i ( ) i ( )

− =Ω − 
 − − = Ω − −   

n u x nw x

n u x nw x η        
(79) 

   When the plume is very close to a wall and the 
basic concentration given in (29) is continuous, the 
second condition of (78) is replaced by  

( ) ( )0 0 0 0 0 .Dw x Dw x+ −− − − =            (80) 

We operate on equation (72) with ∆ , and use 
equations (73) and (74) to get 

3 2
0 0 0 0 .w w n w∆ + ∆ + =                 (81) 

   The solution of the system (71) - (75) subject to 
the boundary conditions (76) - (79) is given by  

{ } { }
3

( ) 3 2 ( )
0 0 0 0

1

( ) ( ) ( )

, , , ( ) 1, , ,
,

cosh( ) sinh( )
=


= 


 = +  

∑i i
j j j j

j

i i i
j j j j j

v w T p x

A x B x

µ µ µ χ

χ λ λ  
(82) 

3
( ) ( )
0

1

( ) ( ) ( )

( )
,

sinh( ) cosh( )
=


= 


 = + 

∑i i
j j

j

i i i
j j j j j

u x

A x B x

λ υ

υ λ λ   
(83) 

where the superscript ' 'i  in the solution refers to the 
region of the problem defined by 

        

2 0

0 0

0 1

1 ;
2 ; ,
3 ;

a x x
i x x x

x x a

− ≤ < −
= − ≤ ≤
 < ≤    

(84) 

(see Fig. 1) and jµ  ( 1, 2,3j =  ) are the roots of 
the cubic equation 

3 2 0 ,j j nµ µ+ + =               (85) 

with jλ  given by  

2
j j bλ µ= + .                (86) 

   The constants ( )i
jA  and ( )i

jB  for ( , 1, 2,3i j = ) 
are given by  

2(1) 1 1
1

1
0 1

sinh( )
sinh( ) ,

sinh{ ( )}

− +

±

− 
 = +  


= ± 

j j
j j j

j

j j

F a
A S S

d

S x a

λ
η

λ

λ        
(87) 

 

1 2
2 1 1(2)

2
0 2

sinh( ) sinh( )
sinh( )

sinh{ ( )}

− −

±

 − −  = 

= ± 

j j j j j
j

j

j j

F a S a S
A

d

S x a

λ η λ

λ

λ

(88) 

1(3) 2 2
1

sinh( )
,

sinh( )
+ − = + 

j j
j j j

j

F a
A S S

d
λ

η
λ      

(89) 

2(1) 1 1
1

cosh( )
,

sinh( )
− +−

 = + 
j j

j j j
j

F a
B S S

d
λ

η
λ    

(90) 

1 2
2 1 1(2)

cosh( ) cosh( )
sinh( )

− − − + = j j j j j
j

j

F a S a S
B

d
λ η λ

λ
(91) 

1(3) 2 2
1

cosh( )
,

sinh( )
+ −−

 = + 
j j

j j j
j

F a
B S S

d
λ

η
λ     

(92) 

with  

2

2 .
(2 3 )

j
j

j j

F
n

µ
λ µ

=
+                  

(93) 

   The application of the boundary conditions (79) 
gives an expression for the growth rate 1Ω  and the 
displacement of the interface 1η : 
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( ) ( )2
1 1 1 2i i 0 ,n S n SΩ + Ω + =      (94) 

( )1
1 0

,
i ( )

j

j

N
n w x M

η −

+

−
=

Ω − − +         
(95) 

in which  

1 0 0( ) ( ) ,j jS N M w x w x+ += + − − −      (96) 

2 0 0{ ( )}{ ( )} ,+ + − −= − − − −j j j jS N w x M w x N M   
(97) 

3
1 2

1

2
0 2

sinh( ) ,
cosh{ ( )}

− ±
±

=

±

− 
= 


= ± 

∑ j j
j j j

j j

j j

F
N S C

d

C x a

λ
λ

λ           
(98) 

3
2 1

1

1
0 1

sinh( ) .
cosh{ ( )}

− ±
±

=

±

− 
= 


= ± 

∑ j j
j j j

j j

j j

F
M S C

d

C x a

λ
λ

λ          
(99) 

Thus 

 
( ) 2

1 1 1 2
i ,  4 .
2

Ω = − ± = −p p
n S D D S S

 
(100) 

   The properties of the roots of the cubic equation 
(85) render ,j jN M± ±  real and hence the 

discriminant pD  is real. It follows that 1Ω  is 

imaginary if 0pD ≥  and complex when 0pD < . In 
the absence of the sidewalls, the two modes are such 
that the two interfaces of the plume are either in 
phase giving a sinuous solution or out-of-phase 
giving a varicose solution. In both cases,  1Ω  is 
imaginary and the disturbances are neutral at this 
level of approximation of the growth rate.  The 
introduction of the boundaries has destroyed the 
symmetry unless the plumes are situated halfway 
between the sidewalls.   

   It is informative to establish the relationship 
between the modes of the bounded plume defined 
by (100) and those of the unbounded one 
particularly that we expect the modes of the 
bounded plume to reduce to sinuous and varicose 
when the plume is positioned half-way between the 
two sidewalls. We take the limit 1 2,a a →∞ , and 
find that 

23

2
1

1 2

10 ,
,2 (2 3 )

as   ,

+ −
=


→ → 

+ 
→∞ 

∑ j j
j j

j j

E
N N

n
a a

µ
µ

   
(101) 

23

2
1

1 2

10 ,
,2 (2 3 )

 as   ,

+ −
=


→ → 

+ 
→∞ 

∑ j j
j j

j j

E
M M

n
a a

µ
µ

   
(102) 

( )

1 0
223

2
2 0 2

1

1 2

2 ( )

1( ) ,
2 (2 3 )

as   ,
=

→ − 


  
→ −   +  

→∞ 

∑ j j

j j

S w x

E
S w x

n

a a

µ
µ

 
(103) 

and 
223

2
1

1 2

,(2 3 )

as   ,
=

 
→   +  


→∞ 

∑ j j
p

j j

E
D

n

a a

µ
µ

             
(104) 

where jE  is defined by 

02e .j x
jE λ−=                         (105) 

   Substituting these expressions into the equation 
(100) for 1Ω , we get  

1

23

1 0 2
1

1 2

1

1i ( ) .
2 (2 3 )

as   ,
=

→ 


  Ω → ± +  
→∞ 

∑ j j

j j

E
n w x

n

a a

η

µ
µ

m

 
(106) 

   The growth rate (106) is the same as the growth 
rate of the Cartesian plume obtained in [29] and the 
values of the displacement 1η  shows that the phase 
of the interface at 0x x= −  is either out-of-phase 
(varicose mode) with 1η = −  or in-phase (sinuous 
mode) with 1η = . It thus follows that the upper 
sign in (100) refers to a modification of the varicose 
mode, which we shall refer to as the modified 
varicose mode (MV) while the other will be denoted 
by the modified sinuous (MS) mode. The growth 
rate will be denoted by ( )kΩ , where ,k MV MS=  
for the modified varicose and sinuous modes, 
respectively. 
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   If the plume is close to the boundary then the 
concentration must obey the equation 

0 0 0 0i ,    ,
m

RC n uα α
δ σ

∆ = − =       (107) 

in the thin region enclosed by the sidewall and the 
plume. This equation is solved subject to the 
conditions that the concentration must vanish on the 
boundary and is continuous at the interface of the 
plume. The equation (107) is coupled with those of 

0 0 0, ,p w T  through 0u . If we eliminate all the 
variables in favour of 0w , we obtain  

( )5 3 2 2
0 0i 0n n D wα∆ + ∆ + ∆ − = ,        (108) 

and the zero order variables here are  

{ } { }
5

(1) 4 3 2 (1)
0 0 0

1

(1) (1) (1)

, , ( ) , ,

cosh( ) sinh( )
=


= Φ 


 Φ = Λ + Λ  

∑ j j j cj
j

cj j j j j

w T p x

A x B x

ν ν ν
(109) 

{ } { }
5

(1) (1)
0 0 0

1

(1) (1) (1)

, ( ) , i

sinh( ) cosh( )
=


= − Λ Φ 


 Φ = Λ + Λ  

∑ j j sj
j

sj j j j j

u C x n

A x B x

ν α
(110) 

where ( 1, 2,3, 4,5)j jΛ =  are the roots of  

5 3 2
0

2 2

i 0
,

+ + − Λ = 


= Λ − 

j j j j

j j

n n

b

τ τ τ α

τ
        (111) 

with a positive real part. The solutions in regions 2 
and 3 are the same as those given by (82) and (83) 
for the diffusionless case, noting that 0C =  in both 
regions 2 and 3. 

   The application of the boundary conditions leads 
to the growth rate which has the form 

 ( ){ }1 0 0 2 0i ( ) , , , ,Ω = +Ωcn w x x a d α     (112) 

where the expression ( )0 2 0, , ,Ωc x a d α   is 
complex and it depends on the parameters of the 
system. The growth rate (100) and (112) will be 
discussed in section 5 below. 

4.1 Problem 1   
   The coefficients of 1R  in the perturbation 
equations (54) - (57) , (65) - (67) give the set  

1 ,uu M∆ =                     (113) 

1 1 ,Vv p M∆ − =                   (114) 
2

1 1 1 ,ww T n p M∆ + + =            (115) 

1 1 ,TT w M∆ − =                   (116) 

1 1 ,pp T M∆ − =                      (117) 

( )2 2
1 1 1 1 1 0 ,n u m D w p uς= − + −Ω    (118) 

( )2
1 0 0i ,  m w n v Dwς∆ = − −

      
(119) 

in which 

( )
( )
( )

( )

1 1 0

1 0

1 0 0

0

1 0 0

i

i

i i .
2i

i i

= + Ω − 


= Ω − 
= Ω − − 
= 
= Ω − − 

u

v

w

p

T

M Dp n w u

M n w v

M n w w n u Dw
M n u Dw

M nw T n u DTσ σ
 

(120) 

The associated boundary conditions are  

1 1 1 1 1

1 2

( ) 0
,

at ,
= = = + = 

= = − 

v w T D p w
x a x a       (121) 

1 1 1 1 1 1 1 1 1

0

, , , , , , , ( ) ,
are continuous across

′ ′ ′ ′+ 


= ± 

v w T p v T w p w
x x   (122) 

2 1 0 2 1 1 0i ( ) , i ( )nu x nu xηΩ = − Ω = − − . (123) 

   The non-homogeneous system (113) - (119) can 
be solved in the usual form of a sum of 
complementary function and particular solution. 
Then the application of the boundary conditions 
(121) - (123) gives a dispersion relation for the 
growth rate 2Ω  . Since we are here interested 
mainly in obtaining an expression for the growth 
rate of the disturbance, we can restrict the efforts to 
deriving the solvability condition for the non-
homogeneous system, which will lead to our 
requirement. The calculations lead to the growth 
rate 2Ω   

( )
( )

( )
1 3( ) ( ) ( )( )

2 0
12

( )i
ˆ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2( 1)

=

 
 Θ + Φ∑ 
 

Ω = + +∫
−

Θ = +

Φ = + + +

 
 
 

k a
k k kk

j
a j

k C j
f

dx g M
n

k k k kH M Mp w

k k k k kH M M Mp w Tj j j j

η

µ µ

 (124) 
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where k takes the symbols MV  or MS  and  ( )kf η  

, ( )kH  ,  ( )k
jH ,  jC  , ( )ˆ kg  and  ( )

0
kM  are given 

by  

( )
( )

2( )
1

1 ,
1

k

k
f η

η
=

+
                   

(125) 

1 2 0
( ) ( )

1 1 3 0 0

2 0 1

( )
1 1 2

( )
2 2 1

3 0

;

;
;

,
cosh[ ( )]

cosh[ ( )]
cosh[ ( )]

− − ≤ < − 


= − − − ≤ ≤ 
 < ≤ 


= + 

= − 
= + 



 









k k

k
b

k
b

a x x
H x x x

x x a

F b x a
F b x a

b x x

η

 (126) 

1 2 0

( ) ( )
1 1 3 0 0

2 0 1

( )
1 1 2

( )
2 2 1

3 0

;

;

;
,

cosh[ ( )]

cosh[ ( )]

cosh[ ( )]

− − ≤ < −


= − − − ≤ ≤ 
 < ≤ 


= + 
= − 
= + 



 









j

k k
j j j

j

k
j j j

k
j j j

j j

a x x

H x x x
x x a

F x a

F x a
x x

η

λ

λ

λ

 (127) 

2

2 ,
3 2

−
=

+j
j

nC
n µ

                    (128) 

( ) ( ) ( )
2 1ˆ ( ) ( ) ,= − +k k kg g a g a            (129) 

( )
1

2

( ) ( ) ( ) ( ) ( )
0 1 0i i

−

= Ω −∫
a

k k k k k

a

M n f n w u G dxη
  (130) 

 and  ( )
1

k
bF  , ( )

2
k

bF  , ( )
1

k
jF  , ( )

2
k
jF , ( )

2( )−kg a   , 
( )

1( )kg a   and ( )kG are defined by 

( )
( ) 1 1 0

1
1 0

sinh( ( ))1 ,
sinh( ) sinh( ( ))

 +−  =  
+ −  

k
k

b

b a x
F

bd b a x
η

  (131) 

( )
( ) 1 2 0

2
2 0

sinh( ( ))1 ,
sinh( ) sinh( ( ))

 −−  =  
+ +  

k
k
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   It is noteworthy that because of the properties of 
the cubic equation for µ ,  the zeroth order variables 
are all real. For wavenumbers for which the zeroth 
order solution is neutrally stable, 1Ω  is purely 
imaginary and the non-homogeneity of the 
equations of problem 1 are all imaginary. It then 
follows that the variables with subscript 1 are all 
imaginary. When we employ this result into the 
expression for 2Ω , we find that 2Ω  is real, and 
consequently it will determine the stability of the 
plume outside the unstable regions of the zeroth 
order.  

5 Discussion 
   The growth rates given by the expressions(100), 
(112) and (124) were computed in the parameter 
space ( )0 2 0, , , , ,x a m nσ α .  For a given set of the 

parameters 0 2 0, , ,x a σ α , the growth rate is 
maximized over m  and n . The maximum value, 

cΩ , of ( )2Re Ω  and the corresponding 

wavenumbers ,c cm n  and the vertical wave speed 
( Im( ) / )c c cU n= Ω  define the preferred mode of 

instability for that set of parameters.  

   First we consider equation (100). This mode is 
independent of σ  and 0α . As we mentioned 
previously, the stability of the plume at the leading 
order of approximation depends on pD .  
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Fig. 5.  The contours of the discriminant , pD , for a 
plume in the absence of diffusion in the 
( ),m n plane when 0 0.2, 10.0x d= =  for two 

different values of 2a : (a) 2 0.3a = and  

(b) 2 2.0a = .  pD  here is scaled by 210  for ease of 
presentation. Note that a region of negative values 
of the discriminant appears in the plane when the 
plume is close to the wall as in (a), which indicates 
instability of the plume at zero order.  

 

Fig. 6.  The preferred mode of instability, when 
diffusion is negligible, with growth rate of order 
( )1O  as a function of the distance from the 

sidewall, 2 0a x−  , for four different values of 0x  ; 
( )i  = 0.1 , ( )ii  =  0.2  , ( )iii = 0.3 and ( )iv  = 0.4 
, when 10d = . Note the dependence of the 
magnitude of the growth rate on the thickness of the 
plume and its distance from the wall.  

 

   In Fig. 5 we show the isolines of pD  in the 
wavenumber plane for some representative values of 

0x  and 2a . It is found that pD  is negative for small 

values of 0x  and 2 0a x−  indicating that instability 

at zeroth order is possible only if the plume is very 
thin and is close to the wall. Indeed, the 
maximisation of the growth rate (100) when 

0pD <  shows that instability is possible only for 

values of 2 0a x−  not exceeding 0.25 and the 
unstable modes are two-dimensional and propagate 
vertically upwards (Fig. 6). In the calculations, the 
discrimnant and the growth rate are scaled up by 

210  as adopted by previous authors, in order to 
facilitate comparison with the results in the absence 
of boundaries.  

   Next, we consider the expression when plumes are 
close to the wall and diffusion is important. The 
maximisation of the growth rate here shows that 
instability is again limited to short distances from 
the sidewall (Fig. 7). However, the growth rate is 
larger in magnitude than in the absence of diffusion 
and extends to a larger distance from the boundary.  

   Computations of the growth rate (124) showed 
that the plume is always unstable at a growth rate of 
( )O R . The maximum growth rate at any particular 

point in the parameter space ( )0 2, ,x a σ  can belong 
to the MS or the MV mode depending in a 
complicated way on the relative magnitudes of the 
parameters. As any one parameter is varied keeping 
the other two fixed, the preferred mode of one type 
can change when the parameter reaches a certain 
value to the other mode. Moreover, variations of a 
parameter can also lead to a mode of particular type 
(i.e., MS or MV) changing from two-dimensional to 
three-dimensional or the reverse when the parameter 
increases through a certain value. This is due to the 
fact that the expression (124) can possess more than 
one local maximum and as the parameter is 
increased, the larger of the two maxima decreases 
and the smaller increases until a value is reached 
when the smaller one overtakes the originally larger 
one and becomes preferred. Fig. 8 illustrates such 
behaviour for a sample of the parameters. 

   In Fig. 9 we illustrate the dependence of the 
preferred mode of instability on the Prandtl number, 
σ , in a way that allows comparison with the 
limiting case of no sidewalls. For small values of the 
Prandtl number the MS mode is preferred while the 
MV mode is preferred for large Prandtl numbers. 
This agrees well with the case of no sidewalls [30]. 
The value, 0σ  of the Prandtl number at which the 
mode changes from MS to MV depends on the 
distance between the plume and the nearest wall.  
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Fig. 7.  The preferred mode of instability with 
growth rate ( )1O   as a function of the distance 

from the sidewall, 2 0a x−  , when the plume is close 
to the wall and diffusion is present. Here 

0 1000α = , 10.0d =  and the curves labelled i, ii, 
iii refer to 0x  =0.1, 0.3 1.0 respectively. Note the 
dependence of the magnitude of the growth rate on 
the thickness of the plume and its distance from a 
wall. In all cases, the instability is two-dimensional 
(with 0cm = ). 

 

Fig. 8. Contours of the growth rate of the modes 
MV, as in (a) and (c),  and MS, as in (b) and (d),  in 
situations when the preferred mode changes from 
one type to another. Here 0 2.0x =  , σ = 10.0 , and 

10d = , and  2 3.0a =  for  (a), (b) and 2 5.0a =  for 
(c), (d). (a), (c) refer to the MV mode and (b) , (d)  
refer to the MS mode.  Note that the MS mode is 
preferred for 2 3.0a =  and the MV mode is 
preferred when 2 5.0a = .  

 

Fig. 9. Illustration of the influence of the sidewalls 
on the stability of the Cartesian plume. The 
preferred mode as a function of Prandtl number,σ  , 
when 0 2.0x =  and the plume is situated halfway 
between the sidewalls (i.e., 1 2a a= ) . The curves i 
and ii refer to two different distances between the 
sidewalls: (i) 10d = , and (ii) 20d = .   The solid 
curve refers to the MS mode while the broken one 
refers to the MV mode. Note the decrease in the 
growth rate as the distance d  between the sidewalls 
is reduced. The presence of the boundaries also 
decreases the range of σ  for which the MS mode is 
preferred. 

 

Fig. 10. The preferred mode parameters as a 
function of 0x  for 7.0σ = and 10.0d = for three 
different values of 2a : (i) 1.0, (ii) 3.0, (iii) 5.0. The 
modes are two-dimensional except in the case of 
thin plumes when 2 3.0a = . Note the complicated 
behaviour of the preferred mode as the thickness of 
the plume changes at different positions relative to 
the boundaries. 
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Fig. 11. The regime diagram of the bounded plume 
in the plane 0 2 0( , )x a x−  . In (a), the regions 
labelled 1LU and dU   refer to instability with 
growth rates of (1)O . 1LU  is present when the 
plume is away from the walls and dU  is present 
when the plume is close to the wall and diffusion is 
important. The region marked dS  is stable and 
occurs when plume is close to a wall.  The area 
labelled  2LU  refers to instability with ( )O R  for 
no diffusion. The area O  is outside the domain 
since 0x  cannot exceeds 2a . SubFig. (b) shows a 
magnification of the area for 0.25δ ≤  and 

0 2.44x ≤  of Fig. (a). Note that the results apply to 
all Prandtl numbers. 

 
Fig. 12. A sample of the profiles of the interfaces of 
the unstable mode for two values of the pair ( 0x , 

2a ) when 10d = . The profiles are magnified for 
clarity by the same factor ε ( 0.1)= .  (a)  0 0.1x = , 

2 0.2a =  , 2.08,  0c cn m= =  and  (b) 0 0.5x = , 

2 0.6a = , 0.63,   0c cn m= =  . Note that the 
interface profiles are very close at regular intervals.  

As the sidewall gets closer, 0σ  increases indicating 
that the presence of the boundaries tends to suppress 
the MV mode. The presence of the boundaries also 
tends to stabilise the plume as the growth rate is 
reduced in magnitude with the decrease in d . It is 
noteworthy that whatever the values of d  orσ , the 
MS mode is three-dimensional and the MV is two-
dimensional when the plume is equidistant from the 
sidewalls. 

   Fig. 10 illustrates the dependence of the preferred 
mode parameters on the thickness of the plume 
when it takes different positions relative to the 
sidewalls.  We can observe that (i) when the plume 
is close to a sidewall, the preferred mode is two-
dimensional (with 0cm = ), (ii) for moderate to 
large values of 2a , the preferred mode is of the MS 
type when the plume is thin but changes to MV and 
then back to MS as it approaches the wall, (iii) in all 
cases the growth rate increases from its value for 
small thickness to a maximum before it decreases to 
a small value as the plume increases and approaches 
the sidewall. 

   We have now identified the growth rate at ( )1O  

and at ( )O R  both when the plume is away from the 
walls, in which case diffusion is not important, and 
when the plume is close to a wall and diffusion is 
potent in the thin region between wall and plume. 
These results are summarised in a regime diagram in 
Fig. 11. 

   The preferred mode is associated with plume 
interfaces that are determined by (49) and (51). The 
amplitude at 0x x=  is fixed at the value 1 while the 
amplitude at the interface at 0x x= −  is determined 
by 1η , which is determined by the parameters of the 
preferred mode for any prescribed values of 

0 2, , ,x a dσ . In Fig. 12 we give samples of the 
profiles of the interfaces relating to some preferred 
modes. It is noteworthy that the interfaces are very 
close at regular points across the length of the plume 
and this may indicate a tendency to break into blobs. 

5 Conclusions 
   The dynamics of a plume of buoyant fluid, in the 
form of a channel of finite width, rising in a less 
buoyant fluid contained between two parallel walls, 
a distance d  apart, has been investigated. It is 
found that: 
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(i) The plume is associated with a vertical flow 
that is balanced by a down flow on either side 
of the plume, and the flow inside the plume 
can develop a reverse (downward) flow 
around the centre of the plume if the plume is 
wide enough. 

(ii) The flow and concomitant temperature 
transport material upwards and heat 
downwards in such a way that the net upward 
buoyancy flux is positive, and possesses two 
local maxima and a minimum. 

(iii)  Any linear disturbance of the interfaces of 
the plume is rendered unstable. The instability 
has the following main properties: 

(a) If the plume is close to a sidewall, the 
instability has a growth rate ( )1O  on the 
convective time scale, and is strongly 
affected by material diffusion provided 

0x  does not exceed a certain value, 
otherwise the plume is stable, 

(b) For plumes away from the sidewalls, the 
instability has a growth rate of ( )O R , 

(c) The presence of the boundaries tend to 
stabilise the plume when it is equidistant 
from the sidewalls because the growth 
rate of the unstable mode is reduced as 
the sidewalls approach the plume, 

(d) The instability can take one of two 
modes, which are modifications of the 
sinuous and varicose modes of the plume 
in the absence of sidewalls but here 
modified by the lack of symmetry due to 
the different positions of the plume 
relative to the sidewalls, 

(e) When the Prandtl number is small, the 
modified sinuous (MS) mode is preferred 
while the modified varicose (MV) mode 
is preferred for large values of the 
Prandtl number, 

(f) The preferred MS mode is generally 3-
dimensional while the MV mode is 
generally 2-diemnsional, 

(g) The profiles of the unstable plume 
indicate that the instability might lead to 
the break-up of the plume into blobs that 
rise to the top. 

(iv)  The relatively large growth rates of the 
instability when the plume is close to the wall 
may be due to heat flux emitted by the 
boundary. 
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