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Abstract: This work studies and clarifies some local physical phenomena in fluid mechanics, in the form of an 
intrinsic analytic study, regarding the PDEs of the velocity potential and (especially) 2-D “quasi-potential” (their 
simpler and special forms), over the “isentropic” or the 3-D (V, Ω) surfaces and along the “isentropic & isotachic” 
space curves, written for any potential and even rotational flow of an inviscid compressible fluid for both steady and 
unsteady motions. It continues a series of works presented at some conferences and a congress during 2006 – 2012, 
representing a real deep insight into the still hidden theory of the isoenergetic flow. Applying the advantages offered 
by the special virtual surfaces (“isentropic” and “polytropic”) and space curves (intersection lines of these surfaces) 
introduced in the previous works, a simpler PDE of the 2nd order in only two variables, and more, a Laplace’s PDE 
(for any rotational “pseudo-flow”, using a new smart intrinsic coordinate system), instead of the general PDE (Steichen, 
1909, for plane potential supersonic flows only) of the 2nd order in three variables. So far, this equation was known as 
being written for potential flows only. A model extension for rotational flows of a viscous compressible fluid was given. 
 
Key-Words: rotational flows; steady and unsteady flows; inviscid and viscous fluids; compressible fluids; isentropic and 
polytropic surfaces; Selescu’s isentropic & isotachic vector (dRij ), quasi-Laplace lines (quasi-isothermal quasi-potential) 

 
1 Steichen’s vector equation; nomenclature 
Joining the continuity and physical equations to the motion 
equation (Euler) for an inviscid compressible fluid steady 
irrotational (isentropic) flow (of a small fluid particle), 
and using the local speed of sound a definition, one gets: 
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(Laplace’s and Hamilton’s operators, respectively), in 
a triorthogonal system of curvilinear coordinates xi ; 
ki – a 3-D basis (versors of Oxi axes); hi – Lamé’s coefficients; 
V – the local velocity of translation (of the fluid particle) 
– intensity of the local fluid field; V = |V|; Φ – the velocity 
potential; a2 = (dp/dρ)S = S0 = γRT, with γ, R – constants (γ, R, 

p, ρ are defined later); S – the specific entropy of the fluid 
particle; T – the static temperature (absolute) of the fluid 
particle. For a general (rotational) inviscid flow we also 
introduce: Ω =   V = 2 ω – the vorticity, with: ω – the 
local velocity of rotation (of the small fluid particle); i – the 
specific enthalpy; i0 = i + V2/2 – the total specific enthalpy. 

2 Steichen’s PDE of the velocity potential in 
an orthogonal curvilinear coordinate system 
So far, to the best of the author’s knowledge, nowhere 
in the world literature, except for some particular cases 
(like the cylindrical and spherical coordinate systems), 
this equation was expressed. This author established 
Steichen’s PDE for a steady (and then unsteady) flow’s 
velocity potential in its general expanded form ([2] – [5]), 
considering a curvilinear coordinate system Oξηζ (with 
hξ , hη , hζ – Lamé’s coefficients). The vector form of this 
equation (usually written for irrotational flows only) can 
be expanded as follows (now for rotational flows also): 
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Φi is the velocity quasi-potential – over the (V, Ω)i sheets 
only, with (Ω × V)·dR = TdS = 0; dR  (V, Ω) plane, due 
to Crocco’s equation for steady isoenergetic (i0 = const.; 
i0 = 0) flows (see [6]): Ω × V = TS; dR is a virtual ele-
mentary displacement. The (V, Ω)i sheet (envelope of the 
planes above, containing streamlines and vortex lines) is 
isentropic (S = S0i = const.), allowing to introduce a Φi (see 
[2] – [5] and section 10). The speed of sound ai is given by 
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where: p – the fluid static pressure; ρ – the fluid density; 
γ – the adiabatic exponent (ratio of specific heats, Cp /Cv); 
W – the gas maximum speed (corresponding to the expansion 
into a vacuum) – an invariant quantity. For a perfect (an ideal) 
gas: p = RρT, with R = Cp – Cv = const. The isentropic 

surfaces are analogous to D. Bernoulli’s (Lamb’s) ones ([2] 
– [5], [7]) for a barotropic fluid (B = V2/2 + ∫dp/ρ + gz = B0i , 
with: g – the acceleration of gravity). All the points M(x, y, z) 
at which this new PDE (Ω  0) is satisfied belong to a certain 
(V, Ω)i isentropic sheet. In the Oξηζ curvilinear coordinate 
system, and in a certain orthogonal system of curvilinear 
coordinates qi (Oq1q2q3) with the 3-D basis ki we have, resp.: 
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So, Steichen’s vector equation in section 1 becomes: 
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– a nonlinear PDE of the 2nd order in 3 variables, or 
(using the classical symbols Σ and Π applied to some 
variables indexed with the subscripts “i” and “j”) in 
the compact scalar form below: 
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In order to express the right-hand side of Eqs. (1), (2) in a 
more compact form, we must prepare the scalar product 
in the right-hand side of Steichen’s equation, so having: 
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so, finally, the most compact symbolic expansion for the 
scalar equation of the velocity potential Φ is as follows: 
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3 The 2-D velocity “quasi-potential” PDE 
(for a rotational flow) in a smart intrinsic 
orthogonal curvilinear coordinate system 
In a system of 3-orthogonal intrinsic coordinates Oξηζ 
tied to the isentropic (V, Ω)i surfaces (or Oλμν, with 
λ, μ, ν – lengths of the orthogonal arcs, with λ and μ 
contained in the local plane tangent to (V, Ω)i and ν 
directed along the normal), Laplace’s and Hamilton’s 
operators (Δ and ), as well as the speed of sound ai 
are given by the general expressions below (Φi depends 
on ξ, η and ζ0i , or on λ, μ and ν0i , where: dλ = hξdξ; 
dμ = hηdη and dν = hζdζ – the elementary arc lengths): 
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Analogously, in Steichen’s equation – a nonlinear PDE of 
the 2nd order in three variables – ξ, η and ζ (written for a 
rotational flow – Ω ≠ 0, but on the “i” isentropic surface 
ζ = ζ0i) all the terms containing the partial derivative with 
respect to ζ of the quasi-potential function Φi disappear 
(∂Φi/∂ζ = 0) and its derivatives with respect to ξ, η and ζ 
disappear also, thus a nonlinear PDE of the second 
order in only two variables – ξ and η – being obtained (a 
simpler form for the 2-D velocity quasi-potential PDE): 
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4 The case of the unsteady flow (see [5]) 
For the unsteady flow of a compressible fluid, the velocity 
potential equation has the vector form below (t – the time): 
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(V, V, a and Φ are now local instantaneous values) also 
differing from the corresponding one for a steady flow 
(see section 1) by the last two terms, or in expanded form: 
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which reduces on a certain (V, Ω)i surface ζ = ζ0i to a 
simpler form for the 2-D velocity quasi-potential PDE: 
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5 Simpler forms of the 2-D velocity “quasi-
potential” PDE over the (V, Ω)i surfaces 
On a certain ν = ν0i isentropic surface (V, Ω)i for a steady 
flow, using the elementary arc lengths d and d,one gets: 
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and the corresponding PDE of the 2-D velocity quasi-
potential for the unsteady flow case becomes simpler too: 

μλ

Φ

μ

Φ

λ

Φ
2

μ

Φ

μ

Φ

λ

Φ

λ

Φ

1γ

2

t

Φ
2

μ

Φ

λ

Φ
t)(2C

μ

Φ

μ

)hhln(

λ

Φ

λ

)hhln(

μ

Φ

λ

Φ

i
2

ii
2

i
22

i
2

i
22

i

i

2

i

2

i
i

iξζiζη

2
i

2

2
i

2





















































































































.
μ

Φ

λ

Φ

tt

Φ

μ

Φ

λ

Φ

μ

Φ

λ

hln

λ

Φ

μ

hln

μ

Φ

μ

hln

λ

Φ

λ

hln

2

i

2

i
2

i
2

iiiηiξ

3

iη
3

iξ

























































































































            (3) 

Choosing the ξ intrinsic coordinate along the streamlines 
direction (assumed as being known), the new PDE 
becomes an ODE (∂Φi/∂ξ = dΦi/dξ) of the 2nd order: 
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representing the simplest form for the equation of the 
now 1-D velocity quasi-potential Φi for a steady flow, 
and more, using the elementary arc length d = hξdξ: 
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thus the streamlines being just the characteristic lines. 
Analogously, for an unsteady flow, the new PDE below 
becomes the simplest one also (Φi depends on ξ and t): 
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and more, with the elementary arc length d = hξdξ: 
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6 Special forms of the 2-D velocity “quasi-
potential” PDE along the quasi-Laplace 
lines of a compressible fluid rotational flow 
On a certain virtual “i” surface, for an inviscid fluid flow we 
have: (V2/2)|i + (Ω  V)|i = – (p/ρ)|i . Performing a scalar 
multiplication of this relation by a virtual elementary displa-
cement dRi  (V, Ω)|i (therefore an isentropic virtual sur-
face), we obtain: d(V2/2)|i = – (dp/ρ)|i , with: p = Kiρ

γ , so 
a first integrable form. On the other hand, on any poly-
tropic virtual surface we have: (p/ρn)j = (p/ρn)1 = const.j, or 
p = const.j·ρ

n, and so p = const.j·(ρn) = const.j·ρ
n – 1ρ. 

Performing its scalar multiplication by a virtual elementary 
displacement dRj contained in the plane tangent to the poly-
tropic “j” surface, we obtain: dp|j = const.j·(ρ

n – 1dρ)|j . So, along 
the intersection “ij” lines (with: dRij = k·S|i  (p/ρn)|j ) of 
the two surface families we have: d(V2/2)|ij = – (dp/ρ)|ij = 
– const.j (ρ

n – 2dρ)|ij . Analogously we have: p = const.j·T
n/(n – 1) 

and so: p = const.j·(Tn/(n – 1)) = const.j T
1/(n – 1)T, and: 

dp|j = const.j·(T
1/(n – 1)dT)|j. Taking into account that through 

any intersection “ij” line of the two surface families above 
there is a “star (pencil) of sheets” passing (for various parti-
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cular values of the polytropic exponent “n”, e.g.: isentropic, 
isothermal & isotachic, isobaric, isochoric and general poly-
tropic one), we can write along these lines: dS|ij = d(V2/2)|ij = 
– (dp/ρ)|ij = – const.j (ρ

n – 2dρ)|ij = – const.j [(T
1/(n – 1)dT)/ρ]|ij = 

0, or simpler: dS|ij = dT|ij = dV|ij = dp|ij = dρ|ij = d(p/ρn)|ij = 0, 
so having: dRij = k·S  T = k1·S  V = k2·S  p = 
k3·S  ρ = k4·S  (p/ρn). Through any point of this 
rotational flow, such of “star of integral sheets” is passing. 
Applying·a·scalar·multiplication·of·Steichen’s·PDE of the 
compressible 2-D velocity “quasi-potential” Фij , Vij = 
Vij·(Vij

2)/2aij
2 (with Vij = Фij ) by the dRij above, one gets 

Vij·dRij = Vij·d(Vij
2)/2aij

2 with d(Vij
2) = 0, and so Vij = 0 

(because dRij ≠ 0). Introducing the scalar function Φij (ξ, η) 
one obtains a PDE identical to Laplace’s one: ΔΦij = 0, so 
Фij (ξ, η) being now a harmonic function. This simpler PDE 
is valid for a certain rotational flow (Vij = Φij ; Ωij =   Vij 
≠ 0; (p/ρn)ij = const.) – a “quasi-incompressible” fluid beha-
vior along the intersection lines of any isentropic virtual 
sheet with any polytropic one. Over flow’s isothermal & 
isotachic virtual surfaces we have: |V| = V = Vj = const.j or 
V·dR = dV = 0 (the fluid has a “quasi-uniform” behavior). 
The vector equation V·(V2) = 0 (a zero-scalar product in 
the right-hand side of Steichen’s equation), expressed, 
say, in the Cartesian system in the expanded form below: 
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(not implying the existence of a potential) has the solutions: 
1) V = 0 (Vx = Vy = Vz = 0), representing a trivial solution: 
a) the equilibrium (fluid statics) case, and 
b) the flow stagnation lines (p = p0 ; T = T0 ), for the 
plane flows and for some special axisymmetric flows; 
2) (V2) = 0, where (V2) = 2V·V = 0 (the acceleration 
being a = Ω  V = 2  V = TS, like a Coriolis one, 
the vectors V, Ω and a forming an orthogonal system): 
a) the flow of an incompressible fluid (ρ = const.  ρ = 0, 
and so: (V2) = – 2a2·ρ/ρ = 0) – a liquid flow model; 
b) a parallel and uniform flow of a compressible fluid 
(V = const., with Ω = 0) – a trivial solution also, and 
c) the flow’s isotachic surfaces V = 0, and especially 
d(Vij

2) = 0 (along the intersection “ij” lines above), 
which seems to be the most important solution (Selescu), 
due to the fact that over any “i” isentropic surface we have 
Vi = Φi , and so Vij = Φij also (a quasi-potential flow); 
3) V  V, or V  (V2) – a very particular solution; 
(V2)  (the isotachic & isothermal surfaces), hence 
the velocity V lies just on (is tangent to) the isotachic & 
isothermal surfaces (having no component along the 
normal), representing flows due to vortex distributions: 
a) the plane flow of a compressible fluid due to a straight 
infinite vortex filament, having two regions: subsonic and 
supersonic, separated by a circular critical line, along which 

the Mach number reaches the value 1, all streamlines being 
concentric circles, including a solid cylindrical nucleus (a 
no-motion region); on its surface the maximum speed W is 
reached (see fig. 1); b) the superposition of the flow above 
with a uniform flow, parallel to vortex filament, all stream-
lines being co-axial circular cylindrical helices with the same 
pitch; c) the same as above, but with a certain direction of 
the uniform parallel flow; d) some flows of an inviscid 
compressible fluid due to an infinite sequence of very close 
vortex filaments, leading to streamlines patterns identical 
(and velocity distributions somehow related) to those for 
the well-known models of plane and axisymmetric flows 
of a viscous fluid, like Couette and Hagen–Poiseuille ones; 
for an extension to the viscous fluid flow see sections 10, 11). 
 

 
 

Fig. 1.  The compressible fluid flow pattern (the velocity 
distribution) due to a straight infinite vortex filament 

– the free (irrotational) vortex plane flow 
 

The vector field given in figure 1 corresponds to the 
velocity field due to a straight infinite vortex filament 
directed along the z - axis (normal to the x, y - plane): 
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Γ is the vortex constant intensity (the velocity circulation). 
The lengths of the velocity vectors induced by the vortex 
filament are proportional to their intensities (moduli) 

R)2π[2π (])y(xVz)y,(x, 2122 V  

(a hyperbolic variation law). Their directions are tangent 
to the concentric circles having the center in the origin, 
and their senses are represented by arrowheads, corres-
ponding to a left-hand screw (counter-clockwise). Along 
a certain circle (streamline) R = (x2 + y2)1/2 = const. , the 
velocity vector has a constant modulus. So, these circles 
are the flow isotachs (isotachic lines). The critical speed 
c (for which V = a ) is reached along a circle of radius 
Rc = Γ/2πc = Γ/2π·[(γ + 1)ρ0/2γp0]

1/2 , and the maximum 
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speed W (for which V = W ) is reached along another 
circle (the wall of the solid cylindrical nucleus – the 
no-motion region), of minimum radius  RW = Γ/2πW 
= Γ/2π·[(γ – 1)ρ0/2γp0]

1/2 = [(γ – 1)/(γ + 1)]1/2 ·Rc , so that 
for the region R  (RW , Rc ) the plane flow is supersonic 
(V decreases from W to c) and for the semi-infinite region 
R > Rc the flow is subsonic (V decreases from c to 0). This 
field includes a vortex at its center (singularity), so it is 
rotational. However, any simply-connected subset that 
excludes the vortex line will have zero curl, Ω = 0 (no 
vorticity), the fluid particles performing circular translations 
only. We give below a detailed explanation of solutions 2 
and 3. Intersecting the isentropic (S·dRi = dSi = 0) virtual 
surfaces S = S0i = const.i (ζ = ζ0i ) with the special isotachic 
ones (|V| = V = Vj = const.j ) one obtains a family (net) 
of space curves along which Steichen’s PDE of the 
compressible 2-D velocity “quasi-potential” Φi (ξ, η) 
becomes again simpler, identical to Laplace’s one: 
ΔΦij = 0, Φij (ξ, η) being now a harmonic function. 
So, the solution Vij of the general Steichen’s PDE 
Vij = Vij·(Vij

2)/2aij
2 , written for a special rotational 

flow (Vij = Φij ; Ωij =   Vij ≠ 0 ; |Vij| = Vij = const.ij , 
with Vij·(Vij

2) = 0 ), is now the solution of the system: 
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or, along the “ij” lines (Vi ≡ Vj ≡ Vij , but not directed 
along the “ij” lines; ai = aj = aij ; Φi = Φij ): 
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this leading to Vij = 0 and so obtaining the simpler 
form: Vij = ΔΦij = 0 ; with Vij = Φij = (  ij )/ρ; 
ij ≠ Gij – the 3-D stream function vector (Selescu, see 
section 7 in [7], for the mass flux density vector ρVij): 
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for a steady flow, therefore an elliptic PDE, irrespective 
of the “pseudo-flow” character (subsonic or supersonic), 

this representing the annulment of the first factor (inside 
the first square brackets) in the left-hand side of PDE (3). 
For an unsteady flow Steichen’s equation takes the form 
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so obtaining along the space curves (S = S0i ; V = V0j , 
i.e. coupling the cases 4 and 5 in subsection 1.2 in [7]), 
for the function Фij (ξ, η, t) the following PDE: 
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More, over flow’s isothermal & isotachic virtual surfaces 
(V = 0) one can write V =   Ψinc, this time Ψinc (≠ Ginc) 
being a true 3-D stream function vector due to the fact that 
over these surfaces the fluid has an incompressible behavior. 
 

Until now, we used only the first equation of system (4): 
ΔΦij = 0 . The second equation (dVij

2 = 0, or |Vij| = const.ij) 
leads to the following vector condition (V lies on the 
isentropic “i” surface ζ = ζ0i , so being: V = kξVξ + kηVη ): 
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function of ζ only), which can be expressed as: 
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which must be also considered for solving the system (4), 
besides the boundary conditions of respective rotational 
flow, along an “ij” space line, lying on an isentropic 
“i” surface and an isothermal & isotachic “j” one. 
 

7 Special forms of the 2-D velocity “quasi-
potential” PDE along other space lines 
of a compressible fluid rotational flow 
Intuitively, we can put the existence problem for a family of 
space curves passing through any point also, along which 
the velocity quasi-potential function Φij respects another 
rule, e.g. the wave (vibrating string) PDE of the 2nd order 
(in one space dimension), instead of Laplace’s one, that 
means being of a hyperbolic type, just in its canonical form: 
2Φij (λ, μ, ν0i)/λμ +  (lower order terms) = 0 , irrespective 
of the “pseudo-flow” character (subsonic or supersonic), 
in the same Oλμν smart intrinsic triorthogonal curvilinear 
coordinate system previously used. But we will treat this 
problem, for simplicity reasons, in the classical Cartesian 
system, at least for the beginning, to understand the new 
proposed mechanism for solving the above problem, 
this meaning to treat a true potential flow (throughout). In 
the case of a rotational flow, like previously, the searched 
for space curves must be obtained as being the intersection 
lines of two surface families:   1. the isentropic (V, Ω) ones, 
allowing us to introduce a 2-D velocity quasi-potential Φi ; 
and     2. the new special surfaces (like previous isotachic 
& isothermal ones) over which another condition must be 
satisfied. Let us write Steichen’s equation in the form: 
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thus obtaining a new special form for this equation: 
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V – V3 /3a2 = 0    ,    or    a2V = V3 /3    ,     (6) 
or in a more suggestive form:  V3 /(3V) = a2(V) – 
the ratio of two divergences (in this case), condition 
giving the new searched for special surfaces, concurrently 
further satisfying Steichen’s PDE (5) above: 
a2V = V(V2)/2 , or, equating with that given by Eq. (6): 
3V(V2) = 2V3    (≠ 0)    ,          (7) 
(not depending on a). Let us write Eq. (7) in a scalar form: 

,0
z

V

x

V
VV

y

V

z

V
VV

x

V

y

V
VV

xz
xz

zy
zy

yx
yx


















































    (7)
 

generally valid along the intersection lines of the isentropic “i” 
surfaces with the “j” special ones satisfying Eq. (6). These 
lines are solutions of the system formed by Eqs. (5) and (6). 
If V3 = 0 , the problem reduces to that in section 6. 
Introducing the velocity potential Φ,  V = Φ  , and: 
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also expressing the orthogonality of the vectors V2 and 
V, defined as follows: 

     
:or 0);(;

z

V

y

V

x

V
;VVV

2
z

z
y

y
x

x

2
z

2
z

2
y

2
y

2
x

2
x2


















δVVkkkδV

kkkV aaa

2

22

2

22

2

22

2

2

2

2

2

2
2

z

Φ

z

Φ

y

Φ

y

Φ

x

Φ

x

Φ

z

Φ

y

Φ

x

Φ































































a

,0
z

Φ

y

Φ

x

Φ

z

Φ

1γ

1γ
W

y

Φ

x

Φ

z

Φ

y

Φ

1γ

1γ
W

x

Φ

z

Φ

y

Φ

x

Φ

1γ

1γ
W:or

2

2222
2

2

2222

2

2

2222
2
























































































































































and for previous Eq. (7) (using Schwarz’ theorem): 
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just the sum of until now negligible terms with respect to 
a2ΔΦ in the velocity potential PDE for small perturbations. 
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This result is very important and leads for the case of 
a 2-D plane motion (Vz = Φ/z = 0) to the simplest 
equation of the potential Φ (a very particular situation): 
 

,0
yx

Φ2





  (meaning: Vx/y = Vy/x = 0 ,    (8) 

 

leading to a special plane flow: Vx = f1(x); Vy = f2(y) and Φ 
= ∫f1(x)dx + ∫f2(y)dy = Φ1(x) + Φ2(y), like that in a channel 
with hyperbolic walls, or a right-angled corner), representing 
the canonical form of a 2nd order PDE of a hyperbolic type 
with constant coefficients. The condition Eq. (6) becomes: 
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– a first order ODE with two unknown functions. 
The same results can be obtained for a 2-D axisymmetric 
motion (in a meridian plane, in cylindrical coordinates), 
leading to another special flow: Vx = f1(x); Vr = f2(r); Φ = 
Φ1(x) + Φ2(r), and (the most important), for a rotational 
flow of a compressible fluid (over the isentropic surfaces, 
in the smart intrinsic triorthogonal curvilinear coordinates), 
instead of velocity’s potential Φ appearing its 2-D quasi-
potential Φij . In the last case the relation (8) is more intricate, 
due to versors direction variation (see the right-hand side of 
the last equation in section 2), but the essential is the same, it 
being satisfied only along the space curves – intersection lines 
of the “i” isentropic surfaces with the “j” special ones, irres-
pective of the “pseudo-flow” character (not depending on a). 
Concluding, as regards the PDE of the velocity quasi-
potential Φij , through any point of a certain rotational 
flow two interesting space curves are always passing: 
1. the quasi-Laplace line (an elliptic PDE) – see section 6; 
2. the new special line leading to a hyperbolic PDE. 
Analogously we can suppose the existence of a third family 
of space curves passing through any point of a certain 
rotational flow, along which the velocity quasi-potential Φij 
respects another rule, corresponding this time to a PDE of 
the 2nd order of a parabolic type, just in its canonical form: 
 

2Φij (λ, μ, ν0i)/μ2 +  (lower order terms) = 0, in the same 
 

Oλμν smart intrinsic coordinate system, irrespective of the 
“pseudo-flow” character also. The analysis in sections 6 
& 7 can be useful for other cases where the physical phe- 
nomena lead to PDEs of the second order of a mixed type. 
 

8 A simple example: the 3-D conical flow 
An interesting example of application was given in [8], estab-
lishing the general ODE (!) of the velocity quasi-potential Φi 
= RV(φ, χ0i) = RVi (φ) – on every “i” isentropic sheet χ = χ0i 
for any (rotational, therefore non-isentropic) 3-D conical flow, 
writing and analyzing it in the smart intrinsic generalized 
spherical (conical) triorthogonal coordinate system (R, φ, ): 

 
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instead of the usually written (approximate) PDE of the 
velocity potential Φ = RVp (θ, ω), with V = Vp + Vr (Helmholtz) 
where: Vp = Φ and Vr =   Ψ or (see [9]) Vr = Φ1Φ2 
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so a nonlinear PDE of the 2nd order in two variables 
(the spherical coordinates θ, ω), obtained by throughout 
neglecting the Vr components (VRr , Vθr , Vωr), so being 
an approximate PDE, though being an exact one when it is 
written on the isentropic surfaces (V, Ω)i ζ = ζ0i (containing 
streamlines & vortex lines) only, becoming now identical 
to the general ODE of the velocity quasi-potential; Vr – 
the rotational part of V; Vi (φ) = VRi (the radial component 
of the velocity on the conical isentropic sheet “i”). The 
quasi-potential is: Φi (φ) = RiVi , also having: Ri′/Ri = Vi /Vi′ 
(see [11]), getting by integration: Ri = Ri (φ), representing 
the polar equation of all flow streamlines contained in the 
isentropic surface “i” (all being homotethic space curves, 
their family being given by the polar equation: Ri = R0R1i (φ), 
for various values of the positive constant R0 , with R1i (φ) 
– a non-dimensional quantity depending on φ only). 
The generalized spherical coordinate  is defined by: 
 = ∫(dθ2 + sin2θdω2)1/2 = ∫sinθ[(dln|tan(θ/2)|)2 + dω2]1/2   (9) 
– the relation with the classical spherical coordinates, 
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(R, θ, ω), due to supersonic flow’s kinematics (see [11]): 
2222 ωθsinθ   .           (10) 

In the smart intrinsic orthogonal curvilinear coordinate system: 
β = ∫[d2 + f2()dχ2]1/2, which on χ = χ0i = ct.i becomes: β = i. 
The general ODE above is similar to the classical Taylor–
Maccoll one ([12], [13]) for an axisymmetric conical 
(supersonic) irrotational flow, this one being a particular 
case obtained for: φ = θ and f(φ) = f(θ) = sin θ, and so: 
[ln|f(φ)|]′ = [ln|sin θ|]′ = cot θ, the equation becoming: 

  0)(2)W(2θcot 1)γ( 2222  VVVVVVVV  

and the sliding condition [11]: R′V′ = RV, with:  = d/dθ and 
″ = d2/dθ2 and the solution V(θ) = VR – valid throughout 
(the velocity quasi-potential Φi (φ) coincides in this case 
with the velocity potential Φ(θ)). Along the “vector radii” 
half-straight lines one gets a 2-D Laplace’s PDE, with the 
solution Φi /R = Vi = VRi = const.i (θ). Through any flow’s 
point an “ij” line is passing (the intersection of two conical 
surfaces: the isentropic “i” sheet  = 0i = const.i and 
the isotachic & isothermal “j” one φ = φ0j = const.j ). This 
means the searched “ij” line is a half-straight line passing 
through the flow apex and the considered flow’s point. 
Along any such a half-straight line the searched for 
velocity quasi-potential Φij (φ, ) becomes a harmonic 
function (the general non-linear Steichen’s PDE of the 
2nd order becoming a 2-D Laplace’s PDE: ΔΦij = 0 – 
with the solution:  Φij /R = Vij = VRij = const.ij (φ, ) . 
The annulment of the radial component of the 
acceleration vector, aR = 0 (the first equation of motion: 

0RR 2   ), is identical to the “sliding condition”, 

expressing the condition that the velocity V be tangent to 
a certain streamline of the conical flow – the scalar product 
V·n = 0, where n is the unit vector of the normal to the 
streamline, having the components – R/(R2 + R′2 )1/2 and 
R′/(R2 + R′2 )1/2 , respectively. It can be written in the forms: 
R′V′ = RV ( = Φ) ,    or    R′/R = V/V′ ;    ′ = d/d   
(representing the streamline’s ODE), leading to: 
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In fact, the “velocity quasi-potential” function Φi must 
also be a conical one, which means to be in the form: 
Φi (R, , 0i ) = Φi (R, ) = Rn·V(, 0i ) = Rn·Vi () , 
this being a conical scalar “quasi-potential” of the n-th 
order (n  Z); let choose its simplest form, that for the 
first order (n = 1), having also a physical significance: 
Φi (R, , χ0i ) = Φi (R, ) = R·V(, χ0i ) = R·Vi (); 

,
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the trivial system (product and sum of the logarithmic 
derivatives of R and |VRi| with respect to the generalized 
spherical coordinate φ), its solution and the analysis on 
the existence domains for the “(quasi-)potential” Φi (φ), 
both from the mathematical viewpoint and the physical 

one (also including fig. 1, here reproduced as fig. 2) 
– all from subsection 2.1 in [11], become valid again, this 
time for any 3-D conical flow (both potential and rotational). 
So, for an axisymmetric conical flow around a circular cone 
this domain is β  (β0, βL) with β0 = π/2 – θs and βL = π/2 – θc 
where: sin2θs ≈ 1/M2 + [(γ + 1)/2] sin2θc (see [14], [15]), 
θc , θs being the solid cone and shock wave half-angles, resp., 
meaning that: sin μ = 1/M, sin ν = [(γ + 1)/2]1/2sin θc and 
sin θs (all < 1) are usually quasi-Pythagorean numbers 
(sin2μ + sin2ν ≈ sin2θs ), with sin2θc < [2/(γ + 1)]·(1 – 1/M2); 
M is the emergent supersonic stream Mach number. 
If is known or is given the conical flow velocity (quasi-) 
potential Φi(β), the system above admits the solution: 
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ODEs which can be easily integrated, so being found 
the solution (lnR, ln|VRi|), and further the (R, |VRi|) one. 
We introduce now the hyperbolic functions: 
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so expressing the solution in the simpler form below: 
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The existence conditions of the roots in first solution give: 
|Φi|  Φi0e

–2β    and    |Φi|  Φi0e
2β,    with    Φi0 > 0   , 

relations which establish the existence domains of the 
velocity potential Φi(β) to obtain isentropic 2-D (plane, 
axisymmetric and general 3-D) conical flows. It can be 
noticed that for β > 0 cannot exist isentropic 2-D conical 
respectively, between their symmetric ones with respect to 
the  axis, as one can see in fig. 2. The equations of motion 
are getting the special forms (2.1.14), (2.2.1) and (2.2.2) in 
[11]. The current cones (C2):  = 1/C2 represent the isentropic 
sheets  = c(S – c0 ) = c(S0i – c0 ) = 0i = 1/C2 , in which is 
analyzed the conical motion, these sheets being a particular 
case of D. Bernoulli surfaces, namely for isoenergetic flows 
(rigid surfaces in the fluid flow); the velocity V deriving 
from a conical quasi-potential of the first order, on each “i” 
such a sheet  = 0i having: Vi = Φi ; Φi = R·Vi (φ) – a 
conical scalar quasi-potential, specific to the respective “i” 
sheet, the general flow being rotational (Ω  0 , but with Ω 
= 0, so that Ω = kRΩR + kΩ ) – also see section 1 in [8]. 
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In the classical spherical coordinate system (R, θ, ) and in 
the smart intrinsic generalized spherical one (R, , χ), resp., 
the 1st equation of motion for a certain 3-D conical flow is: 
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Fig. 2. Reproduction of fig. 1 from subsection 2.1 in [11] 
(here we introduced the notation:  = [(γ – 1)/(γ + 1)]1/2 ) 

 

In the case of a plane conical flow: θ = /2;  sin θ = 1 and: 

.ω0;θ     In the case of an axisymmetric conical flow, 
the streamline is contained in a meridian plane (phenomenon 

independent of ):  = 0 = const.;  .θ0;ω     In 
the case of a general 3-D conical flow, using the notation 
(10), one obtains the relation (9). There also are helicoidal 
conical flows (see [11]) – θ and ω bound by a certain DE. 
For all 2-D flows the first equation of motion takes the forms 

,0βRR 2       or:    (dlnR/dβ)·(dln| R |/dβ) = 1    – 

the product of a pair of logarithmic derivatives with respect 
to β equal to the unity (β is the angular coordinate: β =  – 
for the plane conical flows (Prandtl–Meyer); β = θ and 
β = /2 – θ – for the axisymmetric conical flows (Busemann– 
Taylor–Maccoll) inside and outside a circular cone, resp.; 

the angle of attack α ≠ 0;  r is the cone local radius; 
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zyx1 i is a complex variable; xzz;xyy  ; x, y, z 

– Cartesian coordinates, x – abscissa of cross section current plane 
Fig. 3.  Simple qualitative example of “generalized spherical” 
smart intrinsic coordinate surfaces for the case of a circular cone 
at a small angle of attack (cross section) – the incompressible 
approximation (slender body; no shock wave), giving the relations 
between the new spherical coordinates (R, φ, χ) and the Cartesian 
ones; the flow is due to two semi-infinite line sources along cone’s 
axis (a) and back (b), replacing it; (a), (b), (n) – nodal and saddle lines; 
3.a. the conical isentropic sheets χ = χ0i = c(S0i – c0 ) = 1/C2 (a 
smart intrinsic coordinate tied to S0i – the local specific entropy 
value), having as remarkable directrices: the oz axis and a circle 
(the solid cone trace) centered on it (both for C2 = 0), and a right 
strophoid (χ = 0) centered on oz axis too (for 1/C2 = 0); c, S0i , c0 > 0; 
3.b. the conical sheets φ = φ0j = C1 (smart intrinsic coordinate), 
orthogonal to the conical isentropic ones: 0)z,y(Z)z,y(Y  , 

having as remarkable directrices: a Pascal’s limaçon and the 
circle at infinity (both for C1 = 0 and centered on the oz axis). 
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β =  – for any 3-D conical flow in the intrinsic system); so: 
arctan(dlnR/dβ) + arctan(dln| R |/dβ) = /2    ; 
(the curves lnR and ln|R | are symmetrically inclined with 
respect to first bisectrix of (β, Φ) axes for any value of β, like 
a pair of characteristic lines with respect to velocity direction, 
in both physical and hodographic plane). A simple example 
of 3-D conical flow is given in fig. 3 (see fig. 1 in [2] – [4]). 
 

9 Other possible application: a supersonic 
axisymmetric rotational flow (quasi-conical), 
confluent to a potential one (tronconical) 
In a series of papers (see [16] – [19]) a new shock-free 
axisymmetric configuration inspired by a Schlieren picture 
(fig. 260 – a forebody in supersonic flow with isentropic 
compression – achieved by isentropic way (smoothly) and 
not by shock) from the flow visualizations album [20] was 
proposed and studied. This flow was called tronconical, due 
to the fact that the simple compression waves are co-axial 
truncated cones (conical frusta) having as a common basis 
(directrix) the “foci” circle, along which they focus into an 
axisymmetric shock wave (with curved meridian line, and 
so with variable intensity) – see fig. 4.a, and various types of 
air intake were imagined: frontal, annular, frontal-annular, 
etc. (see figs. 3 – 7 in [18]), all with dynamic compression. 
The tronconical potential flow is associated (confluent) to a 
rotational flow 2 - 2' treated in [21], around an axisymmetric 
body without incidence, consisting of a cylinder of radius r0 
and a truncated cone of half-angle τc (see fig. 4.a), with a bow 
shock wave, assumed to be attached at the intersection circle 
CC' of the two axisymmetric surfaces. In order to determine 
the solution (the velocity field and implicitly that of static 
pressure, the shape of the shock wave and the entropy 
gradient), the author develops an extremely interesting 
analytic perturbations method, the disturbance affecting not 
as usual the incident parallel and uniform supersonic flow 
of Mach number M1 from the upstream, but a potential flow 
very close to that rotational real, called by him a quasi-
conical motion. Later, this problem was resumed in [22], 
also considering a supersonic combustion wave in the 
presence of a truncated cone, giving an analytic solution. 
The confluent flows are related to other simpler supersonic 
potential flows (the conical axisymmetric one and the plane 
one with shock wave or Prandtl–Meyer isentropic compression 
obtained as particular cases; for the last one see fig. 227 
from [20]). All tronconical waves (truncated cones) are 
envelope surfaces of the Mach cones (the local simple 
waves) generated by the points of the given axisymmetric 
body surface, all situated in the same cross section plane. 
In the toroidal (tronconical) coordinate system (r0 , R, θ) 
the PDE of the velocity potential can be set in the forms: 
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(with Rsinθ ≠ – r0), therefore a nonlinear ODE, V being 
 

the radial component of the velocity (VR = V), and a the 
local speed of sound, with: ′ = d/dθ and ″ = d2/dθ2, or 
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both useful for the presentation of the particular cases. 
Analyzing both equations one can see that in these cases 
the ODE of the velocity potential gets typical forms. Thus, 
for various values of the cylinder radius r0 , we have: 

 

 

 
← 4.a           ↑ 4.b 

 

Fig. 4. Reproduction of figs. 3, 4 from [16] – [19] (oblate on Ox) 
The tronconical (shock-free compression) flow inside an axisym-
metric supersonic inlet diffuser with (4.a) outer and resp. (4.b) inner 
compression (frontal and annular air intake): 4.a) 1 – homentropic 
cylindrical core of radius r0 with tronconical flow – flow with 
complete (until M2 = 1) isentropic compression; 2 - 2' – rotational 
ring – a tronconical flow too, but with expansion, downstream of 
an attached bow shock wave, weakened and canceled by the tron-
conical expansion waves (whose axisymmetric fan was not repre-
sented) originating on the “foci” circle CC', the same for both 
flows; 4.b) 1 – fuselage (cylinder-cone body); 2 - 2' – homentropic 
ring with tronconical flow inside a specially shaped annular 
channel; 3 - 3' – infinite ring with non-perturbed supersonic flow. 
 

r0 → ∞ ;    [1 – (V′2/a2)](V″ + V) = 0 ,   hence V′ = a , 
the plane flow with Prandtl–Meyer isentropic compression; 
r0 = 0   ;    V″ + cot θ·V′ + 2V = (V′2/a2)(V″ + V) , 
the conical axisymmetric flow with isentropic compression 
inside Busemann’s nozzle (upstream of a conical shock 
wave with the same tip as the conical simple waves fan), as 
well as that downstream of an attached conical shock wave 
(between the shock wave and an infinite solid cone). In the 
trivial case of a parallel and uniform supersonic stream (Rsinθ 
= kr0 , with k ≥ – 1) the velocity potential ODE becomes: 
 

(1 + 1/k)[1 – (V′2/a2)](V″ + V) + cot θ·V′ + V = 0    . 
 

Both Prandtl–Meyer (see [23] – [27]) and Taylor–Maccoll 
(see [12], [13]) ODEs (which describe the plane and res-
pectively axisymmetric conical flows) are obtained as 
simple limit cases of the general ODE of the velocity 
potential for tronconical flows. From this equation it 
can be noticed that, unlike the conical flows cases, when 
the equation has an unknown function of a single variable 
– V(θ), in the tronconical flow case, the equation has 
the same unknown function V, but depending on two 
variables – θ and R. In this equation intervening only the 
function derivatives with respect to θ, the dependence on 
R can be considered weaker or even zero (this being called 
by the author the tronconical approximation: [16] – [18]). 
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Setting (also see fig. 1 from [20]): θ = α; R = r; r0 = b; 

,;;;),(and

;
sin

sin

θsinRr

θsinR

θ)sin(Rr1

1

1

00

aaVVrV

m
αrb

αr












 
 

one obtains for the general differential equation the form: 

,01cot1
2
1

2

2
1

2


















 





a

mαm
a

α
ααα

α
 (11) 

identical with Eq. (17) from [21] (but the last one having 
different boundary conditions), describing an axisymmetric 
potential flow – a component (namely just the quasi-conical 
one) of the rotational general supersonic one downstream 
of an attached axisymmetric bow shock wave. The 
boundary conditions above are given by the relations: 
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αs is the half-angle of a certain tronconical expansion wave 
(unknown, function of r), weakening the bow shock; 
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The quantity a1 in Eq. (11) is given by the energy equation: 
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The solution was obtained by analytic way, the general 
integral of Eq. (11) being given in [21] by the relations 
(21), (22), (24 a) and (24 b), for the linearized equation: 
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 being an integration variable. The last integral in 
(24 a) takes various forms, function of the ratio (r/b) 
– also see the relations (14) and (15) from [22]. 
The entire (complete) nonlinear equation of the flow in 
the downstream of an attached axisymmetric shock wave 
φαα + mφαcot α+ (1 + m)φ = F(r, α) + N(r, α) ,  (31) in [21] 
having in its right-hand side the nonlinear terms F and N 
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(just the nonlinear term of Eq. (11), neglected until now); 

,1)2(2),(
2
1

2

2
1

2
1

2




















a
rrr

a
rm

a
rN r

rrrr
r

r








 

 2

               (16) in [21] 
has the following general integral: 
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C and D are functions of the variable r only, and are 
determined imposing the boundary conditions, like αs ; 
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representing the relations (33 a) and (33 b) in [21], resp. 
The integral I is given by the relations (24 a), (24 b) and 
resp. (32), (33 a) and (33 b), for the entire nonlinear equation. 
In the last two relations, we must consider for the second 
nonlinear term, N(r, α), defined by the relation (16) from [21], 
the condition N(r, α) = 0 , this corresponding to our tronconical 
flow case. An improvement in our problem solution can be 
obtained by replacing the relation for the main boundary 
condition V·n = 0 with the new (exact) streamline’s equation: 
R′V′ = RV  (= Φ) ,    or    rαφα = r(φ + rφr) ,   (12) 
with:    rα = dr/dα  ,    φα = ∂φ/∂α    and    φr =∂φ/∂r   , 
where, taking into account the definition of the velocity 
potential – relation (14) in [21], assumed in the simple new 
form Φ = rφ(r, α) (therefore not a tronconical one, rφ(α)), 
were used for the velocity components the expressions 
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On the other hand, in order to replace the expression 2
1a  in 

the general PDE of the tronconical flow – the former ODE 
(11), one must write a new (exact) form of the energy PDE: 
(a1)

2 = (γ – 1)[W2 – (φ + rφr)
2 – (φα)

2]/2   .   (13) 
The new solution will be obtained by integrating the system 
of three PDEs (11) – (13), the subscripts α and r having 
now the significance of partial differentiation with respect 
to the respective variables), these equations ceasing to still 
represent the mathematical model of a tronconical flow, 
but of a new flow, related to that considered in [21]. This 
new system, by solving of which is obtained the improved 
solution, has three unknowns: φ(r, α), a1 (r, α), and r(α) – 
the streamline (body wall) equation, the functions φ and a1 
depending on α both directly and via r as well, so that one 
can write on a certain streamline: dφ = φαdα + φrrαdα = 
(φα + φrrα)dα and respectively: da1 = (a1α + a1rrα)dα . 
It is also to be noticed that in all the cases, the equation 
of the velocity potential admits the particular (trivial) 
solution V = – U∞cos θ (a parallel and uniform stream). 
In the case of absence of the specially shaped central body 
(see fig. 4.a), when only the cylinder-cone shell exists, the 
outer quasi-conical motion is no more associated (confluent) 
to the inner tronconical flow with isentropic compression, 
but to a non-tronconical flow with expansion, considered 
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in [28], called by the author Prandtl-Meyer expansion in 
axisymmetric flow. It must be mentioned that the general 
equation from the beginning of this section can describe any 
tronconical flow, not only those with isentropic compression. 
Thus, it can be imagined a tronconical flow with expansion 
in an axisymmetric nozzle similar to Busemann’s one, but 
having inside a central cylinder-cone body and a pre-deter-
mined shape of the wall meridian line, corresponding to a 
strictly calculated design Mach number of the downstream 
parallel and uniform supersonic flow (also see fig. 4.b and 
fig. 173 from [29]). This flow can be easily obtained by 
a simple reversal of the flow from figure 4.b and extends 
itself only in the supersonic range. This is possible, because 
the inner flow is entirely shock-free (and thus isentropic). 
In the same manner, starting from the tronconical flow with 
isentropic compression represented in fig. 4.a one can obtain 
the tronconical flow with expansion given in fig. 4.1.a from 
[30]. Besides these cases, there also is that of the tronconical 
flow with expansion in the second region of the mixed flow 
(isentropic compression – expansion) around a specially 
shaped axisymmetric forebody, immediately followed by a 
cylinder (see fig. 7 in [18], here reproduced as fig. 5). This 
expansion flow succeeds to a tronconical flow with isentropic 
compression in the first region of the above flow and takes 
place just around the circular edge (having in the meridian 
plane the trace B) of the intersection of the two bodies, this 
edge being just the foci circle of the tronconical flow with 
expansion. Besides these methods, another way to obtain 
tronconical flows with expansion consists in the generaliza-
tion of their corresponding axisymmetric conical flows (see 
[31] – [34]), instead of the conical flow’s vertex appearing now 
the tronconical flow’s circle of foci. The new flow’s velocity 
potential equation (valid for tronconical flows with both 
compression and expansion) was established as a first step 
in finding the exact solution and a streamlining method for 
the axisymmetric bodies and channels was imagined. 
 

 
 

Fig. 5. Reproduction of fig. 7 from [18] (reduced caption) 
The confluent supersonic flows around an axisymmetric specially 
shaped configuration, consisting in a central forebody followed 
in the downstream by a co-axial inlet diffuser (annular air intake) 
 

In order to unify the methods of solution for the PDEs of 
the confluent flows from figs. 4.a or 5 (potential – internal 
and rotational – external, both having a strong tronconical 
character) without dividing the external flow into a potential 
(quasi-conical) one, governed by the same PDE of the 
velocity potential (11), and a rotational perturbation, and 

then adding (superposing) these terms of solution, we can 
apply the new 2-D velocity quasi-potential theory on the 
whole axisymmetric flow’s isentropic surfaces. Thus, even 
the external rotational flow can be treated as a potential one, 
if we can determine the equation of the axisymmetric 
isentropic surfaces, starting from the already known 
streamline’s Eq. (12), for a given velocity field rφ(r, α). 
 

10  First approach to extension of the new 
quasi-potential model to the rotational flow 
of a viscous Newtonian compressible fluid 
Let start from the vector general form of the motion equation 
for a viscous Newtonian fluid flow (Navier–Stokes): 
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(the Helmholtz ([35])–Gromeka–Lamb form, binding the 
acceleration and force density terms of a fluid particle); 
f – the mass force density (conservative – a gradient): 
f = (–gz) = –(gz); g – the acceleration of gravity; 
z – the geometrical height (height of the considered 
point above a reference horizontal plane xOy); 
μ1 – the dynamic viscosity of the fluid or the coefficient of 
internal friction; μ1/ρ – kinematic viscosity of the fluid; 
μ2 – second, or bulk, viscosity (μ1, μ2 assumed const.). 
For a steady motion and respectively for gases, we 
have:   ∂V/∂t = 0   and   f = 0   , thus remaining: 

.)(
3

μ
μΔμp

ρ

1

2
1

21

2



























 VVVΩ

V

Searching for a 2-D velocity quasi-potential Фi (ξ, η) 
(therefore in a new smart intrinsic coordinate system 
O), we will perform first a scalar multiplication of 
this equation by a special virtual elementary displacement 
dR  (V, Ω) plane (see section 2), so obtaining some 
surfaces similar to the isentropic ones for the inviscid 
compressible fluid flow case, envelope sheets of the (V, Ω) 
planes above. Over these surfaces we can write: 
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where: ki – a 3-D basis; hi – Lamé’s coefficients; the dotted 
variables are derivatives with respect to the time t, and so: 
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Let introduce a scalar function Φi(M) = Φi (ξ, η, ζ0i), also 
called by the author a 2-D velocity “quasi-potential”, whose 
partial derivatives along the directions of the elementary 
orthogonal arcs hξdξ and hηdη on the “i” (V, Ω) sheet (ζ = 
ζ0i ) are just the components Vξi and Vηi of the velocity 
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Vi vector (Vζi = 0). Let still define λ and μ as being two 
orthogonal arc lengths (also see sections 3, 5 – 7), so that: 
dλ = hξdξ and dμ = hηdη , (dR = c1V + c2Ω = kξhξdξ 
+ kηhηdη = kξdλ + kηdμ), on these “i” surfaces having: 
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So the relation Ωζi = 0 leads to: 2Φi / – 2Φi / 
= 0 , this representing just Schwarz’ theorem for the 
functions of two variables (the so-called theorem of “the 
equality of the mixed derivatives of the second order”, 
they differing as to the order of differentiation only). 
This relation proves that Ωζi = 0 and the existence of 
a 2-D velocity “quasi-potential” function Φi so that: 
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 (also see [2] – [5]). 

Applying the second law of thermodynamics, one can 
write the heat transport equation (called by this author the 
generalized Crocco’s equation for roto-viscous fluids) as: 
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= TdS1 (Ω ≠ 0; 1 = 2 = 0) + TdS2 (Ω = 0; 1 ≠ 2 ≠ 0), 
(also see [2], [4], [36]) with the following notations: 
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where: Vv is the virtual velocity vector (along the virtual 
displacement dR); I1, I2 – first and second invariant of the 
tensor of the fluid particle deformation rate e ([37], [38]). 
The first three terms (eiiejj ; j ≠ i) in the I2 expression are 
given by the linear deformation, while the last three 
ones (eij

2 ; j ≠ i) are given by the angular deformation: 
eii = ∂Vxi/∂xi = vii ; eij = (∂Vxi /∂xj + ∂Vxj /∂xi)/2 = (vij + vji)/2; 
eji = (∂Vxj /∂xi + ∂Vxi /∂xj)/2 = (vji + vij)/2 = eij . 
The new equation of the isentropic surfaces (dS = 0, needed 
to assure that a2 = (dp/dρ)S = S0 in Steichen’s PDE) is: 
TdS = TdS1 + TdS2 = 0    ;         (15) 
this is an equivalent form of the “zero-work” condition: 
[Ω  V – μ1/ρ·V – (μ1 + μ2/3)/ρ·(V)]·dR = 0 for the non-
conservative rotational and viscous terms (see [2], [4], [36]), 
having two main particular cases (independent annulment): 
1. rotational flow of an inviscid fluid (1 = 2 = 0), in the 
equation above missing the second term of the sum (dS2 ), 
the motion equation admitting a D. Bernoulli first integral; 
2. irrotational flow (Ω = 0) of a viscous fluid, in this 
case missing the first term of the sum (dS1 ), obtaining: 
1. the annulment of the mixed (scalar triple) product in the 

left-hand side (coplanarity of three vectors), so getting in the 
Cartesian system Oxyz the following PDE of (V, Ω) sheets: 
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in the smart intrinsic system O this equation is  = 0i ; 
2. the annulment of the second factor of the second 
product in the left-hand side, (2 /1 – 2/3)I1

2 + 2I2 , written 
in the principal deformation rates (eii = ei ; eij = eji = 0): 
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– a pure viscous isentropic right-circular cone having as vertex 
the origin and as axis the straight line: e1 = e2 = e3 (diagonal 
of the cube of equation: e1e2e3(e1 – a)(e2 – a)(e3 – a) = 0 ; a > 0 ; 
e1,e2, e3  [0, a]). In the principal Cartesian system O1x1y1z1, 
replacing e1, e2, e3 by ∂Vx1/∂x1, ∂Vy1/∂y1, ∂Vz1/∂z1, we get 
the PDE of the isentropic cone, having as unknown functions 
the velocity V components on the principal axes Vx1, Vy1, Vz1: 
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In all these cases (dSi = 0; i = 1, 2) the physical equation is: 
p = Kiρ

γ , with:  Ki = p0i/(ρ0i)
γ·exp[(S – S0i)/Cv ] = p0i/(ρ0i)

γ 
> 0 (the isentropic constant of the respective particular “i” 
isentropic (zero-work) virtual surface, Cv being a constant 
– the isochoric specific heat of the respective ideal gas; p0i 
and ρ0i are stagnation values). Over the isentropic “i” surface 
the speed of sound is given by: a2 = (dp/dρ)S = S0i = γRT . 
 

11  The velocity “quasi-potential” PDE for 
a viscous fluid flow and its validity domain; 
introducing a new Selescu’s roto-viscous vector 
Therefore along the intersection space lines of the particular 
isentropic surface families ((V, Ω)i sheets and “j” circular 
cones with Kj = Ki ), the general rotational flow of a viscous 
Newtonian compressible fluid is governed by Steichen’s 
PDE of the 2-D quasi-potential Φij (M) = Φij (ξ, η, ζ0i) 
(see sections 3 and 5), therefore at the same point: 
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These space lines coincide with those of intersection of the 
(V, Ω) surfaces and the isentropic ones, being defined by 
dR || Ş − Selescu’s roto-viscous vector Ş ≡ (Ω  V)  S. 
But the most general case for Eq. (15) to represent the isen-
tropic (zero-work) surfaces of the general steady rotational 
flow of a viscous Newtonian compressible fluid corres-
ponds to the existence of a special virtual elementary displa-
cement dR to satisfy this equation. So if both terms of the 
sum in the left-hand side have the same modulus and sign: 
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in order to assure the annulment of this sum, one has to 
change the sense of dR (and so the sign of the first term 
of the sum), obtaining a mutual annulment of both terms, 
(dS2 = – dS1 ), therefore satisfying Eq. (15): TdS = 0 
(TS1 is always > 0, but the sign of TdS1 depends on dR). 
This dRi describes the searched for “i” virtual isentropic 
surface. But over these surfaces, even isentropic, the 
considered flow does not admit a velocity quasi-potential 
Φi (like over the (V, Ω) ones in the previous case). In 
subsection 1.4 of papers [2], [4] the dependence of gas 
particle specific entropy S on velocity “quasi-potential” Φ 
was established in the form below (see Eq. (5) in [2], [4]), 
valid assuming that the velocity vector V is derived 
from a velocity potential Φi only (also see Eq. (14)): 
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where λ and μ are the orthogonal arcs lengths in a smart 
intrinsic triorthogonal system Oλμν (or O) tied to 
the (V, Ω) sheets, so that Eq. (16) of Φij is the single 
possible 2-D velocity quasi-potential PDE to be written. 
 

12  Model extension to the magnetically 
inviscid (with no magnetic viscosity) MHD 
All this analysis can be extended to the magnetically 

inviscid MHD. The results obtained in studying the local 
physical phenomena in fluid mechanics & MHD (searching 
for their main hidden features) in a new smart intrinsic 
coordinate system were presented in [39], and the last 
researches performed in this field were given in [40], both 
as plenary lecture, representing a real “physiology” of 
the fluid medium, treating Crocco’s, motion, continuity, 
flow rate, velocity potential and vorticity equations (and, 
by analogy, that of “magnetic induction” in MHD). 
The equation of the isentropic surfaces is (two cases): 
 

1. TdS = [(Ω  V) − (1/4ρ)·(j  H)]·dR = 0, for an inviscid 
 

fluid, V and Ω being now local mean (of the ionized fluid 
– plasma – component particles: neutral atoms, cations 
and anions of a single species) vectors (see subsection 
2.2 in [2], sections 2 in [41], [42], and 3 in [43]): 
V = (ρaVa + ρ+V+ + ρ–V–)/ρ , where: Va , V+ , V–  are the 
velocities of the components; ρa , ρ+ , ρ– are the densities 
of the components: ρa = nama ; ρ+ = n+m+ ; ρ– = n–m– ; 
ρ = nama + n+m+ + n–m– = ρa + ρ+ + ρ– – plasma density 
(analogously to the case of a mixture of components); 
ma is the mass of a neutral atom (ma = m+ + m–); 
m+ is the mass of the positive ion (a single species); 
m– is the mass of the negative ion or of electron; 
na is plasma concentration in neutral atoms, and, 
respectively (for a three-component neutral plasma): 
n+, n– are the concentrations in positive and negative 
particles (a single species of cations and anions; in the 
case of a quasi-neutral plasma: n+ ≈ n–), all according to 
a simplified model proposed by the author (no collision). 
Therefore the flow (mean) vorticity is given by: 
Ω =   V =   [(ρaVa + ρ+V+ + ρ–V–)/(ρa + ρ+ + ρ–)]; 
H is the strength of the local magnetic field, using the same 
convention of equivalence (see for reference [38], [44] − [46]) 
to the magnetic induction B (as a rule variable in time), with 
H = 0 (H =   W − a solenoidal field); 
j is the density of the conduction electric current (see 
Maxwell’s 2nd equation in [47]): 
j/k =   H – 1/c·E/t =   H + 1/c2 /t(V  H) ; k = c/4; 
E is the intensity of the local induced electric field (also 
variable in time); c is the light speed in a vacuum. The low-
frequency Ampère’s law neglects displacement current, the 
density of conduction current becoming thus: j = k  H; 
 

2. TdS = [(Ω  V) − (1/4ρ)·(j  H)]·Vv 
+ 1/ρ·[(2/1 − 2/3)I1

2 + 2I2]·dt = 0 , respectively, 
 

for a viscous fluid (see, e.g.: [2], [42]), but in the case of 
magnetically inviscid MHD (with no magnetic viscosity). 
Vv is the virtual velocity of a neutral atom or of a small 
electroconducting fluid particle, given by: dR = Vvdt; 
1 is the dynamic viscosity of the fluid or the coefficient 
of internal friction; μ1/ρ is the fluid kinematic viscosity; 
μ2 is the second, or bulk, viscosity of the fluid, 
assuming that μ1 and μ2 are constant (mean values); 
I1, I2 are the mean values of first and second invariant of 
the tensor of the particle deformation rate (see section 10). 
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13   Conclusions and remarks 
In this paper the expanded form of Steichen’s PDE of 
the velocity potential in a certain triorthogonal curvilinear 
coordinate system was established, for both steady and 
unsteady motion of an inviscid compressible fluid. 
Choosing a smart intrinsic system Oξηζ tied to the isentropic 
surfaces (V, Ω)i , some simpler forms of the equation were 
obtained, even for the rotational flows, using a 2-D velocity 
“quasi-potential” Φi (ξ, η). Over flow’s polytropic surfaces 
the fluid has a quasi-barotropic behavior. So, for any steady 
rotational flow of an inviscid compressible fluid one can 
find a 2-D velocity “quasi-potential” Φi (ξ, η) satisfying 
Steichen’s PDE over some rigid virtual “i” isentropic 
surfaces, and even more, one can find a similar 2-D 
velocity “quasi-potential” Φij (ξ, η) satisfying Laplace’s 
PDE ΔΦij = 0 (so a harmonic function Φij along some 
rigid virtual “ij” isentropic and polytropic space curves 
(intersection lines of “i” isentropic surfaces with “j” 
polytropic ones) – a quasi-incompressible quasi-potential 
behavior in a rotational pseudo-flow of a compressible 
fluid. For any unsteady rotational motion of an inviscid 
compressible fluid one can find a new 2-D velocity 
“quasi-potential” Φi (ξ, η, t) which satisfies Steichen’s 
PDE over some time-deformable virtual “i” isentropic 
surfaces. Simpler forms of all above equations can be 
obtained using the orthogonal elementary arc lengths: 
dλ = hξdξ; dμ = hηdη (dν = hζdζ = 0 – isentropic sheet), 
without any Lamé’s coefficient at the denominators. 
 

So, along the streamlines of a 3-D steady rotational flow 
of an inviscid compressible fluid the motion is given 
by an ODE of the 2nd order for the 1-D velocity quasi- 
potential Φi (ξ), while along the intersection lines of the 
isentropic virtual “i” surfaces with the isothermal & 
isotachic (polytropic) virtual “j” surfaces (the flow’s 
Laplace lines) the motion is described by a Laplace’s 
PDE for the 2-D velocity quasi-potential Φij (ξ, η). 
 

Therefore, for any steady rotational flow of an inviscid 
compressible fluid one can find a 2-D velocity “quasi-
potential” Φi (ξ, η) satisfying Steichen’s PDE over some 
virtual “i” isentropic surfaces, and even more, one can 
find another 2-D velocity “quasi-potential” Φij (ξ, η) 
satisfying Laplace’s PDE (so a harmonic function Φij (ξ, η)) 
along some virtual “ij” isentropic and polytropic space 
curves (that is the intersection lines of the “i” isentropic 
surfaces with the “j” polytropic ones), meaning an elliptic 
PDE (its canonical form: ∆Φij (λ, μ, ν0i) = 0), irrespective 
of the pseudo-flow character (subsonic or supersonic). 
 

Their direction in space is given by the local Selescu’s 
isentropic & isotachic elementary virtual displacement 
vector (dRij = k1·S|i  V|j mainly). Through any point of 
the rotational flow of an inviscid compressible fluid always 
passes such an incompressible “Laplace” “ij” line (isentropic 
& isotachic), except for the case when both surfaces 
are identical, so appearing an undetermined solution. 

Choosing the smart intrinsic coordinate ξ just along flow’s 
streamlines (assumed as being known), Steichen’s PDE 
becomes an ODE of the 2nd order, therefore simpler, 
and so the streamlines are just the characteristic lines. 
 

More, one can find another 2-D velocity “quasi-potential” 
Φij (ξ, η) satisfying the wave (vibrating string) PDE along 
other virtual “ij” isentropic and polytropic space curves (that 
is the intersection lines of the“i” isentropic surfaces with the 
“j” polytropic ones), meaning a hyperbolic PDE (its 
canonical form: 2Φij (λ, μ, ν0i)/λμ +  (lower order terms) 
= 0), irrespective of the pseudo-flow character. Concluding: 
the analysis for a steady flow case in sections 6 and 7 
is independent on the value of a (the speed of sound). 
 

Along the intersection lines of the particular isentropic sheets 
((V, Ω)i sheets with “j” circular cones; dS1 = dS2 = 0, and so 
dS = 0) only, the steady rotational flow of a viscous Newtonian 
compressible fluid is governed by Steichen’s PDE of a 2-D 
velocity quasi-potential also Φij (ξ, η, ζ0i ) ≡ Φij (λ, , ν0i ) – a 
line potential; ζ = ζ0i is a (V, Ω)i sheet, admitting this Φi . 
 

Remarks: 1. The difference between a potential function 
Φ and a 2-D “quasi-potential” Φi one consists in that the 
first function is valid everywhere (at any point in space), 
whereas the second one is valid over a family of some “i” 
surfaces ζ = ζ0i only. While V = Φ is a gradient, Vi = Φi 
is not. For the first one: Ω =   V =   Φ = 0 , whereas 
for the 2nd one: Ωi =   Vi =   Φi = kξΩξi + kηΩηi ≠ 0 , 
being contained in the plane tangent to the “i” surface ζ = ζ0i , 
only its component directed along the normal to this surface 
becoming zero: Ωζi = (1/hξhη)·(∂

2Φi/∂ξ∂η – ∂2Φi/∂η∂ξ) = 0 . 
2. Sections 6, 7, 10 and 11 are dedicated to the analysis of 
some interesting particular forms of the 2-D velocity quasi-
potential PDE of a certain rotational “flow”, forms taken 
along some space lines different from the streamlines, but 
having a physical-mathematical property kept along them, 
so that a more appropriate term would be “pseudo-flow”. 
3. If a PDE has coefficients that are not constant, it is 
possible that it will not belong to any of the categories: 
elliptic, hyperbolic, parabolic, but rather be of mixed type. 
Besides Steichen’s PDE, a simple but important example 
is the Euler–Tricomi equation, used in the investigation 
of transonic flow: 2u/x2 = x2u/y2, which is called elliptic-
hyperbolic because it is elliptic in region x < 0 , hyperbolic 
in region x > 0  , and degenerate parabolic on the line x = 0. 
4. All results here obtained substantiate the existence of 
some 2-D quasi-potentials (velocity’s Φ and magnetic Ξ) 
even for rotational flow, and more, for viscous fluid flow. 
Not all isentropic surfaces allow introducing such a quasi-
potential, but the envelope sheets of the local planes (V, Ω) 
for Φ, and (H, j) for Ξ (using the low-frequency Ampère’s 
law j/k =   H, neglecting the displacement current) only. 
So we can write: V = Φ and H = Ξ. Another 2-D quasi-
potential (vorticial X – the Greek “Chi”) was introduced 
(Ω = X), over the (Ω, Θ) sheets (Θ =   Ω), to study the 
vorticity equation for a viscous incompressible fluid ([5], [7]). 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 73 Volume 9, 2014



All quasi-potentials Φ satisfy Steichen’s PDE. The validity 
domains for these PDEs – the “ij” space lines (intersection 
lines of two particular isentropic sheet families (section 11) 
and along Selescu’s magnetohydrodynamic vector lines: 
dR || $, with $ ≡ (V, Ω) ∩ (H, j) ≡ (Ω  V)  (j  H) 
in inviscid MHD (see [2], [41], [48]), allowing to introduce 
both 2-D quasi-potentials Φ and Ξ), and the “i” surfaces 
– were theoretically established (their existence was 
firmly predicted). Finding them effectively is a very 
difficult job and is not the subject matter of this work. The 
solid and solidifiable (like in the case of confluent flows) 
boundaries of the flow domain are always (V, Ω) surfaces. 
There also is a 2-D “quasi-stream function” Ψc defined in 
section 2 of [49], satisfying a similar PDE as the 2-D “quasi-
potential” Φ does, the interdependence Φi  Ψci being 
given in section 3 of [49], on the (V, Ω)i (isentropic) sheets: 
Vi = Φi/ = (Ψci/∂)/ρ; Vi = Φi/ = – (Ψci/∂)/ρ. 
So, their gradient vector lines are orthogonal each other: 
Φi·Ψci = (∂Φi/∂λ)(∂Ψci/∂λ) + (∂Φi/∂)(∂Ψci/∂) = 0. 
Finally we can cite a remarkable sentence from [50]: 
“There is nothing more practical than a good theory”. 
 

Notes 
This paper (the last in a series dedicated to the intrinsic 
analytic study of the basic equations in compressible fluid 
mechanics) is fully original, however having as starting 
point another one with almost the same title (see [51]). 
It addresses to researchers in higher mathematics and fluid 
dynamics, MHD included. All authors use further Steichen’s 
PDE of the velocity potential for true potential flows only. 
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