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Abstract: This work studies and clarifies some local phenomena in fluid mechanics, in the form of an intrinsic analytic study, 
regarding the continuity equation, its first integral (the flow rate equation), for inviscid compressible fluids, and the vorticity 
equation, for viscous incompressible fluids, finding new first integrals. It continues a series of works presented at some conferences 
and a congress during 2006 – 2012, representing a real deep insight into the still hidden theory of the isoenergetic rotational flow. 
Several new functions, surfaces and vectors were introduced: the 2-D “quasi-stream” function on the 3-D (V, Ω) surfaces, for the 
continuity equation; the surfaces of iso-normal mass flux density (over which the continuity equation for the steady flow in a thick 
stream tube admits the same first integral as for the flow in a thin one, and whose envelope sheets are the sections of uniform 
flow), for the flow rate equation; the 3-D stream function vector, allowing new local and global forms of continuity equation (the 
global one similar to Helmholtz’ 2nd theorem about vortices in an ideal fluid); Selescu’s incompressible roto-viscous vector and 
the zero-work surfaces (for some non-conservative vectors), for the vorticity equation. The dependence “2-D velocity quasi-
potential  2-D quasi-stream function” was established. The unsteady flow’s continuity equation was analytically integrated. 
 
Key-Words: rotational flows; steady and unsteady flows; inviscid and viscous fluids; compressible fluids; isentropic or (V, Ω) 
surfaces; Selescu’s 3-D stream function vector, surfaces of iso-normal mass flux density, roto-viscous vector and zero-work surfaces 

 
1 Introduction, nomenclature and the 
first approach to the new steady model 
The continuity equation is the mathematical expression of 
the law of conservation of mass in fluid mechanics. For a 
certain 3-D unsteady motion, if there are no sources or 
losses of fluid within the considered flow subdomain, the 
general form of this equation (called its local form) is: 
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(Hamilton’s operator), in a triorthogonal system of curvili-
near coordinates xi ; ki – a 3-D basis; hi – Lamé’s coefficients; 
V – the local instantaneous velocity of translation (of a 
small fluid particle) – the intensity of the local fluid field; 
V = V; Ω =   V = 2ω – the vorticity, with: ω – the 
local instantaneous velocity of rotation (of the particle); 
Oxyz – the Cartesian orthogonal coordinate system; 
ρ – the fluid local density; t – the time. Additionally: 
a – the speed of sound; c – the critical speed (V = a). 
For a certain 3-D steady motion, studied in a certain 
triorthogonal curvilinear qi (i = 1, 3) coordinate system 
(like the previously used Oξηζ or Oλμν – both intrinsic, 
with: dλ = hξdξ ; dμ = hηdη and dν = hζd – the elementary 
arc lengths), the continuity equation yields the forms: 
(ρV) = 0  (with 

332211 qqqqqq VVV kkkV  ), or: 
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meaning the mass flux density ρV is a solenoidal vector 
field (ρV =  × Ψc with Ψc ≠ G; if Ψc = G one can 
define the flow’s stagnation lines – see next section); 
hi are the corresponding Lamé’s coefficients (hξ , hη , hζ ): 
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Eq. (1) may be written explicitly in the forms below: 

or,0
h

V
hhρh

ζ

h

V
hhρh

ηh

V
hhρh

ξhhh

1

ζ

ζ
ζηξ

η

η
ζηξ

ξ

ξ
ζηξ

ζηξ
























































 

     
;ζhV;ηhV;ξhV:or with,0

Vhρh
ζ

Vhρh
η

Vhρh
ξhhh

1

ζζηηξξ

ζηξηζξξζη
ζηξ

 




















 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 34 Volume 9, 2014



(all the dotted qi variables in Eq. (1) and in the next 
ones represent derivatives with respect to the time t ); 
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or, in an expanded form 
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or, taking into account that on any “i” (V, Ω) surface 

(ζ = ζ0i ) we have: 0νζhV ζζ    and so ∂(ρhξhηVζ)/∂ζ 

= 0, (where Ω =   V = 2ω is the local vorticity, curl V): 
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Let us introduce on any (V, Ω) surface (ζ = ζ0i ) the 2-D 
velocity “quasi-potential” Φi (ξ, η) (see [1] – [4] and section 3): 
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The mass flux density (ρV)i = (ρΦ)i having also two 
components only, Eqs. (2) and (4) become respectively: 
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2 Introducing the 2-D “quasi-stream 
function” on the (V, Ω) surfaces and 
Selescu’s 3-D “stream function” vector 
(both for the mass flux density vector) 
The last PDE is possible if and only if there is a scalar 
function Fi(ξ, η, ζ0i ) (a 2-D “quasi-stream function” 
for the mass flux density vector j = ρV on the surface 
ζ = ζ0i ) so that the conditions below are fulfilled: 
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to satisfy Schwarz’ theorem for the mixed derivatives of 
the second order (∂2Fi/∂ξ∂η = ∂2Fi/∂η∂ξ). So we can write: 
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a total differential admitting along flow’s “quasi-streamlines” 
dFi = 0 (“mass flux density” streamlines) the first integral: 
 

Fi(ξ, η, ζ0i ) = const. 
 

With the elementary orthogonal arcs: dλ = hξdξ and 
dμ = hηdη , the conditions above become: 
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or more:    






































































.
ξh

)ζη,,F(ξ

h

h

ρ

1

η

Φ

;
ηh

)ζη,,F(ξ

h

h

ρ

1

ξ

Φ

0i

0i

ζζ
ξζ

η

i

ζζ
ηζ

ξ

i
 

For a compressible fluid flow in a certain triorthogonal 
curvilinear coordinate system Oξηζ (of elementary 
orthogonal arcs dλ = hξdξ , dμ = hηdη and dν = hζdζ), we 
can introduce (by definition) a new 3-D “stream function” 
Ψc (Selescu’s vector), this being given by a relation 
involving the analytic expression below of the mass flux 
density vector j = ρV in the 3-D intrinsic basis ki (so being 
obtained a new local form for the continuity equation): 
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with Ψc ≠ G (G being a certain scalar function), except for 
some space curves – singular lines of a saddle point type 
(bifurcation lines), along which Ψc = Gij , this meaning the 
existence of steady flow’s “ij” stagnation lines, they being 
0-vorticity lines too. The subscripts “i” and “j” denote two 
families of orthogonal surfaces, by whose intersection the “ij” 
curves are obtained; so, along these “ij” space curves the mass 
flux density vector j = ρV = 0. The equation Ψc = Gij is the 
definition of flow’s stagnation lines. If Ψc is just kρV , so ha-
ving j = ρV = k × ρV = k × j , one gets a special compres-
sible helicoidal (screw) motion – a special Beltrami flow. 
On any “i” isentropic (V, Ω) surface (ζ = ζ0i , see [1] – [4]) 
of elementary orthogonal arcs dλ = hξdξ and dμ = hηdη , we 
have for this compressible flow: Ψci = kζΨci with Ψci = 
Ψcζi(ξ, η, ζ0i) = Ψcζi(λ, μ, ν0i) (Ψcξi = Ψcηi = 0) and respectively: 
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like for a local quasi-plane 2-D fluid motion (in the ξOη 
plane tangent to the “i” isentropic surface), this leading to: 
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(jζi = ρVζi = 0), the newly introduced vector Ψc “becoming” 
now a 2-D “quasi-stream” scalar function Ψci . 
 

3 Introducing the 2-D velocity “quasi-
potential” over the isentropic surfaces 
The vector V has now two components only (like the 
vector Ω, both lying in the plane tangent to an isentropic 
sheet). Let be Oxyz the Cartesian system. In a triortho-
gonal curvilinear coordinate system Oξηζ tied to this 
isentropic surface (having ξOη as tangent plane) – 
therefore a smart intrinsic coordinate system, the vorticity 
component normal to the isentropic sheet (ζ = ζ0 ) must 
be: Ωζ = 0. The analytic expression of the vector Ω is: 
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Between two isentropic sheets the specific entropy S can 
vary continuously (monotonously) or discontinuously (by 
jump, like for the cases of supersonic plane flow with direct 
and Mach reflected shocks, and of axisymmetric confluent 
flows). Even if varying the index “i”, S = S0i(i) is not always a 
strictly increasing function to be accepted as a ζ coordinate 
(like for symmetric plane flows), the monotony of S on some 
intervals of “i” may be considered, thus needing delimiters. 
Let introduce a scalar function Φi(M) = Φi (ξ, η, ζ0i), called 
by the author “quasi-potential”, whose partial derivatives 
along the directions of the elementary orthogonal arcs hξdξ 
and hηdη on the “i” isentropic surface (ζ = ζ0i ) are just the 
components Vξi and Vηi of the velocity Vi vector (Vζi = 0). 
Let be dR an elementary virtual displacement vector in the 
plane tangent to an isentropic sheet (coplanar to V and Ω): 
dR = c1V + c2Ω = kξhξdξ + kηhηdη = kξdλ + kηdμ, the ele-
mentary arc length ds (= |dR|) on this surface being given by 
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J J – the Jacobian determinant of 

this change of variables; J = 0 – gives the space curves 
representing the entropy singularities), so resulting on 
the respective “i” isentropic surface: 
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So the relation  Ωζi = 0  leads to:  ,0
ξη

Φ

ηξ

Φ i
2

i
2










 

representing a true relation – Schwarz’ theorem for 
the functions of two variables (the so-called theorem 
of “the equality of the mixed derivatives of the second 
order”, they differing as to the order of differentiation). 
This relation proves that  Ωζi = 0  and the existence 
of a 2-D “quasi-potential” function Φi so that: 
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the entropy gradient vector Si being normal to the new 
introduced isentropic surfaces ζ = ζ0i . This is evidently, 
taking into account Crocco’s equation for an isoenergetic 
non-isentropic (rotational) steady gas flow: Ω  V = TS 
(see [5]), where T is the absolute local static temperature. 
Thus, introducing the scalar quasi-potential function Φi (M) 
= Φi (x, y, z): Vi = Φi , the vector ODE of motion, joined 
to the continuity and the physical (p/ργ = Ki ) ones (and 
taking into consideration the local speed of sound ai 
definition), enables to determine the velocity vector Vi 
from Steichen’s equation (see [6]), usually a PDE (impro-
perly called now the “velocity potential equation”, taking 
into account that there is a vector Ωi ≠ 0; the flow being 
rotational, more appropriate would be the term “velocity 
quasi-potential equation”). In the physical equation Ki 
is the constant of the respective “i” isentropic surface. 
 

4 The velocity “quasi-potential” equation 
for any steady flow of a compressible fluid 
This vector equation may be written in a symbolic form: 
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and expanding the symbolic expression in the brackets: 
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the speed of sound ai being given by the energy equation: 

,
z

Φ

y

Φ

x

Φ
W

2

1γ

dρ

dp
2

i

2

i

2

i2

SS

2
i

0i



























































a  

all the points at which is satisfied the previous PDE of the 
velocity potential Φi belonging to a certain “i” isentropic 
surface. This new equation is identical to the velocity 
potential equation (see [6]), written for a potential flow 
only. In a triorthogonal smart intrinsic coordinate system 
Oξηζ tied to these surfaces (or Oλμν, with λ, μ, ν – lengths 
of orthogonal arcs, with λ and μ contained in the local 
tangent plane and ν directed upon the normal) Laplace’s 
operator Δ is given by the general expression below (the 
function Φi depending on ξ, η and ζ0i , or on λ, μ and ν0i ): 
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e.g.: the λ arcs taken along the streamlines and the μ arcs – 
along the equi(iso)-”quasi-potential” lines ≡ intersection 
lines of the isentropic surfaces with the iso-quasi-potential 
ones, these being normal to the local velocity V . Similarly, 
in Steichen’s equation – a nonlinear PDE of the 2nd order 
in three variables – ξ, η, ζ (now written for any rotational 
flow – Ω ≠ 0 , but on the “i” isentropic surfaces ζ = ζ0i ) dis-
appear all the terms containing the partial derivative about ζ 
of the potential function Φi, (Φi/), and also its derivatives 
with respect to ξ, η and ζ , thus being obtained a nonlinear 
PDE of the second order in only two variables – ξ, η – 
the “velocity quasi-potential equation” (see [1] – [3]), 
which was thoroughly treated in a recent paper ([7]). 
 

5 The interdependence between the 2-D 
“quasi-potential” function and the 2-D 
“quasi-stream” scalar function (Selescu); 
the orthogonality of their gradient lines 
Taking into account the previously established relations 
(also see subsection 1.2 in [1], [3] and section 2 in [2]): 
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one gets the searched for interdependence Φi  ci : 
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Let us check the orthogonality of the gradient lines above: 
 

Φi·Ψci = (∂Φi/∂λ)(∂Ψci/∂λ) + (∂Φi/∂)(∂Ψci/∂) = 0 ; 
 

therefore these vector lines are orthogonal each other. 
 

6 A simple example: the 3-D conical flow 
Let us consider further as a simple application the case 
of a general 3-D conical supersonic flow, with its two 
well-known particular cases of 2-D conical flow: axisym-
metric (Busemann–Taylor–Maccoll) and plane (Prandtl 
–Meyer). The isentropic surfaces are the conical ones with 
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the vertex in the cone tip and the streamlines as directrices, 
as a result of the fact that the entropy is constant along both 
the streamline and any half-straight line starting from the tip. 
Let be: (x, y, z) – the Cartesian coordinates; (R, θ, ω) 
– the classical spherical coordinates; (R, , χ) – the 
generalized spherical (conical) coordinates – intrinsic; 
x = Rf1(θ, ω) = Rcosθ;     y = Rf2(θ, ω) = Rsinθcosω; 
z = Rf3(θ, ω) = Rsinθsinω,     and analogously (since 
x, y, z may be expressed as products of separated 
functions for any kind of spherical coordinates): 
x = Rf1G(, χ) = Rf1()g1(χ); y = Rf2G(, χ) = Rf2()g2(χ); 
z = Rf3G(, χ) = Rf3()g3(χ);       (also see [8], [9]), 
satisfying the following condition on the Jacobian J 
(see subsection 1.2 in [1], [3] and section 2 in [2]): 
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J = 0 – gives entropy’s S singularities (see subsection 1.3 
in [1], [3] and section 5 in [2]) for a cone at incidence: a pair 
of half-straight lines – two nodal logarithmic singularities, 
and a half-straight line – a false saddle point type singularity; 
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hR , hφ , hχ are Lamé’s coefficients: 
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We will start further from the continuity equation (1) 

for a certain 3-D steady motion, in a triorthogonal 
curvilinear qi coordinate system, which becomes in the 
generalized spherical intrinsic coordinates (R, , χ): 
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equation that we will divide by R·f() ( ≠ 0), and replacing 
the velocity V components along the system axes: 
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Taking into account that we are studying a conical flow, 
and R,  and χ are independent variables, chosen so that 
along any streamline: 0V;0χ;χχ χ0   , we have: 
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





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
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




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

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












Grouping conveniently the terms and dividing by ρR ( 0), 
we obtain the form of the continuity equation, specific to 
the conical flows (a first order PDE in one variable – ): 

 
,0

)f(

)f(

R

R
2

ρ

ρ














 

         (5) 

 

similar to Eq. (3) previously established for a certain 3-D 
steady flow, where: ξ = R ; η =   and  ζ = χ . We will 
try to express in other form the partial derivative    : 







 














 0
R

,χ
χ

R
Rdt

d 










 , 

  varying with respect to R, because   0RR   , 

whence it results in:    .
χ

χ

R

R 


































 

Taking into account that we study a conical flow, in a 
special chosen coordinate system, there are the relations: 

 
.0χand0

R

R

R

V











  

Developing the first one, we get:    .0
R

R 







  

Therefore, in the case of a certain conical flow, we have: 
.RR     
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Replacing this in the expression of    , one obtains: 

,
R

RR

R 



























 

the previous continuity Eq. (5) for conical flows getting the 
first integrable general form below (a second order ODE): 

    ,0)f(ρRln
dt

d
or ,0

)f(

)f(

R

R
3

ρ

ρ 3 



 










 (6) 

 

valid for any conical flow (either potential or rotational), 
representing the new form of its continuity equation, 
admitting a remarkable first integral (the flow rate equation): 

)7()ddwith(Q)f(ρR

:moreor ,Q)Vf(ρRor,Q)f(ρR

i
2

i
2

i
3


 




V



 

(see example 3 at the end of subsection 1.2 in [1], [3]), the 
constants Qi being kept over the field surfaces ψ(R, ) = Qi . 
The quantity R2f() is proportional to the infinitesimal 
side area of the current cone (C1):  = 0j = C1 (fig. 1.b in 
[1] – [3], [8]), between two closely near (isentropic) cones 
(C2): χ = χ0i = c(S0i – c0 ) = 1/C2 (fig. 1.a in [1] – [3], [8]); 
the tip half-angle  of this quasi-circular cone (compression 
simple wave) is an intrinsic coordinate. One can apply a 
qualitative analogy of conical isentropic sheets traces to the 
streamlines in an incompressible 2-D plane potential flow. 
In fig. 1 the flow due to a two source system is represented. 
A more realistic flow pattern can be obtained adding a third 
source. In the particular case of the axisymmetric conical 
flow (Busemann–Taylor–Maccoll: see [10], [11]), we have: 

    ,θθcos)(sinθ)f(θ)f(

;sinθ)f(θ)f(;θ;θ;θ


















 

 

so being obtained for the ODE (6) the first integrable form: 

 
0

θ

θ
θθcot

R

R
3

ρ

ρ
:or ,0

θ

θ

sinθ

θsin

R

R
3

ρ

ρ














 

and respectively, for the first integral (7) (also see [8], [12]): 

.πQsinθρRVsinθρRθsinθρR 3
2

θ
23 mV   

The quantity  πR2sinθ  represents just the side area of the 
current circular cone of vertex half-angle θ, in the constant 
Q3 expression intervening the mass flow rate m. In case 
of the plane 2-D conical flow, it can be easily proved that: 

   
,

R

R

)f(ω

)f(ω
;

ω)(R

)(ωRC
)f(ω

;
)R(ω

C
)f(ω)f(;ω;ω;ω
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










 
 

 

representing the plane conical flow (with Prandtl–Meyer 
expansion or isentropic compression; see [13] – [17]): 

      ;ωω
1γ

1γ
cosωff;

dω

d

d

d
ω; 0
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

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
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
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
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the angle of attack α ≠ 0;  r is the cone local radius; 
;tatanα;α tanxtt ;xrr   
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zyx1 i is a complex variable; xzz;xyy  ; x, y, z 

– Cartesian coordinates, x – abscissa of cross section current plane 
Fig. 1.  Simple qualitative example of “generalized spherical” 
smart intrinsic coordinate surfaces for the case of a circular cone 
at a small angle of attack (cross section) – the incompressible 
approximation (slender body; no shock wave), giving the relations 
between the new spherical coordinates (R, φ, χ) and the Cartesian 
ones; the flow is due to two semi-infinite line sources along cone’s 
axis (a) and back (b), replacing it; (a), (b), (n) – nodal and saddle lines; 
1.a. the conical isentropic sheets χ = χ0i = c(S0i – c0 ) = 1/C2 (a 
smart intrinsic coordinate tied to S0i – the local specific entropy 
value), having as remarkable directrices: the oz axis and a circle 
(the solid cone trace) centered on it (both for C2 = 0), and a right 
strophoid (χ = 0) centered on oz axis too (for 1/C2 = 0); c, S0i , c0 > 0; 
1.b. the conical sheets φ = φ0j = C1 (smart intrinsic coordinate), 
orthogonal to the conical isentropic ones: 0)z,y(Z)z,y(Y  , 

having as remarkable directrices: a Pascal’s limaçon and the 
circle at infinity (both for C1 = 0 and centered on the oz axis). 
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(the isentropic surfaces are the planes parallel to that 
represented by the degenerate cone θ = π/2 , that means: 
χ = x = x0 ; the φ = φ0 = C1 intrinsic coordinate surfaces 
are the planes φ = ω = ω0 ), being thus proved that: 

   
 
 

 
  ,

R

R

f

f
or,

ωR
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ωf
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ωR

R
ωf 0








  

so being obtained the first integrable form below: 

,0
ω

ω

R

R
2

ρ

ρ





   the first integral (7) becoming: 

lmV  2ω
2 QρRρRVωρR  (also see [8], [12]), 

where l is the thickness (depth) of the plane flow layer. 
 

7 The flow rate equation; special and 
general cases of first integrability for the 
continuity equation in a thick stream tube 
The first integrability of the general (even unsteady) conti-
nuity equation (like Eqs. (2), (3)) will be treated in section 12. 
The fluid flow across a stationary surface S is the mass 
m of the fluid passing across this surface in unit time 
(the mass flow rate). Thus: 

 
SS

SSm ddρVn jn , 

where: n – versor (unit vector) of the outward normal to the 
element of surface dS; Vn = Vn – projection of the fluid 
velocity on the vector n; j = ρV – vector of the density of 
fluid flow (the mass flux density); jn = ρVn – the normal 
mass flux density. It follows from the continuity equation 
that for a steady flow of a fluid in a pipe: 

 
S

Sm const.dρVn  

With a steady motion, the flow of fluid through a cross 
section of a stream filament does not depend on the location 
of the cross section. For two arbitrary cross sections dS1 and 
dS2 of an elemental filament the following condition holds: 
ρ1Vn1[dS1] = ρ2Vn2[dS2] , 
also called “the continuity equation for the steady flow in 
thin stream tubes”. In some very special cases, if the 
quantities ρj and Vnj are rigorously constant on each “j” 
section (sections of uniform flow of a thick stream tube 
– also isochoric surfaces), then the ODE above admits in 
these sections a first integral – the (mass) flow rate equation: 
ρ1Vn1[Su1] = ρ2Vn2[Su2] = m = const.     ,    or more: 
ρjVj·nj[Suj] = ρjVnj[Suj] = m = const.     .      (8) 
 

Here [Suj] is the stream tube cross section area in the “j” 
section of uniform flow Suj , crossing the “i” surfaces (ζ 
= ζ0i ), and Vnj is the component of Vj taken on the local 
normal to the respective “j” section of uniform flow. 
This is a special first integral (obtained for particular 
cases) of the continuity equation for a steady flow of a 
compressible fluid. Simple examples of such flows are: 
- the flow due to a source of constant mass flow rate 
(plane and spherical – in a conical tubular domain); 
- the plane 2-D conical supersonic flow (Prandtl–Meyer 

flow): with expansion, or with isentropic compression in 
a streamlined channel (a reverse of the expansion flow); 
- the axisymmetric 2-D conical supersonic flow (Busemann 
–Taylor–Maccoll flow) with isentropic compression: 
  1. downstream of an axisymmetric attached conical shock 
wave – around an infinite circular solid cone without 
incidence (between the shock wave and the solid cone), and 
  2. upstream of an axisymmetric conical shock wave 
with the same tip as the conical simple compression 
waves fan – inside Busemann’s nozzle connecting 
two parallel and uniform co-axial supersonic flows. 
The first integral (8) is valid over the volume inside any stream 
tube surface (a tubular surface composed of streamlines as 
generatrices and a certain closed curve contained in a “j” 
section of uniform flow as directrix). The most general 
case for which the continuity equation in its global form: 

,0ddddρ
outin

  SS
SS jnjnjnVn

SS
SS  

admits as first integral a similar one to Eq. (8) (the same for 
the compressible flow in thin as well thick stream tubes) is: 
 

jn = ρV·n = ρVn = const.(j)    , 
 

on some sections Sj crossing a closed surface S of a thick 

stream tube (the lids of this thick stream tube, delimiting 
a control volume). That introduces the surfaces Sj of 
iso-normal mass flux density (jn)j (a scalar quantity): 
 

(jn)j = (ρV·n)j = (ρVn)j = m/[Sj] = const.(j)    ,   (9) 
 

whose envelopes are just the “j” sections of uniform flow – 
similarly to Huygens’ principle (see [18]) explaining the pro-
pagation of a wavefront due to the spherical wavelets ema-
nating from every point on the wavefront at the prior instant. 
 

8 A method for determining the integral 
surfaces (lines) of the continuity equation 
in a thick stream tube for the 2-D flows 
Assuming the local values of density ρ and velocity V as 
being given (known) all over the respective domain of 
plane flow, the problem solution is given by a system of 
two ODEs, expressing the constancy of jn over (along) the 
integral “j” surfaces (lines) – see Eq. (9), and the length of an 
elementary arc ds (s being the intrinsic curvilinear coordi-
nate) in the Cartesian coordinates (x, y), respectively, where 
ρ(x, y), Vx(x, y) and Vy(x, y) are given functions of x and y: 

   
   






,1dsdydsdx
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22
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the normal form (the solution) of which is given by: 
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For the case of an axisymmetric flow, replacing y by r 
in a certain meridian plane in cylindrical coordinates 
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(x, r), the above solution remains valid, so obtaining the 
meridian line of the axisymmetric integral “j” surfaces. 
The sign (±) before the square root in the solution (dx/ds, 
dy/ds) means that through any flow’s point are passing 
two “j” surfaces (lines) of iso-normal mass flux density. 
The quantity under this square root must be positive or zero, 
the physical significance of the root being the tangential mass 
flux density. If this quantity is just zero, a single solution 
remains, representing the “j” surface (line) of normal uni-
form flow passing through the same flow’s point. Along 
this line we have |Vj| = kj /ρj , the solution not depending on ρ: 
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Therefore through any 2-D flow’s point three integral “j” 
lines (two Sj and one normal Suj ) are passing. If the root 
has a constant value k1j , one gets a pair of solutions (±), 
representing other two “j” lines of uniform flow Suj , this 
time not normal, like the half-straight lines for the plane 
(Prandtl–Meyer) and axisymmetric (Busemann–Taylor–
Maccoll) conical flows. In these cases more conveniently 
is to use the polar plane (R, ω), and polar spherical (R, θ) 
coordinates (see section 6) instead of the Cartesian ones. 
Furthermore, this method can be extended for the 3-D flows, 
in the new smart intrinsic orthogonal coordinates (ξ, η, ζ), or 
(λ, μ, ν), used in sections 1 – 5 of this work, in order to find 
one (that in the plane (ξ, η), or (λ, μ) tangent to the (V, Ω) 
surface) of the two orthogonal lines which determine the local 
integral “j” surface (jn = const.) for the continuity equation. 
 

9 A simple example: the plane flow due 
to a source of constant mass flow rate 
Let us consider as simple example the case of a plane flow 
of a compressible fluid due to a source of constant mass 
flow rate (between two radii – half-straight lines). The flow 
is not a conical one, but is closely related to this (circular 
cylindrical), the main physical quantities (velocity, static 
pressure, static temperature, density, entropy) being kept 
constant on some concentric circles (co-axial cylinders). 
The surfaces Sj of iso-normal mass flux density (jn)j 
are the families of circles (circular cylinders) with the 
same diameter dj and passing through the respective 
source trace (origin, or the Oz axis – a singularity for 
jn: (jn)O = 0 ), given by the Cartesian equation below: 
 

(x – dj/2·cosθk)
2 + (y – dj/2·sinθk)

2 = (dj/2)2    ,    or 
x2 + y2 – dj(x cosθk + y sinθk) = 0,  with θk  (0, 2π), 
or by the polar equation R = djcos(θ – θk), with θ, θk  (0, 2π). 
Their envelopes (the surfaces Suj of uniform flow) are the 
concentric circles (co-axial circular cylinders) of radius R = dj , 
having the source trace as center (the Oz axis as symmetry 
axis), given by the Cartesian equation: x2 + y2 – dj

2 = 0. 

But this flow (either subsonic or supersonic) takes place 
outside the circle (circular cylinder)  R = Rc only (Rc is the 
critical radius, on which V = a = c – the critical speed at the 
considered flow point), so that one must have: dj ≥ Rc; 
(R < Rc – a no-motion region), by physical reasons (see fig. 2). 
Therefore the surfaces  Sj  of iso-normal mass flux density 
(jn)j are the families of circles (circular cylinders) above, 
except for their regions inside the circle (circular cylinder) 
of equation R = Rc , so including the singularity in origin for 
the iso-normal mass flux density (jn)O . The flow rate Eqs. 
(8), (9) take in this case the form: 2dj(jn)j = m = const., 
for both kinds of integral surfaces (Sj and Suj ). 

 
Fig. 2. The pattern of the iso-normal mass flux density surfaces 
and the sections of uniform flow for a simple plane flow of a 
compressible fluid due to a source of constant mass flow rate m 
 

O – the source trace in the xOy plane (orthogonal projection of 
the source filament directed on the Oz-axis); Sj – the lines of 
iso-normal mass flux density |jn| = ρ|Vn| = ρ|Vn| = const(j) – circles 
passing through O (traces in the xOy plane of the right circular 
cylinders “j” with their axes parallel to the Oz-axis and of 
diameter dj ), given by the polar equation: R = dj cos(θ – θk), 
with θk  (0, 2π) ; along a certain circle θk takes a constant 
value; θ is the current polar angle; Suj – the lines of uniform 
flow (on which ρ = ρj = const1(j) and Vn = Vnj = const2(j)) 
– circles centered in O (traces in the xOy plane of the right 
circular cylinders “j” with their axes directed on the Oz-axis 
and of diameter 2dj – the envelope sheets of the cylinders 
“j” of iso-normal mass flux density), given by the polar eq. 
R = dj . O is a singular point for |jn|. But this flow (either subsonic 
or supersonic) takes place outside the “critical” cylinder 
(circle) only: R ≥ Rc = m/(2πρcc) – the critical radius, with 
ρcc = {γp0ρ0[2/(γ + 1)](γ + 1)/(γ – 1)}1/2 – the critical iso-normal 
mass flux density (|jn|)c , so that one must have: dj ≥ Rc , by 
physical reasons; R < Rc – a no-motion region (a solid nucleus). 
The lengths of radial arrowheads are proportional to density |jn|. 
Through any “j” flow’s point three integral surfaces (lines) are 
passing: one of normal uniform flow (Suj) and other two of iso-
normal mass flux density (Sj), all for the same value of |jn|. 
These results can be generalized for a spherical source. 
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10  New global forms for the flow rate 
equation and continuity equation, using 
the 3-D “stream function” vector; analogy 
with Helmholtz’ 2nd theorem on vortices 
Considering Ψc definition and applying a Stokes’ formula, 
we get for the normal flux of curl Ψc through the surface Sj : 

const.)(dd)(d
jc

jjj
cc   llSS

SSm ΨRΨnΨjn  

– the circulation of the vector Ψc along the closed curve 
lj bordering the surface Sj , where, this time Sj is an 
arbitrary cross section of the thick stream tube above – 
a new global form of the flow rate equation, leading to: 

:or ,0dddd
outsidein

  SSS
SSS

njnjnjnj S
S

 

SS
SS

d)()  tubestream( 0d)(
outin

cc nΨnΨ  
,0)()(dd outincc cc

outin

  ΨΨRΨRΨ
ll

(dR is an elementary displacement vector; S is defined in 

section 7, being composed of Sin , Sside and Sout ), so getting: 
 

(Ψc)out = – (Ψc)in = const.        (10) 
 

– a new global form of the continuity equation, like 
Helmholtz’ 2nd theorem (see [19] – [24]) about the velocity 
circulation V along any closed curve surrounding a 
vortex tube in an ideal (inviscid) fluid (see fig. 3, helping to 
give an alternative demonstration of the theorem above). 

 
Fig. 3.  The circulation Ψc of the 3-D “stream function” 
vector Ψc along any complex closed curve C bordering a 
cut surface Sside of a thick stream tube of a compressible 
perfect fluid flow, Ψc defined by:   Ψc = ρV (Ψc ≠ G) 
 

– the analogy with the circulation V of the velocity V along any 
closed curve surrounding a vortex tube, according to Helmholtz’ 
2nd theorem about vortices in a perfect fluid, which states that 
V is constant along this vortex tube and constant in time also; 
S – a closed surface of control volume of the tube (bordered by 

the lids Sin and Sout ), so that it includes both lids (Sin and Sout ): 
Sin, Sout  S; S ≡ (Sin U Sside U Sout ); AB – a cut on the tube 

surface, between lin and lout (the border curves of Sin and Sout ), 
so that the closed curve C ≡ (lin U AB U lout U BA) surrounds 
a simply-connected domain Sside , allowing to apply a Stokes’ 
formula for the normal flux of  × Ψc through the surface Sside . 

So: SsidejndS = Sside( × Ψc)ndS = CΨcdR = inΨcdR + ABΨcdR 
+ outΨcdR + BAΨcdR = (Ψc)in + (Ψc)out = 0 , leading to Eq. (10). 
 

11 A first integrability case for the system 
of two equations for the steady rotational 
flow of an inviscid compressible fluid 
The general (unsteady, rotational) flow of a viscous 
Newtonian compressible fluid is described by the system 












 ,0)ρ(tρ
ct.;μct.;μ,ρ)]()3μμ(

μp[)2(t
2112

1
2

V
V

VfVΩVV
 

in first equation (Navier–Stokes) using classical symbols 
(also see [24], p. 193 – the viscous Crocco–Vázsonyi eq.). 
One must search for first integrals for this system of 
simultaneous equations above (motion and continuity). 
For the case of a steady flow the system becomes: 








 .0)ρ(
;ρ)]()3μμ(μp[)2( 121

2

V
VVfVΩV

Both equations admit first integrals: the first one – along 
the intersection lines of the zero-work surfaces (for the non-
conservative force densities – see [1], [3], [25]) with the 
isentropic ones (see the same); the second one – over the 
sections of uniform flow (if they exist), and over the surfaces 
of iso-normal mass flux density. These integrals do not 
represent the system’s first integrals, due to their different 
definition (with no intersection domain). In the case of 
an inviscid fluid flow the system above becomes simpler: 
(V2/2) + Ω  V = f – p/ρ    ;    (ρV) = 0    . 
The first integrals for these equations are given: by Eq. 
(11) in [1], [3], valid over any (V, Ω) isentropic “i” 
surface (a), and by Eq. (5) in [9], valid over any polytropic 
surface (b) – a more general case, including the previous 
one, and, on the other hand, by the flow rate equation 
(8), valid over the “j” sections of uniform flow, on which: 
ρ = const.  and  Vn = const. as well      (c), 
and over the surfaces Sj of iso-normal mass flux density: 
ρV·n = ρVn = const.           (d), 
whose envelope sheets are just the sections of uniform 
flow of a thick stream tube (if they exist), respectively. 
For an incompressible fluid flow the sheet families (c) and 
(d) coincide: (c) ≡ (d). On the intersection lines of these 
two pair of surface families: [(a) ∩ (c)], or [(a) ∩ (d)], and: 
[(b) ∩ (c)], or [(b) ∩ (d)], one obtains the validity domain 
of the first integrals for the system of equations for the 
steady rotational flow of an inviscid compressible fluid. 
But, since the various polytropic surfaces passing through 
a certain point are in infinite number (a star of sheets), 
this results in satisfying the integrability conditions 
for both equations over the surfaces (c) and (d) only. 
A similar problem of a first integrability case for a system of 
simultaneous vector equations occurs in MHD and was 
treated in subsection 2.10 in [26]. Besides the two equations 
above, the “magnetic induction” one must be considered. 
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12 The first approach to the new unsteady 
model (the complete continuity equation); 
two related rare cases of first integrability 
Let us start from the equivalent local form of this equation 
dρ/dt + ρV = 0  – the complete continuity equation (see 
section 1), for the unsteady flow of a compressible fluid. 
Dividing the equation by ρ (≠ 0) one obtains the form: 
(1/ρ)·(dρ/dt) + V = 0 , or more: d(ln ρ)/dt + V = 0 . 
We apply further the same procedure as in section 1, 
using Lamé’s coefficients and the total time-derivatives. 
In a triorthogonal system of curvilinear coordinates  V = 
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and, taking into account the local time-derivative (∂/∂t), 
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the complete equation becoming thus successively: 
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differing from Eq. (2) by the 2nd term. In an expanded form 
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which can accept a first integral in the cases where: 
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F being a scalar function depending on ξ, η, ζ and t, having 
as trivial case:   F = const. In the Cartesian coordinates: 

hξ = hx = 1; hη = hy = 1; hζ = hz = 1, so that the integrability 
condition becomes .Fzzyyxx   V  
 

Further two related rare cases of integrability for the 
continuity equation were analyzed. In all these cases the 
integrating procedure acts on either first or second term 
in the left-hand side of complete equation in vector form. 
Both cases (1 & 2) have a pair of subcases. 
So, for the case 1 there are the subcases: 
1.a. considering the usual local form: ∂ρ/∂t + (ρV) = 0 
and setting: ρ = P , and with ρV ≠  × Ψc (ρV is not a 
solenoidal vector, in order to keep the complete equation); 
1.b. using the equivalent local form as in the beginning 
and setting: d(lnρ)/dt = Q , and with V ≠  × Ψ (V is 
not a solenoidal vector, with the same reason as at 1.a).  

Here P(ξ, η, ζ, t) ≠  × W is the Greek “Rho” vector 
and Q(ξ, η, ζ, t) ≠  × W also, respectively (in order 
to assure the existence of functions ρ and d(lnρ)/dt , 
respectively, W being a certain vector field). So both 
P and Q are not solenoidal vectors. Thus we get further: 
1.a. (∂P/∂t + P·V) = 0 ,  and  1.b.  (Q + V) = 0 . 
Hence the following first integrals are obtained: 
1.a. ∂P/∂t + P·V =  × Y , with Y ≠ F1 , and 
1.b. Q + V =  × Z , with Z ≠ F1 also, (F1 being a 
certain scalar field). So both Y and Z are not conservative 
vectors, and thus the vectors (∂P/∂t + P·V) and (Q + V) 
are both solenoidal. One can see that among the main 
working hypotheses considered in this section were: 
1.a. ρV ≠  × Ψc , and respectively  1.b. V ≠  × Ψ , 
in both cases meaning that the mass flux density j = ρV 
and the velocity V respectively are no longer derived 
from the new introduced 3-D “stream function” vector 
Ψc (for a compressible fluid flow) and the similar 3-D 
true stream function vector Ψ (for a compressible fluid 
flow also), and all the results obtained in the previous 
sections cease to be valid for the complete equation. 
The subcases 1.a and 1.b correspond to an unsteady flow 
of a special anisotropic fluid. 
A second pair of subcases is: 
2.a. considering the usual local form: ∂ρ/∂t + (ρV) = 0 and 
setting: ρV = ∂T/∂t , where T(ξ, η, ζ, t) is a special vector; 
2.b. using the equivalent local form as in the beginning  
and setting: V = dU/dt, where U(ξ, η, ζ, t) is a special 
scalar function. We get further the following equations: 
2.a. ∂(ρ + T)/∂t = 0 ,   and   2.b. d(lnρ + U)/dt = 0 . 
In order to preserve the complete continuity equation 
in its both initial local forms (2.a) and (2.b), a special 
condition must be imposed on both functions T and U: 
2.a. T ≠  × W   and   2.b. dU/dt ≠ 0 also (W being a 
certain vector field). Hence the following first integrals: 
2.a. ρ + T = G(ξ, η, ζ) + C0 , (G being a scalar field and 
C0 a scalar constant), meaning a steady general behavior, and 
2.b. lnρ + U = C1 , (C1 being another scalar constant). 
We will determine for the subcase (2.b) the dependence 
ρ  V, for simplicity reasons using Cartesian coordinates 
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13  The vorticity equation and its first 
integral; introducing the 2-D vorticity quasi-
potential and Selescu’s roto-viscous vector; 
analogy to “magnetic induction” equation 
This equation describes the time variation of the vorticity 
intensity Ω in a viscous Newtonian incompressible fluid 
flow. It can be derived from the motion equation (Navier–
Stokes – see subsection 1.7 in [1], [3]), applying the curl 
and taking into account that the mass force density is con-
servative f = – (gz) and the static pressure p = f (ρ only): 
 

∂Ω/∂t =   (V  Ω) + Ω    ;       (11) 
 

ν = μd/ρ is the kinematic viscosity of the fluid medium – a 
constant quantity. The first term in the right-hand side is a 
convective one, while the second term is a diffusive one. So 
far, first integrals were found for a single term in the right- 
hand side only. Taking into account that Ω is a solenoidal 
field (Ω = 0), and that ΔΩ = (Ω) –   (  Ω), one 
gets: ΔΩ = –   (  Ω), and so: ∂Ω/∂t =   [V  Ω – 
(  Ω)] or (with Θ =   Ω): ∂Ω/∂t =   (V  Ω – Θ). 
On any (Ω, Θ)i surface we can introduce a new smart 
triorthogonal intrinsic coordinate system Oξ1η1ζ1 tied to 
these surfaces (or Oλ1μ1ν1; with λ1, μ1, ν1 – orthogonal 
arcs lengths; λ1, μ1 – contained in the local tangent plane 
and ν1 directed along the normal). Let us introduce the 
scalar function Χi (M) = Χi (ξ1, η1, ζ10i) – the Greek “Chi”, 
a 2-D “quasi-potential”, whose partial derivatives along the 
directions of the elementary orthogonal arcs dλ1 = hξ1dξ1 
and dμ1 = hη1dη1 on the “i” (Ω, Θ) surface (ζ1 = ζ10i ) are 
just the components Ωξ1i and Ωη1i of the vorticity Ω vector: 
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1) A trivial case of first integrability is given by: 
V  Ω – ν(  Ω) = F  (F being a scalar function and 
F  a pure gradient), getting for the right-hand side 
of the vorticity equation the form:     F = 0   – a 
particular case ( ∂Ω/∂t = 0 – a steady vortex field). 
Performing a scalar multiplication of this equation by a 
virtual elementary displacement dR normal to the vector 
vi.v. = V  Ω – ν(  Ω) – the viscous incompressible 
vector, one gets: [V  Ω – ν(  Ω)]·dR = 0 , therefore a 
“zero-work” condition for the vector vi.v. (vi.v.·dR = 0), 

this meaning a surface – envelope sheet of the local planes 
normal to the vi.v. vector, one obtains: F·dR = dF = 0 , 
and the first integral for the steady case:  F = const. 
2) An important case of integrability, after performing 
a scalar multiplication of the equation by a virtual dR, 
is that one consisting in simultaneously satisfying two 
conditions, to eliminate the non-conservative terms: 
2a) dR – coplanar with both Ω and Θ ; this may be 
expressed as: dR = c3Ω + c4Θ (with: dR  (Θ  Ω)); 
2b) dR – normal to the vector   Wi =   vi.v. 
=   [V  Ω – ν(  Ω)]  , or in the form of a zero-
scalar product: {  [V  Ω – ν(  Ω)]}·dR = 0 , 
therefore a “zero-work” condition for Wi (Wi·dR = 0). 
The first condition leads to a (Ω, Θ) surface – envelope 
sheet of the (Ω, Θ) local planes, having (Θ  Ω)·dR = 0. 
Like in subsection 1.6 in [1], introducing a 2-D vorticity 
“quasi-potential” Χi , and writing Ωi = Χi (where, this 
time Χi is a scalar function depending not only on ξ1, η1 or 
λ1, μ1 but on t also), if the virtual elementary dR vector is 
contained in the (Ω, Θ) tangent plane, integrating the term 
∂(Χi)/∂tdR , one gets the term ∂Χi /∂t (due to Schwarz’ 
theorem – similarly to the case in subsection 1.6 in [1]). 
The second condition means a surface – envelope sheet 
of the local planes normal to Wi vector. Solving this 
system one gets some space curves – intersection lines 
of the envelope sheets above – along which the searched 
for dR must be directed, for the vorticity equation to 
admit a first integral. These lines are the unique solution 
of the system given by the conditions 2a and 2b: 
dR  (Ω, Θ) and also dR  Wi , this resulting in: 
dR  ((Ω, Θ) ∩ (plane normal to Wi )) || & – the & 
(ampersand) vector lines, dR being therefore parallel to 
the vector:  & = (Θ  Ω)  [  (V  Ω – νΘ)]  , with: 
& – Selescu’s vector, representing a new physical 
quantity (incompressible roto-viscous), and giving for the 
most general case of vorticity equation the first integral: 
∂Xi /∂t = C0i(t), 
for the entire equation (the local derivative Ω/t and 
both convective   (V  Ω) and diffusive νΔΩ term). 
3) Another particular case of first integrability, also after 
performing a scalar multiplication of the equation by 
a virtual elementary displacement dR vector, is that 
one consisting in simultaneously satisfying other two 
conditions, to eliminate the non-conservative terms: 
3a)  2a) dR – coplanar with both Ω and Θ ; this may be 
expressed as: dR = c3Ω + c4Θ (with: dR  (Θ  Ω)); 
3b) Wi = F1 + C1(t) or:   [V  Ω – ν(  Ω)] = F1 
+ C1(t) (F1 being a scalar function and F1 a gradient), 
getting for the differential equation of the vorticity vector: 
∂Ω/∂t = F1 + C1(t) , or performing a scalar multiplication 
by the virtual displacement dR given by the condition 3a): 
[∂(Xi )/∂t]·dR = [F1 + C1(t)]·dR    (C1 – a vector), 
or (due to Schwarz’ theorem applied to the left-hand side): 
d(∂Xi /∂t) = dF1 + C1(t)dR , so yielding the first integral: 
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∂Xi /∂t = F1 + C1(t)R + C2(t) 
(again for the entire equation); the scalar function F1 must 
be determined from the condition 3b), this giving a special 
relation between V and Ω  . C1 and C2 are arbitrary functions 
of t. By analogy the “magnetic induction” equation in MHD 
(with the analogy laws: H  Ω; νm  ν) was studied: 
∂H/∂t =   (V  H) + mH    ;      (12) 
(the equation of the magnetic field intensity; see for reference 
Eq. (11)) which was treated in [26] (subsection 2.9), where: 
H is the intensity of the local magnetic field, making 
no distinction between H and the magnetic induction B 
(in the Gaussian system of units), since for all electro-
conducting fluids the magnetic permeability () is 
approximately equal to 1 (see for reference [27] – [30]); 
V is the mean instantaneous velocity of translation of the 
ionized fluid (plasma) particles (atoms, ions etc.) contained 
in a local small volume element (see subsection 2.1 in [26]): 
V = (ρaVa + ρ+V+ + ρ–V–)/ρ , where: Va , V+ , V–  are the 
velocities of the components; ρa , ρ+ , ρ– are the densities 
of the components: ρa = nama ; ρ+ = n+m+ ; ρ– = n–m– ; 
ρ = nama + n+m+ + n–m– = ρa + ρ+ + ρ– – plasma density 
(analogously to the case of a mixture of components); 
ma is the mass of a neutral atom (ma = m+ + m–); m+ is 
the mass of the positive ion (a single species); m– is the 
mass of the negative ion or of electron; na is plasma con-
centration in neutral atoms, and respectively (for a three-
component neutral plasma): n+, n– are the concentrations in 
positive and negative particles (a single species of cations 
and anions; in the case of a quasi-neutral plasma: n+ ≈ n–), 
all according to a simplified model proposed by the author; 
νm is the magnetic viscosity of the electroconducting fluid. 
Analogously to Χi (M) = Χi (ξ1, η1, ζ10i), with Ωi = Χi , 
we can introduce a 2-D magnetic “quasi-potential” Ξi (M) 
= Ξi (ξ2, η2, ζ20i), with Hi = Ξi , whose partial derivatives 
along the directions of the elementary orthogonal arcs dλ2 
= hξ2dξ1 and dμ2 = hη2dη2 on any “i” (H,   H) surface (ζ2 
= ζ20i ) are just the components Hξ2i and Hη2i of the vector H. 
 

A new physical quantity (similar to the incompressible roto-
viscous vector &) was introduced – Selescu’s magnetic 
vector: &m = [(  H)  H]  {  [V  H – νm(  H)]}. 
The low-frequency Ampère’s law neglects displacement 
current, being: j = k  H, with k = c/4π; c is the light 
speed in a vacuum; j is the density of conduction current. 
So we get: &m = (j/k  H)  [  (V  H – νmj/k)] . 
 

So far, to the best of the author’s knowledge, only two 
particular cases of first integrability are known for Eq. (12): 
 1. ideal conducting plasma (with zero-resistivity and thus 
zero-magnetic viscosity, missing the diffusion term νmΔH ), 
leading to the concept of magnetic field “frozen” in plasma 
(given by an equation with the same form as Helmholtz’ one 
[19] for the vorticity in the ideal fluid in hydrodynamics) and 
 2. non-moving real plasma (with finite conductivity and 
thus finite magnetic viscosity, now missing the convection 
term  × (V × H) ), getting a standard diffusion equation. 

14  Conclusions and remarks 
The contribution of this work to the state of the art in 
fluid mechanics (especially aerothermodynamics and 
MHD), as well as in electromagnetic theory, consists in 
finding new first integrability cases and first integrals for: 
1. the continuity equation (for the steady flow of an 
inviscid compressible fluid), obtaining some special 
general forms of the flow rate equation; 
2. the system of equations (motion and continuity) for 
the steady flow of an inviscid compressible fluid; 
3. the general case and two particular cases of complete 
continuity equation (for the unsteady flow of an inviscid 
compressible fluid), each of them with two subcases; 
4. the complete vorticity equation (with both convection and 
diffusion terms) for a viscous incompressible fluid flow; 
5. the complete “magnetic induction” equation in MHD (with 
both terms) for the flow of a magnetic viscous electrocon-
ducting fluid (plasma included), by analogy to previous one. 
Three smart intrinsic curvilinear coordinate systems were 
used: Oξηζ (or Oλμν), for the continuity equation, 
Oξ1η1ζ1 (or Oλ1μ1ν1), for the vorticity equation, and 
Oξ2η2ζ2 (or Oλ2μ2ν2), for the “magnetic induction” one. 
 

In this work a rich nomenclature was introduced in 
fluid mechanics (for both inviscid and viscous fluids), 
as well as in viscous MHD and electromagnetic theory: 
- the 2-D “quasi-stream” Fi function on the 3-D (V, Ω) 
“i” surfaces, for the continuity equation; 
- the surfaces of iso-normal mass flux density jn = ρVn 
= (ρVn = )const. (on which the continuity equation of 
the steady flow of a compressible fluid in a thick stream 
tube admits the same first integral as for the fluid flow in a 
thin stream tube, and whose envelope sheets are just the 
sections of uniform flow, on which ρ = const. and Vn 
= const. as well, if they exist), for the flow rate equation; 
- the 3-D stream function vector Ψc (Selescu, defined by: 
 × Ψc = ρV , with Ψc ≠ G ), allowing a new global 
form for the continuity equation of a compressible fluid 
steady flow (a stream function for the mass flux density 
ρV), using the circulation of Ψc along a closed curve lj 
bounding a certain cross section Sj of a thick stream 
tube and applying the classical Kelvin–Stokes theorem 
(a reciprocal one), similarly to Helmholtz’ 2nd theorem 
about vortices in an inviscid fluid, using the circulation 
of V along any closed curve surrounding a vortex tube: 
(Ψc)out = – (Ψc)in = const.; (Ψc)in, out = ∫lin, loutΨc·dR; 
- three 2-D “quasi-potential” scalar functions: a velocity one, 
Φi (M), on the 3-D (V, Ω) surfaces (Vi = Φi); a vorticity 
one, Xi (M), on the 3-D (Ω, Θ) surfaces (Ωi = Χi ); and a 
magnetic one, Ξi (M), on the 3-D (H, j) surfaces (Hi = Ξi); 
- the virtual “zero-work” surfaces for the vectors vi.v. = 
V  Ω – ν(  Ω) and Wi =   vi.v. (in vorticity equation). 
Two new vector physical quantities were introduced: 
& = (Θ  Ω)  [  (V  Ω – νΘ)] – Selescu’s incompres-
sible roto-viscous one, for a certain 3-D flow, and by analogy, 
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in MHD: &m = (j/k  H)  [  (V  H – νmj/k)] – Selescu’s 
magnetic one, to find lines along which we get first integrals. 
The interdependence between the 2-D quasi-potential Φi 
and the 2-D quasi-stream function Ψci was also established. 
Any continuity equation (in electromagnetic theory and 
MHD) can be treated in a manner similar to this one. 
In plasma-MHD the equation has the same form as in fluid 
mechanics, with a slightly different nomenclature (section 13). 
Finally we can cite a remarkable sentence from [31]: 
“Not always the simplest is the best explanation. The 
analogies sometimes work and sometimes not. Old or 
conventional theories may be misleading.” 
 

Note 
This paper (the second in a series dedicated to the intrinsic 
analytic study of the basic equations in compressible fluid 
mechanics) is fully original, however having as starting 
point other ones with almost the same titles (see [32], [4]). 
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