
Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet 
With Heat Transfer 

 
RAJESH SHARMA AND ANUAR ISHAK 

School of Mathematical Sciences, Faculty of Science and Technology 
Universiti Kebangsaan Malaysia 

  UKM Bangi-43600, Selangor, Malaysia 
raj.juit@gmail.com 

 
 

Abstract: - The boundary layer flow of Cu-water based nanofluid with heat transfer over a stretching sheet is 
numerically studied. Second order velocity slip flow model is considered instead of no-slip at the boundary. The 
governing partial differential equations are transformed into ordinary one using similarity transformation, before 
being solved numerically. Numerical solutions of these equations are obtained using finite element method (FEM). 
The variations of the velocity and temperature distribution as well as the skin friction and the heat transfer 
coefficients for some values of the governing parameters, namely, the nanoparticle volume fraction and slip 
parameters are shown graphically and discussed. Comparison with published results for pure fluid flow case is 
presented and it is found to be in excellent agreement.  
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1 Introduction 
The boundary layer flow over a stretching sheet plays 
an important role in aerodynamic, extrusion of plastic 
sheet, metal-spinning, manufacture of plastic and 
rubber sheets, paper production etc and thus, remains 
at the leading edge of technology development. In the 
industrial operation, metal or more commonly an 
alloy, is heated until it is molten, whereupon it is 
poured into a mould or dies which contains a cavity, 
of required shape. The hot metal issue from the die is 
subsequently stretched to achieve the desired 
product. When the super heated melt issue comes out 
from the die, it loses its heat and contract as it cools, 
this is referred as liquid state contraction. With 
further cooling and loss of latent heat of fusion, the 
atoms of the metal lose energy and become closely 
bound together in a regular structure. The quality of 
the final product greatly depends on the rate of 
cooling and the process of stretching. 
In view of such applications, Crane [1] initiated the 
analytical study of boundary layer flow due to a 
stretching sheet. He assumed the velocity of the sheet 
to vary linearly as the distance from the slit and 
obtained an analytical solution. After this pioneering 
work, the flow over a stretching surface has drawn 
considerable attention and a good amount of 
literature in different field has been generated on this 
problem [2-10]. In these studies the no slip of the 

fluid velocity relative to the solid boundary was 
considered.  

It is a well-known fact that, a viscous fluid 
normally sticks to the boundary. But, there are many 
fluids, e.g. particulate fluids, rarefied gas etc., where 
there may be a slip between the fluid and the 
boundary [11-12]. Wang [13] reported that the partial 
slip between the fluid and the moving surface may 
occur in particulate fluid situations such as 
emulsions, suspensions, foams and polymer 
solutions. Fang et al. [14] gave a closed form solution 
for slip MHD viscous flow over a stretching sheet. 
Wang [15] investigated the effect of surface slip and 
suction on viscous flow over a stretching sheet. Sajid 
et al. [16] analyzed the stretching flow with general 
slip condition. Sahoo [17] investigated the flow and 
heat transfer solution for third grade fluid with partial 
slip boundary condition. Bhattacharyya et al. [18] 
analyzed the boundary layer force convection flow 
and heat transfer past a porous plate embedded in the 
porous medium with first order velocity and 
temperature slip effect. Das [19] examined the 
influence of partial slip, thermal radiation, chemical 
reaction and temperature-dependent fluid properties 
on heat and mass transfer in hydro-magnetic 
micropolar fluid flow over an inclined permeable 
plate with constant heat flux and non-uniform heat 
source/sink. Das [20] examined the effects of partial 
slip, thermal buoyancy and heat 
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generation/absorption on the flow and heat transfer of 
nanofluids over a permeable stretching surface. 
Noghrehabadi et al. [21] analyzed the effect of partial 
slip on flow and heat transfer of nanofluids past a 
stretching sheet. Zheng et al. [22] analysed the effect 
of velocity slip with temperature jump on MHD flow 
and heat transfer over a porous shrinking sheet. 
However, in all of these papers, only the first order 
Maxwell slip condition was considered. Recently, 
Wu [23] proposed a new second order slip velocity 
model. Fang et al. [24] analyzed the effect of second 
order slip on viscous fluid flow over a shrinking 
sheet. Fang and Aziz [25] studied the flow of a 
viscous fluid with a second order slip over a 
stretching sheet without considering the heat transfer 
aspect. Nandeppanavar et al. [26] studied the second 
order slip flow and heat transfer over a stretching 
sheet. 

To the best of the authors knowledge, no 
information available on the effect of second order 
slip on the flow and heat transfer of a nanofluid past 
a stretching sheet. Therefore, in the present paper, we 
investigate the effect of second order slip on the flow 
and heat transfer over a stretching sheet immersed in 
a Cu-water nanofluid. The nanofluid model proposed 
by Tiwari and Das [27], which analyze the behavior 
of nanofluids taking into account the solid volume 
fraction is employed. The mathematical model of the 
problem is highly non-linear whose analytical 
solution is very hard to find out, so the only choice 
left is approximate numerical solution. Therefore, in 
this study, finite element method is used as a tool for 
the numerical simulation. Numerical results of the 
local skin friction coefficient and the local Nusselt 
number as well as the velocity and temperature 
profiles are presented for different values of the 
physical parameters. 
 
 
2 Problem formulation 
Consider the two-dimensional flow over a flat sheet 
with heat transfer in a water based nanofluid 
containing Cu nanoparticles. We assume that the 
sheet coincides with the plane 0y =  and the flow is 
confined to 0y > . Two equal and opposite forces are 
applied along the x - axis so that the wall is stretched 
keeping the origin fixed. It is assumed that the sheet 
is stretched with velocity =wu cx , where 0>c  is the 
stretching rate. It is also assumed that the base fluid 
(i.e. water) and the nanoparticles are in thermal 

equilibrium. The thermo-physical properties of the 
water and Cu are given in table 1. Assuming that the 
nanofluid is viscous and incompressible, and using 
the nanofluid model as proposed by Tiwari and Das 
[27], the governing boundary layer equations of 
mass, momentum and thermal energy for nanofluids 
can be written as (see Tibari and Das [27]),      

0∂ ∂
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∂ ∂
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x y

                                                      (1) 
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where y  is the coordinate measured in the direction 
normal to the sheet, u  and v  are the velocity 
components along the −x axes and −y axes, T  is 
the nanofluid temperature, nfρ  is the effective 

density of the nanofluid, nfµ is the effective dynamic 

viscosity of nanofluid, nfk  is the thermal 

conductivity and ( )p nfcρ  is the heat capacity of the 
nanofluid, which are given by 
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Table 1. Thermo-physical properties of water and Cu 
φ  

3( )−kg m

ρ
 

1 1( − −

pc

J Kg K  
1 1( )− −

k

W m K
 

 

Pure 
water 
(H2O) 
Copper 

(Cu) 

 
997.1 

 
 

8933 

 
4179 

 
 

385.0 

 
0.6130 
 
 
401.0 

 
where φ  is the solid volume fraction of the 
nanofluid, fρ  is the density of the base fluid, sρ  is 
the density of the nanoparticle, fµ is the dynamic 
viscosity of the base fluid, ( )p fcρ  is the heat 
capacity of the base fluid, ( )p scρ  is the heat capacity 
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of the nanoparticle, fk  is the thermal conductivity of 
the base fluid and sk  is the thermal conductivity of 
the solid nanoparticle. 
Eqs. (1) - (3) are subjected to the following boundary 
conditions: 

2

, 0, at 0

0, as

∞

∞

 = + = = = + = 
 

= = → ∞

w slip w
xu u U v T T T C y
l

u T T y
       (5)  

where slipU  is the slip velocity at the wall. The Wu’s 
slip velocity model (valid for arbitrary Kundsen 
numbers, nK ) is used in this paper and is given as 
follows [23]                  
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Following Nandeppanavar et al. [26], we 
introduce the following similarity transformation:                  

1/2( ) , ( ) ( ), /

, ( ) ( ) / ( )∞ ∞

′= = − =

= − −
f f

w

u cx f v c f y c

T T T T

η ν η η ν

θ η
 (7) 

where primes denote differentiation with respect to 
η . Using transformation (7), Eq. (1) is automatically 
satisfied, while Eqs. (2) and (3) respectively reduce 
to the following nonlinear ordinary differential 
equations:                    

2(1 ) ( ) 0
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subject to the boundary conditions                                       
(0) 0, (0) 1 (0) (0), (0) 1
( ) 0, ( ) 0

′ ′′ ′′′= = + + =
′ ∞ → ∞ →

f f f f
f

γ δ θ
θ
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where / ( 0)= >fA cγ ν  is the first order velocity 

slip parameter, ( / ) ( 0)= <fB cδ ν  is the second 
order velocity slip parameter and Pr /= f fkµ  is the 
Prandtl number. 
Physical quantities of interest are the skin friction 
coefficient fC  and the local Nusselt number Nu ,  

which are defined as 

2 ,
( )∞

= =
−

w w
f

f wf w

qC Nu
k T Tu

τ
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                         (11) 

where wτ  is the surface shear stress and wq  is the 
surface heat flux, which are given by   
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Using the similarity variables (5), we obtain                          
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2.5
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−
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k
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where Re /=x w fu x ν is the local Reynolds number. 
 
 
3 Method of Solution 
The set of ordinary differential equations (8)-(9) are 
highly non-linear, and cannot be solved analytically. 
Therefore, the finite element method [28-30] is 
implemented to solve this system numerically. For 
computational purposes, the dimensionless spatial 
coordinate is discretized by uniform elements of step 
size =0.01h . Care has been taken in choosing ∞η  for 
a given set of parameters because for a fixed value of 

∞η  (where ∞η  corresponds to → ∞η ) for all 
calculations may produce inaccurate results. 

The Gauss quadrature formula has been used to 
calculate the integrals. Owing to the nonlinearity of the 
system of equations an iterative scheme has been used 
to solve it. An initial guess is taken at each node point. 
The system of equations is then linearized by 
incorporating the functions, which are assumed to be 
known values of the functions f and θ . After 
applying the given boundary conditions, the remaining 
system of equations has been solved using Gauss-
elimination method. This gives us new values of 
unknowns. This process continues till the absolute 
differences of two successive iterate value of 
unknowns is less than the accuracy of 0.0001. 

 
 

4 Code verification 
In order to verify the accuracy of the applied 
numerical scheme, comparisons of the present results 
corresponding to the values of heat transfer 
coefficient for 0=γ , 0=δ  and 0=φ  for prescribed 
surface temperature case are made with the available 
results of Grubka and Bobba [3] and Chen [4], as 
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presented in Table 2. The results are found in 
excellent agreement, and thus gives confidence that 
the numerical results in our case are accurate.   

 
Table 2. Comparison with previous studies for  

{ }(0)′−θ 0.0= = =γ δ φ  
 

Pr  
Grubka 
     &     
 Babba [3] 

 
Chen [4] 

 
    Present 

0.72 1.0885  1.08853   1.08891 
1.00 1.3333   1.33334    1.33330 
3.00 
7.00                   

2.5097 
---- 

  2.50972 
  3.97150 

   2.50960 
   3.97120 

10.0 
100 

4.7969 
15.712 

 4.79689 
15.7118 

4.79640 
15.70127 

 
Table 3. Reduced skin friction coefficient and  

reduced Nusselt number  
for various value of φ  

φ  Skin 
friction 

Nusselt                  
Number    

0.0      -0.0712  1.5310 
0.1 
0.2 

-0.0831 
-0.1129 

 1.5618 
 1.7245 

 
Table 4. Reduced skin friction coefficient  

for various value of γ  and δ    
  

 γ  
      

0.5= −δ  
 

      1.0= −δ  
 

       2.0= −δ  
 

     3.0= −δ  
 

0.5 
 

-0.2718 
 

       -0.0875 
 

       -0.0375 
 

     -0.0221 
1.0 
2.0 

-0.2145 
-0.1582             

       -0.0831 
       -0.0756 

       -0.0366 
       -0.0350 

     -0.0218 
     -0.0212 

3.0 -0.1303       -0.0695                 -0.0335      -0.0207 
 

Table 5. Reduced Nusselt number  
for various value of γ  and δ    

 
 γ  

      
0.5= −δ  

 

      1.0= −δ  
 

       2.0= −δ  
 

     3.0= −δ  
 

0.5 
 

  2.3158 
 

        1.5892 
 

         1.1954 
 

            0.9992 
1.0 
2.0 

  2.1411 
  1.9351 

        1.5618 
        1.5133 

         1.1861 
         1.1681 

              0.9945 
              0.9853 

3.0   1.8144   1.4713      1.1516           0.9763 
 
 
5 Results and discussion 
A systematic study of selected control parameters 
governing the flow regime i.e. nanoparticle 

concentration ( )φ , first order slip parameter ( )γ  and 
second order slip parameter ( )δ  has been conducted 
and the results are depicted in Figs. 1-10 and Tables 
3-5. In the present computations the following default 
parameter values have been prescribed: = 0.1φ , 

 = 1.0γ ,  = -1.0δ ,  Pr = 6.2  (water).   
Variations of the reduced skin friction coefficient 

and the reduced Nusselt number with respect to 
nanoparticle concentration ( )φ , first order slip 
parameter ( )γ  and second order slip parameter 
( )δ are shown in Tables 3-5. It is observed that the 
reduced skin friction coefficient is an increasing 
function of nanoparticle concentration ( )φ , whereas it 
a decreasing function of first order slip parameter 
( )γ  and second order slip parameter ( )δ . The heat 
transfer rate is also an increasing function of nano 
particle concentration ( )φ  and a decreasing function 
of first order slip parameter ( )γ  and second order slip 
parameter ( )δ . The positive value of the reduced 
Nusselt number shows that the heat is transferring 
from the plate to the fluid i.e. cooling of the plate. 
Thus, it can be concluded that the nanofluid can be 
effectively used for the fast cooling of the plate, 
while slip effect slow down the heat transfer rate. 

Figs. 1-2 depict the effect of nanoparticle 
concentration ( )φ  on the variation of velocity and 
temperature in the boundary layer. On observing 
these figures, we see that velocity decreases and 
temperature increases in the boundary layer region 
with the increase of nanoparticle concentration. It has 
been found that when the volume fraction of the 
nanoparticle increases from 0 to 0.2, the thickness of 
the thermal boundary layer increases (See Fig. 2). 
Since nanoparticle enhanced the thermal conductivity 
of the fluid, and higher values of thermal 
conductivity are accompanied by higher values of 
thermal diffusivity. The high value of thermal 
diffusivity causes a drop in the temperature gradients 
and accordingly increases the boundary layer 
thickness as demonstrated in Fig. 2. As temperature 
gradient decreases with the increase of nanoparticle 
fraction, so Nusselt number i.e. rate of heat transfer 
should also reduce with the increase of nanoparticle 
fraction from 0 to 0.2. But in case of nanofluid, the 
Nusselt number is a multiplication of temperature 
gradient and the thermal conductivity ratio 
(conductivity of the nanofluid to the conductivity of 
the base fluid). The reduction in temperature gradient 
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due to the presence of nanoparticles is much smaller 
than thermal conductivity ratio, which accompanied 
the enhancement of Nusselt number by increasing the 
volume fraction of nanoparticles, as it can be seen 
from Table 3. 
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     Fig. 1 Velocity distribution for various value of φ  
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Fig. 2 Temperature distribution for various value of 

φ  
Figs. 3-6 show the effect of first order slip 

parameter on velocity, temperature, shear stress and 
effective temperature gradient in flow field. It is seen 
that for increased first order slip the lateral velocity 
decreases near the surface but increases at large 
distance. Thus, first order slip of fluid on the 
stretching surface causes decrease in flow velocity. 
Fig. 4 shows that temperature of flow field increases 
with the increase of first order slip parameter. These 
results are in very good agreement with reported 
results in partial slip case by Mahmoud [19] and 
Noghrehabadi [21]. It is observed from Figs. 5-6 that 
the magnitude of the wall shear stress i.e. 

2.5(1 / (1 ) ) (0)′′− fφ  decreases with the increase of 
first order slip parameter and the value of the 
effective temperature gradient at the wall i.e. 

( / ) (0)′− nf fk k θ  is also decreases with the increase 

of first order slip parameter, which is in agreement 
with the results presented in Table 4-5.  
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Fig. 3 Velocity distribution for various value of γ  
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Fig. 4 Temperature distribution for various value of 

γ  
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Fig. 5 Shear stress distribution for various value 

of  γ  
Figs. 7-10 depict the influence of second order 

slip parameter on the velocity, temperature, shear 
stress and effective temperature gradient profile in 
boundary layer region. From these figures, we 
observe that velocity decreases and temperature 
increases with the increase of second order slip 
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parameter δ . The magnitude of the wall shear stress 
and effective temperature gradient at the wall 
decrease with the increasing value of δ . 
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Fig. 6 Temperature gradient distribution for various 

value of γ  
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Fig. 7 Velocity distribution for various value of δ  
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Fig. 8 Temperature distribution for various value of 

δ  
 
 
6 Conclusions 

In this paper, the problem of two-dimensional flow of 
a viscous and incompressible Cu-water nanofluid 
over a stretching flat sheet with second order slip 
conditions is studied. The governing partial 
differential equations for mass, momentum and 
energy are transformed into ordinary differential 
equations using a similarity transformation. These 
equations were solved numerically using finite 
element method. We found that first order and 
second order slip parameters reduce the skin friction 
as well as the rate of heat transfer. The results also 
indicate that with the increase of nanoparticle volume 
fraction, skin friction coefficient as well as heat 
transfer rate increases. 
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Fig. 9 Shear stress distribution for various value of δ  

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

η

-(
K

nf
/K

f)θ
'(η

)

 

 

δ=0.5
δ=1.0
δ=2.0
δ=3.0

 
Fig. 10 Temperature gradient distribution for various 

value of δ  
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