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Abstract: - In this paper, analytical solutions are obtained for the steady laminar boundary layer of non-

Newtonian flow with non-linear viscosity over a flat moving plate. The power-law fluid model was adopted for 

the non-Newtonian fluid representation. The governing non-dimensional boundary layer equations are 

transformed into ordinary differential equations using similarity transformation which are then solved 

analytically. The analytical results are obtained for different values of the constant n representing the power-

law index and flow consistency parameter K  which is assumed to be function type of   and n in this study. 

The effects of various values on the velocity profiles are presented and discussed. 
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1 Introduction 
Boundary layer flow is discussed and investigated for 

many years. Its forms are widely used in fields like 

chemistry, aero-space and bio-medical engineering. 

The original studies that were dealing with boundary 

layer of non-Newtonian fluid are discussed in [1-2].  

Development of two and three-dimensional 

boundary-layer equations for pseudo-plastic non-

Newtonian fluids which characterized by a power-law 

relation is shown in Ref. [1]. In this later study, the 

types of potential flows which are necessary for 

similar solutions of the boundary-layer equations have 

been determined. It was found that for two-

dimensional flow the results are similar to those 

obtained for Newtonian fluids. However, for three-

dimensional flow, the possibility to find similar 

solutions is dependent on expression type nature 

which accompanied to effective viscosity of the fluid. 

Mostly, similar solutions are possible only for the 

case of flow past a flat plate where the potential 

velocity vector is not perpendicular to the leading 

edge of the plate; this is a much more restrictive 

condition than for Newtonian fluids obtained 

solutions.  

Ref. [2] presents a theoretical analysis of the 

laminar non-Newtonian fluid past arbitrary external 

surfaces, which is modelled by power-law model. 

Acrivos et al. predicts the drag and the rate of heat 

transfer from an isothermal surface to the fluid by 

inspectional analysis of the modified boundary-layer 

equations. Also, flow past a horizontal flat plate is 

studied in detail numerically. 

Discontinues in boundary layer flow due to power 

law index ( 2n  ) were investigated by Ref. [3]. It 

was found that for replacing the point which fulfills 

the correct outer boundary condition, one should 

replace the point where the asymptotic behavior of the 

boundary layer flow has to be applied. 

Usually, no-slip boundary conditions are applied 

as appear in [3-8]. Additionally, Ref. [5] presents an 

asymptotic approach for a boundary-layer flow of a 

power-law fluid. On the contrary, some studies do not 

assume no-slip condition as presented by [9-10]. 

Ref. [9] presents flow analysis of momentum and 

heat transfer in laminar boundary layer flow of non-

Newtonian fluids past a semi-infinite flat plate with 

the thermal dispersion in the presence of a uniform 

magnetic field for two different types of boundary 

conditions: static plate and moving plate. The analysis 

is done by solving system of coupled non-linear 

ordinary equations with Quasi-linearization technique 

together with numerically calculation based on finite 

difference scheme.  

Ref. [10] presents analysis of steady, two-

dimensional laminar flow of a power-law fluid 

passing through a moving flat plate under the 

influence of transverse magnetic field. The solution is 

found to be dependent on various governing 

parameters including magnetic field parameter M, 

power-law index n and velocity ratio parameter ε. A 

systematically study is carried out to illustrate the 

effects of these major parameters on the velocity 

profiles. It is found that dual solutions exist when the 

plate and the fluid move in opposite directions, near 

the region of separation. 

In the present study a non-Newtonian fluid which 

characterized by a power-law constitutive relation 

together with non-linear viscosity distribution 
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parameter over a flat plate is investigated. Moreover, 

analytically and numerically calculations of , ’f f  

and ”f are obtained for various cases of ,n   and 

K , respectively.   

2 Boundary Layer Equations 

Formulation 

 
The Ostwald-de Waele power-law model for non-

Newtonian shear stress xy is described by: 

1n

xy

u u
K

y y




 


 
     (1) 

while ( ,  )x y are the Cartesian coordinates of any point 

in the flow domain, where x -axis is along the plate 

and y -axis is normal to it. Flow consistency 

parameter is considered to be function ( , )K x y . u  

represents the velocity component in the 

positive x direction. n is the power law index.   is 

defined by 

1n

u
K

y






. 

The boundary layer continuity and momentum 

equations in case of 2D laminar flow of 

incompressible fluid with constant density   are [2]: 

0
u v

x y

 
 

 
     (2) 

1 xyu u
u v

x y y





 
 

  
     (3) 

while pressure gradient and body forces are neglected. 

Where u  and v  represent the components of the fluid 

velocity in positive ,x y  direction and xy  denotes 

non-Newtonian shear stress. Also,   is the constant 

flow density and is normalized, by 1  . 

The boundary conditions for Eq. (2-3) are: 

 ,0 ( )wU
u x A x

U

      (4) 

 ,0 ( )wV
v x B x

U

      (5) 

 lim ,
y

u x y C


      (6) 

 

while C is constant. 

Using transformation as shown in [11] by stream 

function ( , )x y leads to: 

 , u v
y x

  
  
 

     (7) 

Substitution of (7) in Eq. (2-3) gives: 

1
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The transformed boundary conditions relations 

are: 

 ,0 ( )wU
x A x

y U
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



     (9) 
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Similarity solution will be defined by the 

following parameters [11]: 

 , ( ),     x y bx f ayx             (12) 

where   is the stream function and   is the 

similarity variable. While a and b are constants. 

Substituting relations (12) in Eq. (8) yields: 
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while yax   . 
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In order to have simple ODE equations, two 

relations should be satisfied: 

    2 2 22 2 1 1 and   1n nn n a b               (15) 

Fulfilling (15) converts Eq.(14) to the following 

form: 
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(3)
'' '2 ''
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Now we will note the following parameters as: 

 2 1 1
, 

1

P n
P

n
  

 
  


    (17) 

After using substitution of (17) in (16) we have:  
(3)

'' '2 ''

''
0

n

y

f
ff Pf f K anK

f


 
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For further analytic development and fulfilling 

y   condition, the next parameters will be 

chosen: 

  ,   ,   1,   0y K K a P      while 2n     (19) 

      
''

'
'' '2 ''

''
0

n

f
ff f n Kf

f
      (20) 

In order to fulfill similarity rules, the next 

parameters will be chosen: 

   1,   0,   1 A x B x C       (21) 

with following B.C.: 

           ' '0 , 0 0, 1wU
f f f

U

      (22) 

 

3 Method of Solution 
Next step is to find analytic solution by 

coefficients investigation of main relevant cases. 

 

Eq.(20) will be written as following: 

 
''

'
''

''
0

n

f
n Kf

f
   (23) 

There are two possibilities of solution. 

Option 1: 

 
'

''

1 2 3
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1
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K

 
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Applying boundary conditions (22) on (24) leads 

to the form: 

  30 0:     0f C                (25)      
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Which gives the following relations: 
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where wU U . 

 

Option 2:  for 0n   

''

''
0

n

f

f
               (29) 

Integration together with applying B.C. on (29) 

leads to: 

wU
f

U
 



     (30) 

where wU U  (in order to fulfill '( ) 1f   ). It 

seems that Eq.(30) behaves like Bingham Plastic-

Liquid model. Also, it has no dependence on 

n and K . 

 

4 Results 
The following Figures in this section are for the 

following parameters: 1, 0.5wU U     while 

/nK e or 
 

2
n

K
n

 
 for various values. 

Substituting K  in Eq.(28) yields: 

 /

/
n

nw w

K e

U U U
f ne n

U U


 
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
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   (31) 
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Also,   

 

  

2

( )

n
K

n

w w

f

U U U
nln n nln n

U U



  






 


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  (32) 

In this section ',f f represent normalized u and v  

velocities, respectively. ''f represents normalized 

viscosity . 

Analyzing Eq.(31-32) or Fig.(1-3) shows that 

f profile for ( / )K exp n  or for 

 
2

n
K

n

 
 decreases with n. Eq.(30) has no 

dependency in K and n, so no change in value is 

exist as appear in Fig. (1-3). 

Additionally, 'f  is converged to 1 with 

increasing  . The difference between the 

solutions for ',f f and ''f  decreases for different 

 functions as shown in Fig.(1-9). It seems that 

this fluid can be categorized by Bingham plastic 

model behaviour according to Fig.(1-9) 

compared to Mitsoulis study [15]. Other 

numerical results can be compared with 

BOGNÁR [11], Schetz [16], Naikoti and Borra 

[17]. It was found that 'f  is perfectly matched 

with these references. 

            Fig. 1:  f  profile velocity Vs. η for 0.5n   

 

                 Fig. 2: f  profile velocity Vs. η for 1n   

 
Fig. 3: f  profile velocity Vs. η for 2n   
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             Fig. 4: f ' profile velocity Vs. η for 0.5n   

            Fig. 5: f ' profile velocity Vs. η for 1n   

 
   Fig. 6:  f ' profile velocity Vs. η for 2n   

      

             Fig. 7: f '' profile velocity Vs. η for 0.5n   
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   Fig. 8: f '' profile velocity Vs. η for 1n   

 

             Fig. 9: f '' profile velocity Vs. η for 2n   
 

4 Conclusions 
This study deals with steady laminar boundary 

layer of Newtonian and non-Newtonian fluids 

with non-linear viscosity over a flat plate. The 

power-law fluid model was adopted for the non-

Newtonian fluid representation and analytical 

solutions were found for 0  .  

 

B.C. represents moving plate state 

since 0)0( f . Additionally, B.C. were supplied 

by showing that 
'f  is converged to 1 with 

increasing  . The difference between solutions 

of ',f f and ''f  decreases with   for different K  

functions ( ( / )K exp n ,
 

2
n

K
n

 
 ).  

It was found that results can be categorized by 

Bingham plastic model behaviour compared to 

Ref. [15]. Moreover, numerical results can be 

compared with Ref. [11, 16-17]. It was found that 
'f  is perfectly matched with these references. 

Finally, this study presents general observation 

on boundary layer over moving flat plate with 

general viscosity function which isn't necessarily 

constant. Further research should be done in 

context of B.C. influence - like changing UUW ,  

values and/or using other surface geometry 

(general curve) which may contribute to the 

comprehension of boundary layer behaviour and 

enhance the understanding of viscosity role.  
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