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Abstract: This work studies and clarifies some local phenomena in fluid mechanics, in the form of an intrinsic 
analytic study, regarding Crocco’s equation and the motion one, for inviscid compressible fluid flows (both steady and 
unsteady), and finds new first integrals. It continues a series of works presented at some conferences and a congress 
during 2006 – 2012, representing a real deep insight into the still hidden theory of the isoenergetic rotational flow. 
Unlike the geometrical point of view (using a smart intrinsic coordinate system tied to flow’s isentropic surfaces) 
previously approached to eliminate the rotational non-conservative term, this time a thermodynamic point of view is 
used, to evidence the above term first as a biscalar one, and further as a conservative one. Several new functions 
and surfaces were introduced: the 2-D velocity quasi-potential, the isentropic 3-D (V, Ω) surfaces, the polytropic 
integral ones, and the quasi-incompressible quasi-potential (Laplace) lines, for a quasi-uniform rotational pseudo-
flow of an inviscid compressible fluid. The dependence of gas particle specific entropy on the 2-D velocity quasi-
potential was established. The PDE of the polytropic special integral surfaces, and that of the isentropic ones (both 
in Cartesian system) were given. The newly found first integrals for the motion equation are related to D. Bernoulli’s 
and D. Bernoulli–Lagrange ones. An extension of the new intrinsic model to MHD of a neutral plasma was also given. 
 
Key-Words: conservative (irrotational, potential) and biscalar vectors; rotational flows; steady and unsteady flows; 
inviscid fluids; compressible fluids; isentropic surfaces; polytropic integral surfaces; quasi-Laplace lines 

 
1 Introduction, nomenclature and the 
first approach to the new model of flow 
We start from the general vector differential equation 
of motion for an inviscid fluid unsteady flow (Euler): 
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(Hamilton’s operator), in a triorthogonal system of curvilinear 
coordinates xi ; ki – a 3-D basis; hi – Lamé’s coefficients 
(the Helmholtz (see [1])–Gromeko–Lamb form binding the 
acceleration and the force density of a small fluid particle); 
V – the local instantaneous velocity of translation (of 
the small particle) – the intensity of the local fluid field; 
Ω =   V = 2ω – the vorticity (curl V), with: ω – the 
local instantaneous velocity of rotation (of the particle); 
f – the mass force density (conservative – a gradient): 
f = (–gz) = –(gz); g – the acceleration of gravity; 
z – the geometrical height (height of the considered 
point above a reference horizontal plane xOy); 
p – the fluid static pressure; ρ – the fluid density; 
 = 1/ρ – the fluid specific volume; t – the time. 
For this inviscid fluid unsteady flow the momentum 
equation yields the Crocco–Vászonyi form (see [2], [3]): 

2/Viiwith),gz(iSTt 2
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– the total (stagnation) specific enthalpy; i = U + p/ρ – the 
static specific enthalpy; U – the specific internal energy; 
V – modulus of V; S – the specific entropy; T – static 
temperature (absolute) of the fluid particle. For a perfect 
(an ideal) gas: p = RρT, with R = const. The first law of 

thermodynamics states: dU = δq – δW; (δq) / (δW) are the 

elementary (heat supplied to) / (work done by) the system, 
both not being total differentials. For steady motions and 
resp. for gases, we have: ∂V/∂t = 0 and f = 0 , so remaining 
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using Crocco’s equation for an isoenergetic (i0 = 0) 
non-isentropic (rotational) flow: Ω  V = TS (see [2]). 
 

2 First integrals of Crocco’s equation and 
the motion one; the model for steady non-
isentropic flow; general polytropic surfaces 
Let us perform a scalar multiplication of Eq. (1) for the 
steady motion of a non-barotropic gas by a certain virtual 
elementary displacement vector dR (therefore generally 
not in the velocity direction), thus obtaining in the case 
of an isoenergetic flow the following ODE (with 3 terms): 
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d(V2/2) + (Ω  V)·dR = – dp/ρ ;  d(V2/2) + (Ω  V)·Vvdt 
= – dp/ρ ,    or:    d(V2/2) + TdS = – dp/ρ    ,     (2) 
for a non-isentropic (rotational) flow: dS ≠ 0, Vv = dR/dt 
being the virtual velocity vector (along the virtual elemen-
tary displacement vector dR ), where dS is a virtual diffe-
rential: dS = S·dR = (∂S/∂x)dx + (∂S/∂y)dy + (∂S/∂z)dz , 
this meaning the integral S is a virtual quantity also, 
being more general than the corresponding real one. 
One can see that, besides the trivial cases 1 – 3 below: 
 1) V = 0 – equilibrium (fluid statics) and the stagnation 
lines (p = p0) of a plane or a special axisymmetric flow, 
these ones being straight lines and circles, respectively; 
 2) Ω = 0 – an irrotational motion (everywhere having 
V = Φ; Φ – the velocity potential) and the vortex-free 
regions (stagnation lines included) in a rotational flow; and 
 3) Ω = cV – a helicoidal (screw) motion (Ω||V – vortex 
lines identical to the streamlines) – Beltrami flow, there is 
also an important case for which the non-conservative term 
(Ω  V)·dR = TdS (Crocco’s equation) becomes zero: 
 4) dR = c1V + c2 Ω (dR coplanar with both V and Ω) 
– the general case, from the geometrical point of view, 
with two main particular subcases (so far, the only ones 
known in the world, to the best of the author’s knowledge): 
  4.1) c2 = 0;   (dR1 = dR = c1V  c1 = dt, this being a 
true elementary displacement, dR);  4.2) c1 = 0; (dR2 
= c2Ω), dRi (i = 1, 2) meaning an elementary displacement 
along a streamline and a vortex line, for which dS = 0 
(T ≠ 0, except for  4.3) the limit case of the expansion 
into a vacuum: p = T = 0; V = W). The case 4 assures the 
annulment of the term (Ω  V)·dR = TdS (see [2]), leading 
to a virtual elementary displacement dR in a local plane 
tangent to the isentropic surface (p = Kργ) passing through 
the flow point considered (see [4] – [7]). The most general 
integrability case for this term, geometrical also, is: 
 G) Ω  V = F , or: (  V)  V = F (F being a scalar 
function and F a pure gradient – a conservative vector 
field). Taking into account the equivalence of the forms of 
Eq. (1), the most general integrability cases for Eq. (2), 
this time from the thermodynamic point of view ([8]), are 
those of a displacement dR in other local planes, tangent to 
some special surfaces passing through the same flow point, 
surfaces over which the term TdS (this time  0) is eviden-
ced as a total (an exact) differential (the 2nd term in Eq. 
(1) becomes conservative), also evidencing (for ideal gas 
laws reasons) the conservativity of the term p/ρ . The first 
law of thermodynamics states: δq = dU + δW = d(i – pτ) + 

pdτ = di – τdp , hence: δq = TdS = CpdT – dp/ρ (the second 
law of thermodynamics). This expression is not generally 
a total differential (due to the term τdp), except for some 
cases (surfaces) when the fluid behaves barotropically 
(p = f (ρ only)), but without being a barotropic one: 
 5) isothermal surfaces: T = T1 = const. and: (Ω  V)·dR 
= TdS = T1dS = d(T1S) = – τdp, and: p = const.1·ρ also; 
 6) isobaric surfaces: p = p1 = const.;  TdS = Cp·dT = di  , 

where Cp is a constant (the ideal gas isobaric specific heat); 
 7) isochoric surfaces: ρ = ρ1 = const.;  TdS = Cv·dT = dU  , 
where  Cv  is a constant (the ideal gas isochoric specific heat); 
 8) polytropic surfaces: p/ρn = (p/ρn)1 = const.;  TdS 
= (n – γ)/(n – 1)·CvdT; γ and n are other constants (the 
adiabatic and polytropic exponents, resp.): γ = Cp/Cv ; 
usually n  [1, 2]. This is the most general usual special 
integral surface (a “quasi-barotropic” fluid), having as 
particular cases all the previous 4 – 7 ones, for various 
values of n. So, for n = γ one obtains the case 4. For 
n = 1; 0; and → ∞ , one obtains the cases 5, 6 and 7, resp. 
All cases 5 – 8 are equivalent to case G, having: F = T1(S 
– S1); Cp(T – T1); Cv(T – T1) and (n – γ)/(n – 1)·Cv(T – T1), 
respectively. Any special virtual integral “i” surface can 
be a multi-sheet surface. An interesting particular case is: 
 E) [(τ – τc)/a]2 + [(p – pc)/b]2 = 1; (a, b, τc , pc > 0; τ, p ≥ 0) 
– an elliptic loop (thermodynamic cycle) in the (τ, p) 
coordinates. Equating the local ordinate (p) and slope 
(dp/dτ) of ellipse and of current polytrope  pτn = K1 , the 
unknowns  n  (for TdS expression) and  K1  are found as 
functions of  τ  and  p . Any barotropic virtual evolution 
of an ideal gas may be regarded as being composed of 
a lot of successive polytropic elementary evolutions. 
 

The vector equation  (Ω  V)·dR = dF  represents the 
general PDE of the special integral surfaces. In the second 
form of Eq. (1) the first vector is a conservative one and 
the remaining two are biscalar vectors. By biscalar vector 
one understands a vector L = kxP + kyQ + kzR  , so that the 
functions P, Q, R are bound by the integrability condition: 
P·(∂R/∂y – ∂Q/∂z) + Q·(∂P/∂z – ∂R/∂x) + R·(∂Q/∂x – ∂P/∂y) 
= 0 , for a differential equation of the type:  P(x, y, z)dx + 
Q(x, y, z)dy + R(x, y, z)dz = 0  (an orthogonality condition: 
L·dR = 0 ) to have a total differential in the left-hand side 
(L·dR = dF(x, y, z) = 0 ), so a first-integrability condition. 
This integrability condition takes the condensed form: 
L·(  L) = 0 , representing another orthogonality condition 
(for the vectors L and curl L – see subsection 1.5 in [4]). 
This means L must be either a conservative (L = F) or 
a biscalar (L = Φ1Φ2 ) vector, where Φ1 and Φ2 are 
independent scalar functions (Φ1  C1; Φ2  C2), e.g.: just 
Φ1 = T; Φ2 = S, and Φ1 = 1/ρ; Φ2 = p (these are not unique 
solutions), so that the orthogonality condition is always 
satisfied. If in some cases (even over special domains) a 
function F to satisfy the vector equation Φ1Φ2 = F can 
be found (Φ1 , Φ2 – interdependent), the biscalar vector L 
becomes conservative. So, first, using Crocco’s equation, 
the non-conservative vector Ω  V becomes biscalar, TS , 
and further, over the polytropic surfaces  p/ρn = (p/ρn)i = K1i , 
the biscalar vectors TS and p/ρ become conservative: 
 

(n – γ)/(n – 1)·CvT = [(n – γ)/(n – 1)·CvT] , and 
 

K1i·nρ
n – 2·ρ = [K1i·n/(n – 1)·ρn – 1] , respectively. 

 

In case 4 the specific entropy S remains constant (S0i) on 
the surface containing the streamline and the vortex line 
passing through the flow point considered. That is, over 
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the whole above (V, Ω) surface (not crossing any discon-
tinuity surface – shock wave, in the case of high-speed 
flows), one can write for the physical equation: p = Kiρ

γ , 
with:  Ki = p0i/(ρ0i)

γ·exp[(S – S0i)/Cv ] = p0i/(ρ0i)
γ > 0  (the 

isentropic constant of the streamline and vortex line, and 
more, of the respective “i” isentropic virtual surface). 
The biscalar vector p/ρ in Eq. (1) is evidenced as a 
conservative one, and the equation becomes (2 terms only) 
 

d(V2/2) = – dp/ρ  ,  or  d(V2/2) = – γKiρ
γ – 2dρ  ,    (3) 

 

presenting itself like the differential equation of a 
potential motion (even if the vorticity is present Ω ≠ 0 
on the whole stream and vortex surface) and admitting 
on the above surface a first integral (identical to the 
energy equation): V2/2 + γKi/(γ – 1)·ργ – 1 = i0 = W2/2 , 
 

or:    V2/2 + γR/(γ – 1)·T = i0 = γR/(γ – 1)·T0  ,    (4) 
 

the D. Bernoulli integral for isoenergetic (adiabatic and 
steady, with constant total specific enthalpy i0) non-
isentropic (rotational) flows, integral very similar to 
that encountered in isentropic compressible steady 
aero-gasdynamics, where: Ki is the isentropic constant, 
different from one stream and vortex surface to another; 
crossing a shock wave, even on the same (V, Ω) surface, 
the entropy S jumps, requiring change of the Ki constant 
and of the zero-S0i surface; i0, W are invariants for the 
whole flow (due to general flow steadiness and to the 
inviscid incident flow parallelism and uniformity), 
even if there are discontinuity surfaces (shock waves); 
R is the specific ideal gas constant ( = Cp – Cv ). Eq. (3) 

was derived rigorously for the case of the isoenergetic 
flows of a non-barotropic fluid, from the isentropicity 
condition along the flow streamlines and vortex lines (on 
some “isentropic” surfaces – with various constant values 
of the specific entropy S = S0i – analogous to D. Bernoulli’s 
(Lamb’s) ones ([9] – [27]), B = (V2/2 + ∫dp/ρ + gz =)B0i , 
for the case of a barotropic fluid). These are rigid surfaces 
in the fluid, the study of the 3-D fluid motions being 
reduced to that of the 2-D fluid potential motions over 
these surfaces. Euler’s equation may be written in the form: 
Ω  V = – B (B = – F in case G). Further, introducing 
a smart intrinsic coordinate system and a 2-D velocity 
“quasi-potential” function, a simpler form for the PDE 
of the velocity “quasi-potential” was obtained, for both 
steady and unsteady compressible flows ([4] – [8], [28]). 
Over some virtual polytropic surfaces, like those from 
cases (4 – 8), the new model for rotational flows of a 
compressible fluid offers advantages, e.g.: introducing 
a velocity “quasi-potential”, and finding a special space 
curves net – the intersection lines of these surfaces – 
along which Steichen’s equation becomes a Laplace’s one. 
Knowing them is important for studying their properties. 
So, the most productive integrability cases for the motion 
equation from this viewpoint are the various combinations 
(intersections) of case 4 with any of the cases (5 – 8), so 
getting an identical net of space curves given by Selescu’s 

isentropic & isotachic vector (dRij = k1·S|i  V|j mainly). 
For a more detailed analysis see the conclusion section. 
 

3 Introducing the 2-D velocity “quasi-
potential” over the isentropic surfaces 
The vector V has now two components only (like the 
vector Ω, both lying in the plane tangent to an isentropic 
sheet). Let be Oxyz the Cartesian system. In a triortho-
gonal curvilinear coordinate system Oξηζ tied to this 
isentropic surface (having ξOη as tangent plane) – 
therefore a smart intrinsic coordinate system, the vorticity 
component normal to the isentropic sheet (ζ = ζ0 ) must 
be: Ωζ = 0. The analytic expression of the vector Ω is: 
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where: ki – a 3-D basis; hi – Lamé’s coefficients; the dotted 
variables are derivatives with respect to the time t, and so: 
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Between two isentropic surfaces the entropy can vary 
continuously (monotonously) or discontinuously (by jump, 
like for the cases of supersonic plane flow with direct and 
Mach reflected shock waves, and of axisymmetric confluent 
flows). Even if varying the index “i”, S = S0i(i) is not always a 
strictly increasing function to be accepted as a ζ coordinate 
(like for symmetric plane flows), the monotony of S on some 
intervals of “i” may be considered, thus needing delimiters. 
Let introduce a scalar function Φi(M) = Φi (ξ, η, ζ0i), called 
by the author “quasi-potential”, whose partial derivatives 
along the directions of the elementary orthogonal arcs 
hξdξ and hηdη on the “i” isentropic surface (ζ = ζ0i ) are 
just the components Vξi and Vηi of the velocity Vi vector 
(Vζi = 0). Let still define λ and μ as being two orthogonal 
arc lengths, so that: dλ = hξdξ and dμ = hηdη , (dR = c1V 
+ c2Ω = kξhξdξ + kηhηdη = kξdλ + kηdμ;) the elementary 
arc length ds (= |dR|) on this surface being given by: 
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of this change of variables; J = 0 – gives the space 
curves representing the entropy singularities), so 
resulting on the “i” isentropic surface: 
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So the relation  Ωζi = 0  leads to:  ,0
ξη

Φ

ηξ

Φ i
2

i
2










 

representing a true relation – Schwarz’ theorem for 
the functions of two variables (the so-called theorem 
of “the equality of the mixed derivatives of the second 
order”, they differing as to the order of differentiation). 
This relation proves that  Ωζi = 0  and the existence 
of a 2-D “quasi-potential” function Φi so that: 
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the entropy gradient vector Si being normal to the 
introduced isentropic surfaces ζ = ζ0i . 
Thus, introducing the scalar quasi-potential function Φi (M) 
= Φi (x, y, z): Vi = Φi, the last vector ODE of motion, 
joined to the continuity and the physical ones, and 
taking into consideration the local speed of sound ai 
definition, enables the determining of the total velocity 
vector Vi from Steichen’s equation (see [29]) – usually a 
PDE (improperly called now the “velocity potential 
equation”, taking into account that there is a vector 
Ωi ≠ 0; the flow being rotational, more appropriate 
would be the term “velocity quasi-potential equation”). 
 

4 The velocity “quasi-potential” equation 
for any steady flow of a compressible fluid 
This vector equation may be written in a symbolic form: 
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where, in a Cartesian coordinate system Oxyz: 
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and expanding the symbolic expression in the brackets: 
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the speed of sound ai being given by the energy equation: 
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all the points at which is satisfied the previous PDE of the 
velocity potential Φi belonging to a certain “i” isentropic 
surface. This new equation is identical to the velocity 
potential equation (see [29]), written for a potential flow 
only. In a triorthogonal smart intrinsic coordinate system 
Oξηζ tied to these surfaces (or Oλμν, with λ, μ, ν – lengths 
of orthogonal arcs, with λ and μ contained in the local 
tangent plane and ν directed upon the normal) Laplace’s 
operator Δ is given by the general expression below (the 
function Φi depending on ξ, η and ζ0i , or on λ, μ and ν0i ): 
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e.g.: the λ arcs taken along the streamlines and the μ arcs – 
along the equi(iso)-”quasi-potential” lines ≡ intersection 
lines of the isentropic surfaces with the iso-quasi-potential 
ones, these being normal to the local velocity V . Similarly, 
in Steichen’s equation – a nonlinear PDE of the 2nd order 
in three variables – ξ, η, ζ (now written for any rotational 
flow – Ω ≠ 0 , but on the “i” isentropic surfaces ζ = ζ0i ) dis-
appear all the terms containing the partial derivative about ζ 
of the potential function Φi, (Φi/), and also its derivatives 
with respect to ξ, η and ζ , thus being obtained a nonlinear 
PDE of the second order in only two variables – ξ, η – 
the “velocity quasi-potential equation” (see [4], [5], [7]), 
which was thoroughly treated in a recent paper ([30]). 
 

5 The first integral of the steady motion 
equation over the polytropic surfaces 
In order to derive this first integral, we start from Eq. (2) of 
a steady motion for an inviscid compressible fluid, taking 
into account Crocco’s equation (see [2]) and the infinitesimal 
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variation laws of the specific entropy S and of the static 
pressure p over a general polytropic special “i” surface: 
d(V2/2) + (Ω  V)·dR = – dp/ρ;   d(V2/2) + TdS + dp/ρ = 0; 
dS = (n – γ)/(n – 1)·CvdT/T;   TdS = (n – γ)/(n – 1)·CvdT; 
and  p/ρn = (p/ρn)i = K1i = const.(i)  , this resulting in: 
dp = K1i·nρ

n – 1dρ , and: dp/ρ = K1i·nρ
n – 2dρ , with γ, 

Cv , n and K1i = (p/ρn)i – constants (for an ideal gas), 
so obtaining the first integrable differential equation: 
d(V2/2) + (n – γ)/(n – 1)·CvdT + K1i·nρ

n – 2dρ = 0    , 
admitting on a certain virtual polytropic “i” surface the 
first integral below (for an isoenergetic flow i0 = const.1 ): 
V2/2 + (n – γ)/(n – 1)·CvT + K1i·n/(n – 1)·ρn – 1 = i0 = 
= W2/2 = i0 = W2/2 = const.1 ,         (5) 
or, in a contracted form (obtained applying the ideal gas 
physical law, p = RρT , and identical to energy equation): 

V2/2 + CpT = V2/2 + i = i0 = W2/2 = CpT0 = const.1 ,  (5′) 
where Cv = R/(γ – 1) and Cp = γCv = Cv + R = γR/(γ – 1) 

are the isochoric and isobaric gas specific heats, assumed 
to be constant for an ideal gas; W is the maximum possible 
gas velocity, corresponding to its expansion into a vacuum, 
also a constant quantity. The quantities i0 and W are inva-
riants over the whole isoenergetic flow. The quantity K1i is 
also a constant, but is different from one “i” polytropic sheet 
to another. The term V2/2 is the specific kinetic energy 
of the gas particle; the term (n – γ)/(n – 1)·CvT = ∫TdS = 
∫(Ω  V)·dR is the specific energy due to the vorticity Ω, 
while the term K1i·n/(n – 1)·ρn – 1 = [n/(n – 1)]·(p/ρ)·= 
∫dp/ρ is the specific work due to the static pressure p. 
Remark: All the newly found first integrals for the motion 
vector equation – like (4) and (5) – both from the geome-
trical and thermodynamic points of view, were obtained by 
a “term-by-term” analytic integration, and not by evaluating 
the more complex integrand in this equation, written in the 
Helmholtz–Gromeko–Lamb form (after a scalar multipli-
cation by dR): (Ω  V)·dR + dp/ρ (= TdS + dp/ρ) , as a 
whole. A contracted form of this integrand is CpdT (due to 
relation: TdS = CpdT – dp/ρ, representing the mathematical 
expression of the second law of thermodynamics), regard-
less of the dependence law of p on ρ (a generic fluid, not a 
barotropic one) and is encountered in the differential form 
of the energy equation, the integral form of which is: 
V2/2 + CpT = [V2/2 + γR/(γ – 1)·T = V2/2 + γ/(γ – 1)·p/ρ 

= W2/2 = γR/(γ – 1)·T0 =] i0 = const. , p = f (ρ, T) ≠ 

f1(ρ only) (for an isoenergetic steady flow, this meaning 
with a constant total specific enthalpy i0 ) and does not 
depend on the rotationality (in other words if the vorticity 
is or is not present, leading or not to the entropy rise). 
Although in all cases treated in the approached intrinsic 
analytic study the new first integrals seam to be identical 
to the form above, they are phenomenologically different 
(though being important particular cases of first integrals 
for the motion equation, like D. Bernoulli and similar 
ones). So, over the isentropic virtual surfaces the specific 
entropy S is kept constant, even if the vorticity vector is 

present (in the plane tangent to a certain isentropic sheet). 
Analogously, over the other kinds of polytropic virtual 
surfaces, an important physical quantity (like the static: 
temperature T – and implicitly flow velocity V; pressure 
p; density ρ etc.) is conserved also and so the energy equ-
ation takes some interesting particular forms. The hidden 
difference consists in that in the energy equation, in order 
to conserve the p/ρ ratio (to have the same static tempera-
ture T at all points with the same velocity V), regardless of 
the losses due to flow vorticity and to shock waves, the new 
values of the static pressure p′ and density ρ′ should both 
be smaller, though having the same ratio, to satisfy the phy-
sical equation: p′/ρ′ = p/ρ = RT , (with: p′ < p and ρ′ < ρ), 

while in the first integral (4) the quantities p and ρ conserved 
their values (in the absence of the shock waves only). More, 
integrating “term-by-term”, several advantages in writing 
the velocity potential equation are evidenced, using the 
isentropic and polytropic virtual surfaces. The intersection 
lines of the surfaces in cases (4 – 8) are identical. So: (4) 
∩ (5)  (4) ∩ (6)  (4) ∩ (7)  (4) ∩ (8), and more 
(for inviscid fluids)  (5) ∩ (6)  (5) ∩ (7)  (5) ∩ 
(8)  (6) ∩ (7)  (6) ∩ (8)  (7) ∩ (8) – a star of 
sheets [a multi-pencil (-sheaf) of planes tangent to these 
sheets]. As one can see in [30], along these lines the velocity 
quasi-potential Φij PDE becomes a 2-D Laplace’s one for 
a rotational pseudo-flow of a quasi-incompressible fluid. 
 

6 The PDE of the polytropic surfaces in 
the Cartesian coordinate system (a first 
integral of Crocco’s vector equation) 
One can derive this equation starting from Crocco’s equation 
for steady flows, and performing a scalar multiplication by a 
certain virtual elementary dR displacement vector, obtaining: 
(δq =) TdS = (Ω  V)·dR = [(V)V – (V2/2)]·dR , 
δq (the elementary heat loss) being not a total (an exact) 
differential for a certain case, but for some special cases 
(over some special virtual integral surfaces, like for the 
cases 5 – 8 in section 2) only. The general differential 
equation of the polytropic surfaces is (with  Ω  V = F ): 
 

TdS = (Ω  V)·dR = dF = (n – γ)/(n – 1)·CvdT , 
 

meaning the elementary volume |dF| of the parallelepiped 
built on the vectors Ω, V, dR is |(n – γ)/(n – 1)·CvdT|, so 
combining the geometrical and thermodynamic points 
of view (one of the reasons why we call this model a 
physical & mathematical one, elaborated in order to find 
new properties and using them further to simplify some 
mathematical formulations, introducing new concepts – 
physical & mathematical quantities), this resulting in 
(with: dR  (p/ρn) , or  dR·(p/ρn) = 0 ): 
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This is a total (an exact) differential equation, namely that of 
a polytropic sheet written in the Cartesian system, assuming 
V as being a given function for any value of the variables 
x, y, z – the differential equation of a mobile plane (passing 
through the current point) tangent to such a surface. The 
searched for general differential equation of these surfaces is: 
dF = F·dR = (n – γ)/(n – 1)·CvdT    .       (6) 
The rectangular coordinates of vector F for a polytropic 
surface are the algebraic projections of this vector: 
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the expression CvdT in Cartesian coordinates is 
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The PDE (6) of the polytropic integral surfaces becomes 
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or more: 
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 (6′) 

In the last line of this equation we have: 
dVx = (∂Vx/∂x)dx + (∂Vx/∂y)dy + (∂Vx/∂z)dz ; 
dVy = (∂Vy/∂x)dx + (∂Vy/∂y)dy + (∂Vy/∂z)dz ; 
dVz = (∂Vz/∂x)dx + (∂Vz/∂y)dy + (∂Vz/∂z)dz . 
The equation of the polytropic surfaces is obtained by inte-
gration. For the “integrability condition” of such a diffe-
rential expression see section 8. The integral of PDE (6′) is 
F = (n – γ)/(n – 1)·CvT + const.(i)    , or successively 
F – (n – γ)/(n – 1)·CvT = – (n – γ)/(n – 1)·CvT1   ,  (7)
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(8) 

(under the sign of integral in the left-hand side being a 
total differential dF), representing the general equation 
of an “i” polytropic surface written in the Cartesian 
system – envelope sheet of the planes tangent to such a 
surface (the general first integral of Crocco’s equation). 

In the following, denoting the integral ∫(Ω  V)·dR in 
Eq. (8) by F, the contracted form of this equation is: 
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     (8′) 
corresponding to case 8 in section 2. For various values 
of n, one obtains the equations for cases 4 – 7. On some 
intervals of T, where γ, Cp and Cv are practically constant 
(varying discontinuously, according to a step or a staircase 
function, but with steps of various lengths) the results 
obtained for an ideal gas are valid for the real gas too. 
 

7 The dependence of gas particle specific 
entropy on the velocity “quasi-potential” 
One can derive this, starting from Crocco’s equation for 
steady flows, considering the elementary orthogonal arcs 
in the new system of curvilinear coordinates: dλ = hξdξ; 
dμ = hηdη; dν = hζdζ. At a flow point M(x, y, z) or M(ξ, η, ζ) 
or M(λ, μ, ν), where (ξ, η) are the local orthogonal 
curvilinear coordinates and the (λ, μ) orthogonal arcs 
are contained in a certain “i” isentropic surface (V, Ω)i 
 (ζ = ζ0i ), or (S = S0i = const.), with ki – a 3-D basis, 
the specific entropy’s gradient is: 
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so resulting for Crocco’s equation: 
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and introducing the “quasi-potential” function Φ , one 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 6 Volume 9, 2014



obtains at a certain flow point M(ξ, η, ζ) or M(λ, μ, ν): 
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the “quasi-potential” Φ being a function of three orthogo-
nal arcs (λ, μ, ν), and which on a certain isentropic sur-
face (ζ = ζ0i ) becomes a function of only two orthogonal 
arcs (λ, μ), both contained in the respective surface: 
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the expression of the gas static temperature T being 
given by D. Bernoulli integral for isoenergetic flows (4). 
If the compressible flow (and implicitly its isentropic 
surfaces, containing the flow streamlines and vortex 
lines) is crossing a shock wave, the values S01 and S02 at 
both ends (ζ01 and ζ02) of the integral above are referring 
to the same side (upstream or downstream) of respective 
wave, these sides differing by a specific entropy jump. 
 

8 The PDE of the isentropic surfaces in 
the Cartesian system (a particular first 
integral of Crocco’s vector equation) 
One can derive this equation also starting from Crocco’s 
equation for steady flows (like in the previous sections 6 
and 7), and performing a scalar multiplication by a 
virtual elementary dR displacement vector, so having: 
(δq =) TdS = dR·(Ω  V) , 
δq (the elementary heat loss) being not a total (an 
exact) differential. 
The differential equation of the isentropic surfaces is: 
 

dS = (1/T)·dR·(Ω  V) = 0, leading to: S(x, y, z) = S0i = ct., 
 

this resulting in the annulment of the mixed product 
in the right-hand side (coplanarity of three vectors): 
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  (10) 

but this is not a total (an exact) differential equation 
(because δq ≠ dq). To obtain the equation of the 
isentropic surfaces (by integration), it must be 
multiplied by the integrant factor    1/T(x, y, z)    . 

The so-called “integrability condition” for a differential 
expression of the type above (in the left-hand side): 
 

P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0    is: 
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for having a total (an exact) differential in the left-
hand side (for existence of an integrant factor). 
Defining a new vector L = kxP + kyQ + kzR (ki – a 3-D 
basis), in the present case having: L = Ω  V (= TS) , 
each of these two relations may be written in the 
condensed form of annulment of a scalar product: 
L·dR = 0 , and:  L·(  L) = 0 , respectively – two 
“orthogonality conditions”;  L  (dR,   L) plane. 
Eq. (10) is the equation of an isentropic sheet written 
in the Cartesian system, assuming V as being a given 
function for any value of the variables x, y, z – the 
differential equation of a mobile plane (passing 
through the current point) tangent to a (V, Ω) surface. 
The (first) integral of this differential equation is: 
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(under the integral in the left-hand side being now a total 
differential), representing the general equation of an “i” 
isentropic surface written in the Cartesian system – the 
envelope sheet of the planes tangent to a (V, Ω) surface 
(a particular first integral of Crocco’s equation). So: 
 

 

L1 = kxP1 + kyQ1 + kzR1 = L/T = (Ω  V)/T = S    , 
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so that:    L1 = S    and    curl L1 =   L1 = 0    . 
The integrability (orthogonality) condition gives us a PDE 
connecting Vx , Vy , Vz (all being functions of x, y, z). 
Considering the elementary orthogonal arcs in the new 
system of curvilinear coordinates as being dλ , dμ and 
dν (the λ and μ arcs – contained in the isentropic surface 
ζ = ζ0i ), one can write Crocco’s equation in the form: 
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(see section 3 in [4]):  Ωξ = – ∂Vη/∂ν  ;  Ωη = ∂Vξ/∂ν ; 
and so: Vξ(∂Vξ/∂ζ) + Vη(∂Vη/∂ζ) = 1/2·∂(V2)/∂ζ ≠ 0  , 
this resulting in: dζ = 0, and ζ = ζ0i = ct. – the general 
equation of an “i” isentropic surface written in the new 
intrinsic coordinate system O, as it was expected. 
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9 Noticeable cases (quantitative examples) 
of isentropic surfaces in the usual flows 
One must consider three noticeable quantitative cases of 
rotational flows: (1) the plane flow; (2) the axisymmetric 
flow, in both cases having Ω  V (for an incompressible 
fluid meaning vortex lines identical to the equi(iso)-“quasi-
potential” lines; (3) the general 3-D conical supersonic 
flow (with its 2-D plane and axisymmetric subcases); the 
orthogonality to the streamlines for a compressible fluid will 
be treated in a next paper, dedicated to the continuity equation; 
 

(1) For a plane flow 
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rotational one downstream of a detached cylindrical shock 
wave (with curved directrix, and thus with variable intensity) 
in supersonic regime, the analytic expressions of V and Ω are: 
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this meaning: Ω  V; Ω  V  (xOy) – the flow plane; 
(xOy) ≡ (V, S) – the osculating plane; (S, Ω) – the 
normal plane; (Ω, V) – the rectifying plane; (all with 
respect to the streamlines). Here ki is a 3-D basis. 
 

The isentropic surfaces (S = S0i = const.) for a plane flow 
are the field (stream and vortex) current cylinders defined 
by (V, Ω), having the “i” streamline as directrix and the 
generatrices (the vortex lines) parallel to the Oz axis – the 
envelope sheets of the rectifying planes for the streamlines 
belonging to the same family. This case was treated in [26]. 
 

(2) In the cylindrical coordinate system (r, ω, x), having 
(xOr) as meridian plane, for an axisymmetric flow (Vω = 0 ; 
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V xr , like the rotational one downstream of 

an axisymmetric shock wave (with curved meridian line, and 
thus with variable intensity) in supersonic regime, the 
analytic expressions of the vectors V and Ω are: 
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Taking into account that there is an axisymmetric flow: 
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(circular rings of vortices in planes normal to the Ox axis), 
meaning: Ω  V; Ω  V  (xOr) – a flow meridian plane; 
(xOr) ≡ (V, S) – the osculating plane; (S, Ω) – the 
normal plane; (Ω, V) – the rectifying plane; (all with 
respect to the streamlines). Here ki is a 3-D basis. 
The isentropic surfaces for an axisymmetric flow are the 
field current revolution surfaces defined by (V, Ω), having 
Ox as symmetry axis and the streamlines as meridian lines 
(and implicitly the vortex lines as parallel circles) – the 
envelope of the envelope sheets of the rectifying planes 
for the streamlines belonging to the same given family. 
In the cases (1) – (2), on a certain (V, Ω) sheet, along 
a streamline (a very thin stream tube), the phenomenon 
depending on a single variable (ξ, or λ), the new PDE 
of the velocity “quasi-potential” becomes an ODE. 
(3) The choice of a special triorthogonal smart intrinsic 
coordinate curves net (called by the author “generalized 
spherical (conical)” R, φ, χ) results in always obtaining 
a first integral of the continuity equation for any 3-D 
conical supersonic flow (the flow rate equation – see [31]): 

;Q)f(ρRor  ,Q)Vf(ρR;Q)f(ρR i
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where:    ,V,ddRV R VVV    

in the first integral above appearing the product of Lamé’s 
coefficients:    hR = 1 ;    hφ = R ;    hχ = Rf(φ) . 
An ODE of the velocity “quasi-potential” function Φi (on 
any “i” sheet, so that: VRi = Vi = ∂Φi/∂R) instead of the 
usual (approximate) PDE of the velocity potential Φ 
function for these flows was rigorously obtained (see [28]): 
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The isentropic surfaces are the conical ones having the 
vertex in the cone tip and the streamlines as directrices, as a 
result of the fact that the entropy is constant along both the 
streamline and any half-straight line starting from the tip. 
 

10 A qualitative example of application; the 
“isentropic sheets ↔ streamlines” analogy, 
improved using the “mirror image” sources 
We try to apply the isentropic surfaces model to a special 
but usual case of 3-D conical supersonic flow – that around 
a circular cone at incidence, by an intuitive analogy to the 
streamlines pattern in an incompressible 2-D plane potential 
flow, by using an adequate smart intrinsic curvilinear 
coordinate system, and choosing a suitable conformal 
mapping in the cross section plane of a cone at incidence, so 
performing a flow’s qualitative mathematical modeling. 
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the angle of attack α ≠ 0;  r is the cone local radius; 
;tatanα;α tanxtt ;xrr   

       
 

;Ctan 
C

1

r)tz(yy

)tz()rtz()r2tz(y
χ

;Cχ tan
tx

)tr(x
lnIm)x(FImZ  a..1

2
2

222

22

2
1)(

1

2

1
1

][























 

i

i

 

 
 

 

 
;eC

)tz(y

)rtz(y

;Cln
tx

)tr(x
lnRe)x(FReY  b..1

1C2
122

222

1
1

2

1
1




























i

i

 

zyx1 i is a complex variable; xzz;xyy  ; x, y, z 

– Cartesian coordinates, x – abscissa of cross section current plane 
 

Fig. 1. Intuitive example (pattern analogy) of the “generalized 
spherical” smart intrinsic coordinate surfaces net for the case 
of a circular cone at small angle of attack α (cross section) – the 
“incompressible” approximation (a “slender body”; no shock 
wave), giving the relations between the “generalized spherical” 
smart intrinsic coordinates (R, φ, χ) and the Cartesian ones: 
1.a. the conical isentropic sheets χ = χ0i = c(S0i – c0 ) = 1/C2 (a 
smart intrinsic coordinate tied to S0i – the local specific entropy 
value), having as remarkable directrices: the oz axis and a circle 
(the solid cone trace) centered on it (both for C2 = 0), and a right 
strophoid (χ = 0) centered on oz axis too (for 1/C2 = 0); c, S0i , c0 > 0; 
two closed curves pass through (b): a circle and a strophoid loop; 
1.b. the conical sheets φ = φ0j = C1 (another smart intrinsic 
coordinate, orthogonal to the conical sheets χ = χ0i = c(S0i – c0 )), 
having as remarkable directrices: a Pascal’s limaçon and the 
circle at infinity (both for C1 = 0 and centered on the oz axis). 

The function  F(x1) = lnφ1/2 + itan(–1)χ ,  χ  (– , ), 
represents the plane x1 on a strip in a plane X (= ZY i ). 
Inside this strip, directed on the Y  axis, a parallel and 
uniform field is obtained. This function is the complex 
potential of an incompressible subsonic plane flow in the 
cross section current plane x1. Its real and imaginary parts 
are the velocity potential function )z,y(Y , and the stream 

function )z,y(Z , respectively. At any point in the yoz 

plane they must satisfy the orthogonality condition: 
0,)z/Z)(z/Y()y/Z)(y/Y()z,y(Z)z,y(Y   

expressing that in the plane flow above the streamlines 
and the equipotential lines are each other orthogonal. 
All the curves in figure 1 are the traces (directrices) of the 
conical surfaces of coordinates defining together with the 
spheres R = (x2 + y2 + z2)1/2 = R0k = const. a usable system 
of generalized spherical coordinates. In the upper region of 
figure 1.a. one can see the trace of Ferri’s ([32], [33]) half-
straight line – a nodal singularity for the specific entropy S. 
Actually there are two such nodal singularities (for which 
the Jacobian  J = D(x, y, z)/D(R, φ, χ) = 0 and the mapping 
ceases to be conformal), both of the logarithmic type: one 
(strongest, on cone’s leeward side, ) trz b  , for both 

external and internal flow, and another one (on cone’s axis, 
tza  ) for the internal flow only. These flows are given 

by two semi-infinite line sources along cone’s axis (a) and 
back (b) (or by three semi-infinite line sources with the 
sum of their intensities equal to zero, the third one being 
situated along the line at infinity), replacing solid cone’s 
effect. (One can see that for 0r   this effect practically 
disappears, and a single semi-infinite line source remains on 
the (a) line, giving for the conical isentropic surfaces the 
well-known pattern: half-planes passing through this line.) 
The strength of the central source is half of the upper’s one 
strength, and they have opposite sign (see the black curved 
arrowheads). Let us calculate the derivative of the complex 
function F(x1) with respect to x1 (the complex velocity): 

,
)]tr()[xt(x

)tr(x

dx

dX
;

tx

)]tr(x[
lnX

11

1

11

2
1









ii

i

i

i
 

tending to  on (a) and (b) (strophoid’s nodal point also): 
).trz0;y( )tr( x);tz0;y( tx bb1baa1a  ii

It becomes zero on cone’s windward side (limaçon’s nodal 
point (n) also): ))tr(z;0y()tr(x nnn1  i . 

Along all these straight lines (a, b, n) the used mapping is not 
conformal (also having J = 0). But on the (n) line there is a 
false S singularity (even if J = 0) of a saddle point type (like a 
plane flow stagnation point), Sn having the same value for y 
and z directions of both flows. Though, actually, along oz axis 
(two half-planes), due to the different intensities of the inclined 
conical shock wave started from cone tip, resulting in different 
compressibility and vorticity effects downstream of this wave, 
the function S has two constant values, inside the intervals 
(– , a), (a, ), (a) becoming thus a discontinuity line (jump – a 
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small conical shock wave, inclined and with variable intensity 
too, in the internal flow around the (a) line source) for the 
specific entropy S. In fact, sweeping the space around (b) 
in both external and internal flow, the specific entropy rises 
continuously from a minimum, along the interval (a, sw) of oz 
axis, then passing through the strophoid, finally reaching a 
maximum, along the circle and in interval (sw1 , a) of negative 
oz axis, so that S = S0i (i) is a strictly increasing function for 
being accepted as a coordinate χ ; (sw), (sw1) ≡ (oz) ∩ (shock 
wave). A pair of traces of isentropic sheets (red lines) and 
their symmetric ones with respect to oz axis (blue lines) was 
represented in figure 1.a. right. Along them the entropy S and 
implicitly the coordinate χ are constant. The physical signi-
ficance of the constant c0 (> 0) is a reference value for S, cor-
responding to, say, the isentropic sheet having as directrix the 
strophoid, this leading to the annulment of the coordinate χ . 
One can see the contradiction between the physical model 
and the mathematical approximate one, which can not con-
sider the conical shock wave and its effects, so remaining a 
qualitative one (isentropic sheets pattern only, analogous to 
that of the streamlines in an incompressible potential flow). 
As a main inconsistency we mention the impossibility to 
model any entropy variation. So, in the analyzed flow, χ 
tends to   along the entire oz axis (and the circle of radius 
r as well), getting Z =  /2 – borders of the infinite strip 
in the complex X plane (except for (a) and (b), where it has 
undetermined values, these points being represented in the 
X plane by strip’s left and right ends), while, physically, the 
quantity c(S0i – c0 ) has various finite values (< 0, 0, or > 0). 

Along the strophoid 0)r2tz()tz()rtz(y 22   

(passing through (a), and with (b) as nodal point)  = 0 
and so we get Z  = 0 – the  Y  axis of the complex X plane. 
Above strophoid’s branches and inside its loop  < 0; Z < 0 
( Z (– /2, 0) – the inferior half-strip in the X plane). 
The parallel and uniform flow inside the infinite strip ( /2) 
represents both external and internal flow (superposed). 
So, the strip’s ends ( ) correspond to (a) and (b) in the 
internal flow, and to (x1 = – i) and (b) in the external one. 
The function F(x1) describes a special incompressible plane 
flow around any loop formed by a pair of symmetric curves 
in figure 1. a., taken as directrix of a solid cone at incidence. 
The inverse of the complex function F(x1) is multiform: 
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For the no-incidence motion around the circular cone the 
complex potential is given by an infinite number of equal 
positive sources uniformly distributed on the circle of radius 
r and a central negative source with strength of half the sum of 
the positive ones, describing both external and internal flow: 
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having as streamlines the radii passing through the centre (a), 
but traversing in both senses the circle of radius r , and this 
circle as remarkable streamline, so an infinity of saddle points. 
This circle is an equipotential line also (like the other concen-
tric circles); the radii are equipotential lines too (only their 
small regions in the close vicinity of the circle streamline). 
The complex velocity has the analytic expression below: 
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tending to  on the (a) line (this time x1a = 0; 0zy aa  ) 

and along all uniformly distributed line sources nn
1 rx   

(an infinity of singularities on the circular cone |x1| = r , 
for which the Jacobian  J = D(x, y, z)/D(R, φ, χ) = 0). It 
becomes zero for nn

1 rx  /(n – 1); (n → ∞) representing 
the stagnation lines (the “saddle point” type line singularities), 
also uniformly distributed on the circular cone surface. 
Like in the previous case (for the motion with incidence), 
at all these points the used mapping ceases to be conformal, 
this domain including therefore the entire circle of radius r , 
the velocity having alternate values (either infinite or zero). 
Since r = r/x < 1, we always and throughout have n

n
rlim


= 1. 
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In plane polar coordinates the equipotential lines equation is 
 

(2/n)·{|x1|
n – 1cos[(n – 1)arg x1] – (1/|x1|)·cos(arg x1)} = C1; 

 

(n → ∞) and the one of the streamlines, respectively: 
 

(2/n)·{|x1|
n – 1sin[(n – 1)arg x1] + (1/|x1|)·sin(arg x1)} = C2. 

 

Taking into account that
n

lim 2/(n|x1|) = 0 (except for x1 = 0) 

it remains: (2/n)·|x1|
n – 1cos[(n – 1)arg x1] = C1 , and: 

(2/n)·|x1|
n – 1sin[(n – 1)arg x1] = C2 (for n → ∞), both 

lines’ equations being of the type: f1(|x1|)·f2(arg x1) = Ci . 
Generally (1/n ≠ 0) both lines are special multifolia (roses). 
But due to the ultra-high angular density of singularities 
along the circle of radius r , all lines above (both streamlines 
and equipotential lines) have a stellar pattern (petals like 
some high density “Dirac δ impulses”, uniformly distributed 
on the various concentric circles of radius |x1| and centered in 
(a), in both senses, centrifugal – for |x1| > 1, and centripetal 
– for |x1| < 1, as well). The proper half-straight lines were 
obtained for the undetermined values of the products 
(|x1|

n – 1/n)·cos[(n – 1)arg x1] and (|x1|
n – 1/n)·sin[(n – 1)arg x1], 

of the type (∞·0), given by f1 = (|x1|
n – 1/n) → ∞, due to n, and 

f2 = 0: arg x1 = kπ/[2(n – 1)], for k = )1n(,0  , due to x1. 

Since along a regular line arg x1 = const. the factor f2 (arg x1) 
(either cosine or sine) in both products f1(|x1|)·f2(arg x1) = Ci 
(hyperbolic dependence) has various constant values const.2 , 
the other factor must be f1(|x1|) = const.1 = Ci /const.2 , leading 
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to |x1| = const. (concentric circles) for both lines’ equations. 
Searching for the general expression of the complex 
potential function Fg , one can write it as a symbolic sum 
of self-excluding source contributions (either F0 or F): 
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We try further to improve this intuitive qualitative model, in 
order to get a more realistic streamlines pattern, delimiting 
the domain affected by the rotational supersonic flow 
around the solid prolate circular cone at small incidence, by 
evidencing a conical attached shock wave, extending the 
analogy to the supersonic regime. Inside this wave, in its 
proximity, the conical isentropic sheets (the smart intrinsic 
coordinate surfaces) must be normal to the wave surface 
(see figs. 2 in [33] and 48 in [34], which we reproduce here 
as fig. 2), the wave trace playing the role of an equipotential 
line (another analogy aspect). At any point in the new yoz 
plane the same orthogonality condition must be satisfied: 

)zZ)(zY()yZ)(yY()z,y(Z)z,y(Y 111111   

= 0, with F1(x1) )z,y(Z)z,y(YX 111 i – a new complex 
potential function, this time for the supersonic plane flow. 

 
Fig. 2. Reproduction of fig. 48 from chapter 2 § 8 in [34] 
(in the brackets is given the English translation of the Russian text) 
 

In this reason we introduce a third line source (c) – mirror 
image of the (b) one with respect to the conical shock wave 
surface. We assume (like in [33], [34]) the wave sheet due 
to the prolate circular cone at small incidence in a moderate 
supersonic stream to be a circular cone with two unknowns: 
the axis position and the base radius R (in the cross section 
current plane). The lesser the cone tip half-angle, the inci-
dence, and the emergent supersonic stream Mach number M 
> 1 (however keeping an attached conical shock wave) are, 
the better the above approximation is. The (c) line source has 
the half-strength of (and opposite sign to) the (b) one 
strength (and sign). So, unlike in the subsonic motion, in 
the supersonic one the sum of sources strengths (mass flow 
rates) is quite zero (two pairs of equal sources in equilibrium, 
two of them coinciding on the (b) line, affecting the entire 
space and giving in the yoz plane two circles: a streamline 
– the solid cone trace, and an equipotential line – the wave 
trace). We will develop this model in a subsequent paper, 

dealing with determining the position of the new (c) line 
source and the wave quasi-circular trace base radius R . 
A similar method of “mirror image” line sources coupled 
with the “isentropic sheets ↔ streamlines” analogy may be 
applied to give a realistic streamlines pattern for the conical 
rotational supersonic flow around a solid prolate elliptic cone 
at small incidence, assuming to produce a circular conical 
shock wave too (see fig. 42 in [34], which we reproduce here 
as fig. 3, the interrupted lines representing the Mach cone). 
 

 
Fig. 3. Reproduction of fig. 42 from chapter 2 § 4 in [34] 
 

In the cross section plane ξoη of this cone at small incidence 
two nodal (Ferri’s) singularities for the specific entropy S 
appear in the external flow (and two saddle points also), 
meaning an external flow due to a pair of unequal sources 
of the same sign on cone’s windward and leeward sides. 
Even if the analyzed analogous flows are potential or quasi-
potential, the nature of the governing (quasi-)potential is quite 
different: a Laplace one for the special 2-D plane flow, and 
a Steichen quasi-potential for the analogous 3-D conical flow. 
 

Even for a given incidence, the streamlines pattern for a 2-D 
plane subsonic flow (in the cross section) of a compressible 
fluid depends strongly on the incident Mz Mach number. 
This problem was studied for flows without circulation (e. g.: 
[35], [36]), and for flows with circulation (e.g.: [37]) as well. 
 

But the qualitative geometrical analogy was applied in this 
example only for modeling as good as possible the pattern 
of the isentropic surfaces, in order to find a smart intrinsic 
triorthogonal curvilinear coordinate system, for using it as a 
starting point in a subsequent quantitative study applying 
the new 2-D velocity quasi-potential theory on the above 
surfaces, for obtaining the searched for physical quantities 
distribution, characterizing this rotational conical flow. 
 

11 The model for unsteady non-isentropic 
flows; the new D. Bernoulli–Lagrange 
first integral; the PDE of the isentropic 
surfaces in the Cartesian coordinate system 
For an unsteady flow, the term ∂V/∂t in the left-hand side 
of the motion equation in section 1 must be considered. 
Taking into account that on a certain “i” isentropic (V, Ω) 
surface, the velocity vector can be written as V = Φi 
(where, now, the velocity “quasi-potential” Φi is a scalar 
function depending not only on ξ, η, or λ, μ, but on t also). 
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After a scalar multiplication of this equation by a virtual 
elementary dR vector in the (V, Ω)i tangent plane, integra-
ting the term ∂(Φi)/∂tdR, one gets the term ∂Φi/∂t (due to 
Schwarz’ theorem on mixed derivatives of the 2nd order): 
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so the first integral for an unsteady (∂V/∂t ≠ 0) and non-
isentropic (Ω ≠ 0) motion is slightly different with respect 
to that for a steady rotational motion, having the form: 
∂Φ/∂t + V2/2 + Ki/( – 1)ρ – 1 = Ci (t)    , 
(Ki is the isentropic constant, Ci(t) is an arbitrary function 
depending on the time t only; both are different from one 
“i” isentropic surface to another) similar to D. Bernoulli–
Lagrange integral in compressible unsteady isentropic 
(irrotational) aero-gasdynamics. In this case, the isentropic 
surfaces cease to be rigid, now becoming time dependent 
(deformable in time – see [4], [5], [7]). Their PDE in the 
Cartesian system can be derived starting from Crocco–
Vászonyi equation (with i0 (t) = 0 – an isoenergetic flow): 
TS = ∂V/∂t + Ω  V 
(see subsections 1.1 and 1.6 in [7]) and equating its right-
hand side to zero. Performing a scalar multiplication 
by a virtual elementary displacement vector dR describing 
the new isentropic (V, Ω) deformable surface, one gets: 
(TdS =) ∂V/∂t·dR + (Ω  V)·dR = 0; (Ω  V)·dR ≠ 0, 
or in expanded form, taking into account that TdS is not a 
total (an exact) differential (1/T being an integrant factor): 
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(11) 

where the expression of the local instantaneous static 
temperature T of the fluid particle is given by D. Bernoulli 
–Lagrange integral for the isoenergetic unsteady flows: 
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For a general flow (i0 ≠ 0), Eq. (11) is valid along the 
“ij” space lines of intersection: (V, Ω)i ∩ (i0 = const.)j . 
The new form of the searched for PDE of the isentropic 
surfaces for an unsteady rotational flow becomes thus: 
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It leads to a particular first integral of Crocco–Vászonyi 
equation, here having Vx = Φi /x; Vy = Φi /y; Vz = Φi /z. 
 

12  Extension of the new model to MHD 
The new intrinsic model of flow can be extended to the 
ideal (inviscid, both fluid and magnetic) and viscous MHD 
(see [38], [39], resp.) of a neutral plasma or a conducting 
liquid, for both steady and unsteady flow. Analogously to 
the before presented cases (see sections 1 and 11), in the 
magneto-plasma dynamics (by plasma we understand 
a mixture of neutral and excited atoms, ions, electrons and 
photons), the general form of the vector differential 
equation of motion (Euler) for (not as usual) an adiabatic 
but non-isentropic flow of a barotropic inviscid electro-
conducting fluid in an external electromagnetic field, 
considering the flow vorticity, is (see [40] – [46], for 
the right-hand side only): 
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where feL is the density of Lorentz electromagnetic force; 
for gases f = 0 (we neglect, even if it is conservative). 
For the left-hand side one usually writes ∂V/∂t + (V)V, 
(except for [45] and [46] – unexploited), with: 
V = (ρaVa + ρ+V+ + ρ–V–)/ρ , where: Va , V+ , V–  are the 
velocities of the components; ρa , ρ+ , ρ– are the densities 
of the components: ρa = nama ; ρ+ = n+m+ ; ρ– = n–m– ; 
ρ = nama + n+m+ + n–m– = ρa + ρ+ + ρ– – plasma density 
(analogously to the case of a mixture of components); 
ma is the mass of a neutral atom (ma = m+ + m–); 
m+ is the mass of the positive ion (a single species); 
m– is the mass of the negative ion or of electron; 
na is plasma concentration in neutral atoms, and, 
respectively (for a three-component neutral plasma): 
n+, n– are the concentrations in positive and negative 
particles (a single species of cations and anions; in the 
case of a quasi-neutral plasma: n+ ≈ n–), all according to 
a simplified model proposed by the author (no collision). 
Therefore the flow (mean) vorticity is given by: 
Ω =   V =   [(ρaVa + ρ+V+ + ρ–V–)/(ρa + ρ+ + ρ–)]; 
H is the strength of the local magnetic field, using the same 
convention of equivalence (see for reference [40] − [43]) to 
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the magnetic induction B (as a rule variable in time), with 
H = 0 (H =   W − a solenoidal field); 
j is the density of the conduction electric current (see 
Maxwell’s 2nd equation in [47]): 
j/k =   H – 1/c·E/t =   H + 1/c2 /t(V  H) ; k = c/4; 
E is the intensity of the local induced electric field (also 
variable in time) in an inertial coordinate system, given by 
Maxwell’s equations: E = 4πρe (Ampère);   E = 
– 1/c·∂H/∂t (Faraday) – a Poincaré–Steklov problem (for 
given ρe and H functions); ρe = e(n+ – n–) is the density 
of electric charges in the fluid medium considered; e is 
the magnitude of the electron charge; c is the light speed 
in a vacuum. The low-frequency Ampère’s law neglects 
the displacement electric current, the density of the 
conduction electric current becoming thus: j = k  H. 
Searching for a steady motion solution we have: ∂V/∂t 
= 0, H being considered an oscillating field, but reaching 
a damped state (constant in time: H/t = 0), so (accor-
ding to   E = 0) E becomes an irrotational field. 
In the non-relativistic theory (V << c), or for a neutral 
(ρe = 0) gas (E = 0, E being a solenoidal field too, and 
also being an irrotational one, E is therefore a harmonic 
field), the term (ρe/ρ)·E can be neglected. 
For a steady but isentropic motion (irrotational – Ω = 0 in 
an ideal fluid – σ → ∞, σ being the electric conductivity 
of the fluid medium) see [48], pp. 94 – 96; this gives a 
D. Bernoulli first integral for some very particular cases 
(H  V; H || V – along the H vector lines and H·V = 
const.); also see [45], [49] – [57]. The MHD problem’s 
exact (partial) solution for an incompressible fluid (ρ = 
ρ0 = const.) is given, e.g., in [57], p.177: V =  H(4πρ)1/2 
(meaning H || V) – the specific MHD version of the 
one-parameter class of the solutions of the “freezing-in” 
(of the lines of force of the magnetic field H into a 
fluid) equation that exists for all hydrodynamic models: 
(V) H = (H) V – for the stationary case. 
Performing a scalar multiplication of the motion equation 
by a certain dR, there are some first integrability cases: 
1. Ω  V = j  H = 0 , meaning either Ω = j = 0 – an 
irrotational (potential) fluid field V, as well magnetic 
field H ; or Ω || V and j || H – (Ω = c1V  and  j = c2H 
– helicoidal (screw) fields) – a mixed Beltrami flow; 
2. Ω  V = (j  H)/cρ , meaning that vectors V, Ω, H and j 
are coplanar, also being satisfied the sense and modulus 
conditions for the vector products – a very particular case; 
3. dR coplanar with both the pairs (V and Ω) and (H and 
j); for all the considered special (but usual) cases, there 
are some lines (space curves) along which an elementary 
vector dR is coplanar with both the vectors V and Ω – 
contained in the plane tangent to the 0-work sheet of the 
(Ω  V) elementary force (dR  (V, Ω)) and the vectors 
H and j – contained in the plane tangent to the 0-work 
sheet of the Lorentz electromagnetic force (dR  (j, H)), 
it being directed upon the local intersection straight line of 

the two tangent planes above, with the particular subcase: 
3.1. Ω = 0 (an irrotational flow), when dR must be 
coplanar with H and j. The general case 3 leads to 
Selescu’s magnetohydrodynamic vector lines, defined by: 
dR || $, where $ ≡ (V, Ω) ∩ (H, j) ≡ (Ω  V)  (j  H) . 
The dimension of its modulus is [|$|] = (m/s2)·(A2/m) = (A/s)2. 
Along these space lines both V and H vector fields become 
potential (gradients): V = Φ and H = Ξ, for j = k  H. 
But the most general case for which the product 
[(Ω  V) + 1/(cρ)·(H  j)]·dR = N′·dR 
(a virtual elementary work) becomes zero is: 
4. dR contained in a local plane normal to the vector 
Ω  V + 1/(cρ)·(H  j) = N1 – 1/(cρ)·N2 = N′    , the 
envelope sheet of the local normal planes above being 
the most general 0-work sheet for the sum N′ between the 
(Ω  V) elementary force density (N1) and the Lorentz 
one (– N2/cρ), work made with a virtual dR elementary 
displacement, therefore satisfying the condition: 
N′·dR = 0   (defining Selescu’s surfaces), where: 
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The ODEs of the intersection curves of the 0-work 
sheets of (Ω  V) force density with the 0-work sheets 
of Lorentz force density, lines on which lies the searched 
for dR || $ (Selescu’s MHD vector) are therefore in the 
Cartesian and resp. in the intrinsic coordinate system: 
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(“Selescu’s curves”, along which the motion equation for 
an adiabatic but non-isentropic steady flow of a barotropic 
inviscid electroconducting fluid in an external magnetic field 
admits a first integral), these rigid lines being very similar 
(regarding their properties) to D. Bernoulli’s – (V, Ω) rigid 
surfaces and lying on these ones. In the Cartesian system 
(with A1, B1, C1, A2, B2, C2 and ρ – given functions of x, y, 
z), one obtains the ODE of Selescu’s surfaces in the form: 
[A1 – A2/(cρ)]dx + [B1 – B2/(cρ)]dy + [C1 – C2/(cρ)]dz = 0 . 
Over these surfaces the unsteady motion equation becomes: 
∂V/∂t·dR + d(V2/2) = – d(gz) – dp/ρ. Over the (V, Ω) 
surfaces: V = Φ . Along their intersection lines one gets 
a D. Bernoulli–Lagrange integral (like that in section 11). 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 13 Volume 9, 2014



13  Conclusions and remark 
The original contribution of this work to the state of the art 
consists in finding new first integrability cases for: 
 

1. Crocco’s equation, obtaining the first integrals: 
S = S0i (isentropic – section 8); S = (n – γ)/(n – 1)·CvlnT|i 
(polytropic – section 6), and S = ∫[f(T)/T]·dT = f1(T) 
(more general); for the most general one see the remark. 
 

2. the motion equation, for a rotational steady flow of 
an inviscid compressible fluid (with f = 0), introducing a 
large family of special integral surfaces, and not always 
eliminating the rotational non-conservative term: 
(Ω  V)·dR = TdS . TS being a biscalar vector field, 
the term  TdS = TS·dR  over these surfaces is always 
conservative – a total (an exact) differential dF , but 
finding its first integrals from the geometrical point of 
view is more difficult than it seems at the first sight. Unlike 
the already known “term-by-term” integrability case of the 
motion equation, obtained by introducing the isentropic 
surfaces – a very particular case ( n = γ ) of the polytropic 
ones (having TdS = (n – γ)/(n – 1)·CvdT – the most general 
case of special integral surfaces), the integrability cases for 
this term and for the motion equation (on the special inte-
gral surfaces) show a “quasi-barotropic” fluid behavior. The 
integration is performed by two leaps: first, using Crocco’s 
equation, the non-conservative vector Ω  V becomes bisca-
lar, TS , and further, over the polytropic surfaces  p/ρn = 
(p/ρn)i = K1i , it becomes conservative. Thus the conservativity 
is not an immovable quality of a vector. Any special inte-
gral surface can be a multi-sheet surface, cutting the isen-
tropic ones. The same integrability problem occurs with the 
non-conservative term dp/ρ (originating from the biscalar 
vector p/ρ) – always conservative also, but evidenced as a 
conservative one over the same special integral surfaces only. 
Finally, we can classify these surfaces, from the viewpoint of 
TdS term structure (increasing its generality degree) as follows: 
a. TdS = 0 , meaning dS = 0, with two interesting interpreta-
tions: a1. physical (fluido-thermodynamic); a2. mathematical; 
a1. S = S0i = const.(i) – isentropic surfaces (dR  S or 
S·dR = 0 – the most productive ones regarding the new 
model of flow, covering the cases of unsteady flow and of 
a viscous Newtonian compressible fluid flow also). For the 
inviscid fluid (Euler) they contain the streamline and the 
vortex line passing through the flow point considered; 
finding the isentropic surfaces is a very difficult procedure; 
a2. dS/dζ = 0 – extrema (S = Smax ; S = Smin ) and 
horizontal inflexion surfaces, meaning those isentropic 
surfaces over which the continuous function S reaches its 
extreme values (both relative and absolute maxima and 
minima with respect to the strictly increasing variable  ) on 
the whole flow field. These values serve as delimiters for the 
monotony intervals of S (not always an increasing function 
with respect to  ), in order to introduce the smart intrinsic 
triorthogonal curvilinear coordinate system tied to the isentropic 
surfaces, this assuming we must know the function S = S(); 

b. T = T1i = const.(i) , and thus: TdS = const.·dS – 
isothermal & isotachic surfaces (dR  T or T·dR = dT 
= 0)  (dR  V or V·dR = dV = 0 , therefore the 
term isotachic refers to the velocity modulus V only); 
c. TdS = (n – γ)/(n – 1)·CvdT and so: TdS = const.·dT – 
general polytropic surfaces (dR  (p/ρn) or (p/ρn)·dR 
= 0), including the isentropic, isothermal & isotachic, 
isobaric and isochoric ones, for various values of n 
 [0, ∞). So, for: n = γ; 1; 0; and → ∞, one obtains the: 
isentropic; isothermal & isotachic; isobaric (dR  p 
or p·dR = 0); and isochoric (dR  ρ or ρ·dR = 0) 
virtual integral surfaces, respectively, as particular cases of 
the general polytropic ones (a “quasi-barotropic” fluid). 
Any barotropic virtual evolution of an ideal gas may be 
regarded as being composed of a lot of successive elemen-
tary polytropic evolutions. Along the intersection lines of 
the isentropic surfaces with the isochoric ones, the fluid has 
an isobaric and isothermal & isotachic behavior also (a 
“quasi-uniform potential” virtual flow of a “quasi-incom-
pressible” fluid, these Laplace lines cutting the streamlines). 
A rich nomenclature was introduced in fluid mechanics 
and in MHD – the special virtual integral surfaces for 
the motion equation of an inviscid compressible fluid 
in steady rotational flow: particular cases of the general 
polytropic one, and Selescu’s magnetohydrodynamic 
vector $ and its vector lines and Selescu’s MHD surfaces. 
Remark (a short discussion – mathematically only): 
L = TS (= Ω  V) being a biscalar vector, has the 
property: L·(  L) = 0, or: TS·[  (TS)] = 0; (T 
≠ 0), or: (Ω  V)·[  (Ω  V)] = 0, so that V must be 
a solution of vector equation below (with Ω =   V): 
[(  V)  V]·  [(  V)  V] = 0 for both Crocco’s 
and motion equations (the general integrability condition, 
covering the cases 1 – 3 and G (Ω  V = F and thus 
  (Ω  V) = 0) from section 2, the potential field being 
a particular form of a biscalar one – for Φ1 = const. in the 
definition from section 2 (polytropic sheets); performing 
a scalar multiplication of the (Ω  V = 0) condition by a 
virtual elementary dR  (V, Ω) plane (dR = c1V + c2 Ω), 
one also gets the case 4 (isentropic sheets) from section 2 
(all these cases from a geometrical point of view). 
More, one finds the case: [  (Ω  V)]  (Ω  V). The 
same analysis may be performed from a thermodynamic 
point of view:  TS·[  (TS)] = 0 , noticing that: 
  (TS) = T  S , and getting similar results. 
Additionally, the biscalar vector L1 = p/ρ in the motion 
Eq. (1) has an analogous property: p/ρ·[  (p/ρ)] = 0, 
noticing that:    (p/ρ) = (1/ρ)  p , representing 
the case 6 (isobaric surfaces p = 0) from section 2; 
p/ρ = F1 – a potential field (F1 being a scalar function 
and F1 a gradient – a conservative vector field), and 
thus:    (p/ρ) = 0  (a barotropic fluid, or flow’s 
polytropic sheets of a non-barotropic fluid), representing 
the case 8 in section 2; and   (p/ρ)  p (a new case). 
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In order to integrate the motion Eq. (1) both conditions 
L·(  L) = 0 above must be concurrently satisfied. 
This can be reached along some intersection space lines 
(representing a trivial solution), or over the polytropic 
sheets of a non-barotropic fluid. One notices that, for an 
isoenergetic flow, Eq. (1) can be written as: TS + p/ρ = 
– (V2/2) = F2 (F2 = i – the static specific enthalpy) – a 
potential field. The same result can be obtained applying 
the curl in Eq. (1) (thus eliminating V):   (TS + p/ρ) 
= 0, leading to: TS + p/ρ = F2 = i (with i = CpT). 
One gets further:   (TS) +   (p/ρ) = 0, or more: 
T  S + (1/ρ)  p = 0, or: T  S = p  τ, 
meaning the vectors T, S, p and τ are coplanar, 
also being satisfied the sense and modulus conditions for 
the vector products (both directed along the tangent to 
the space line of intersection of the (T, S) and (p, τ) 
surfaces, having the same modulus and sense), or: the 
normals to the isothermal, isentropic, isobaric and 
isochoric sheets passing through any flow’s point are 
coplanar (a remarkable geometrical property), except for 
the cases of isentropic, isothermal and general polytropic 
sheets, with: S = 0, T = 0 and TS = F, all leading to: 
T  S = 0; another exception occurs over the isobaric, 
isochoric, and general polytropic sheets, with: p = 0, 
τ = 0 and τp = F1 , all leading to: p  τ = 0. 
Unlike the previous biscalarity relations for the vectors 
L = TS (= Ω  V) and L1 = p/ρ = τp, (implying the 
separate irrotationality of these fields:   L = 0 and 
  L1 = 0, as particular cases of: L·(  L) = 0 and 
L1·(  L1) = 0: L = F and L1 = F1 ), the last relation 
(found applying the curl to Eq. (1)) gives a compulsory 
irrotationality of the vector sum (not a particular case): 
  (L + L1 ) = 0 , and thus: L + L1 = F2 , no longer 
satisfying the integrability condition for Crocco’s equation, 
so that both terms of this vector sum are not conservative,  
this being the main difference with respect to the “term-
by-term” integration for the motion equation given in 
section 2 (valid over flow’s polytropic surfaces, while the 
integration as a whole is valid in the entire fluid mass). 
But if L = F (a potential field, requested by Crocco’s 
equation, as a particular case of integration), one gets: 
L1 = F2 – L = (F2 – F) = F1 , also a potential field. 
Therefore both L and L1 are potential vector fields (over 
the polytropic sheets of a non-barotropic fluid – section 2). 
 

The purpose of this paper is not do deal with the most 
general case of first integrability for the motion equation, 
but with the cases derived from the integral of Crocco’s 
equation only (as it was specified in the title), taking into 
account the advantages offered by this special treatment. 
 

Note 
This paper (the first in a series dedicated to the intrinsic 
analytic study of the basic equations in compressible fluid 
mechanics) is fully original, however having as starting 

point other ones with almost the same title ([58], [4] – [8]). 
 

Acknowledgements 
The author is fully indebted to some world renowned 
scientists in the theoretical mechanics of inviscid fluid: 
Daniel Bernoulli ([59]), Leonhard Euler ([60], [61]), 
Joseph-Louis Lagrange ([62] – [64]), Hermann von 
Helmholtz ([1]), Ippolit Stepanovich Gromeka ([65]), 
Horace Lamb ([66], [67]), Ernst Mach, Ludwig Prandtl, 
Theodor Meyer, Adolf Busemann, Geoffrey Ingram 
Taylor, J. W. Maccoll, Antonio Ferri, and especially 
to: Luigi Crocco, Andrew Vázsonyi, Adolf Steichen, 
Henri Poincaré and Victor Vâlcovici, for their extremely 
valuable physical & mathematical theories, serving as 
starting ideas in the elaboration of this work and of the 
two related ones (about the continuity, flow rate, vorticity, 
“magnetic induction”, and velocity potential equations). 
As regards the extension of the new model to MHD, 
this indebtedness addresses to: Hans Christian Ørsted, 
André-Marie Ampère, James Prescott Joule, Heinrich 
Lenz, Edwin Hall, Hendrik Lorentz, Michael Faraday, 
James Clerk Maxwell, Oliver Heaviside, Heinrich Hertz, 
Joseph Larmor and Hannes Alfvén. 

 
References: 
[1] H. v. Helmholtz: On the Integrals of Hydrodynamic 
Equations to which Vortex Motions conform (in German: 
Über Integrale der hydrodynamischen Gleichungen, 
welche den Wirbelbewegungen entsprechen, Journal für 
die reine und angewandte Mathematik (Crelle’s Journal), 
Vol. 55, pp. 25 – 55, 1858); a rough English translation 
by P. G. Tait in “Philosophical Magazine and Journal of 
Science”, Supplement to Vol. 33, Fourth Series, 18??. 
[2] L. Crocco: Eine neue Stromfunktion für die 
Erforschung der Bewegung der Gase mit Rotation, 
Z.A.M.M. (Zeitschrift für angewandte Mathematik 
und Mechanik), 17, 1, S. 1 – 7, 1937; (also in Rendiconti 
dell’Accademia Nazionale dei Lincei, 23, pp. 115 – , 1936). 
[3] A. Vászonyi: On rotational gas flow, Quarterly 
of Applied Mathematics, 3, pp. 29 – 37, 1945. 
[4] R. Selescu: An intrinsic study on a certain isoener- 
getic flow of a compressible fluid, with extension to 
some cases in magneto-plasma dynamics, Nonlinear 
Analysis; Theory, Methods & Applications; Series A: 
Theory and Methods, doi:10.1016/j.na.2008.12.015, 
Vol. 71, Issue 12, December 2009, pp. e872 – e891, 
Elsevier Science Ltd, (Proceedings of the 5th World 
Congress of Nonlinear Analysts – WCNA ’08, Orlando, 
Florida, U.S.A., July 2 – 9, 2008); also see the hyperlink: 
http://www.sciencedirect.com/science?_ob=ArticleU
RL&_udi=B6V0Y-4V47C9M-1&_user=10&_rdoc= 
1&_fmt=&_orig=search&_sort=d&view=c&_acct=
C000050221&_version=1&_urlVersion=0&_userid=
10&md5=ab73509e23e1e72cf7e3aa26f6c6e227. 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 15 Volume 9, 2014



[5] R. Selescu: An Intrinsic Study on a Certain Flow 
of an Inviscid Compressible Fluid, with Extension to 
Some Cases in Magneto-Plasma Dynamics; Part One 
– The Isentropic Surfaces and their Applications in 
Aerogas-dynamics, in “New Aspects of Fluid Mechanics 
and Aerodynamics” – Proceedings of the 6th IASME/ 
WSEAS International Conference FMA ’08, Ixia, 
Rhodes, Greece, August 20 – 22, 2008, pp. 271 – 276, 
WSEAS Press, Stevens Point, Wisconsin, U.S.A.; 
also see the hyperlink: http://www.wseas.us/e-library/ 
conferences/2008/rhodes/fma/fma41.pdf; 
BEST PAPER of the Conference; see “Prof.htm” at: 
http://www.wseas.us/reports/2008/best2008.htm. 
[6] R. Selescu: An Intrinsic Study on a Certain Flow of 
a Viscous Compressible Fluid, with Extension to Some 
Cases in Magneto-Plasma Dynamics; Part One – The 
Isentropic and 0-Work Surfaces and their Applications in 
Aerodynamics, in “Computers and Simulations in Modern 
Science – Volume II” – Selected Papers from some 
WSEAS Conferences in 2008 (a post-conference book), 
pp. 89 – 93, WSEAS Press, Stevens Point, Wisconsin, 
U.S.A; also see the hyperlink: http://www.wseas.us/e-
library/conferences/2008/tomos2/papers/vol00.pdf. 
[7] R. Selescu: Intrinsic analytic study on an isoenergetic 
flow of a compressible fluid; Part 1: “Isentropic” 
and “zero-work” surfaces in aero-gas dynamics, in 
Proceedings of the XXXIInd “Caius Iacob” Conference 
on Fluid Mechanics and its Technical Applications – 
INCAS, Bucharest, Romania, October 16 – 17, 2009, 
pp. 224 – 238, INCAS “Elie Carafoli”, 2009; also see: 
http://www.incas.ro/images/stories/english/news/Pro
ceedings__Caius_Iacob_Internet_15_Ian%20.pdf. 
[8] R. Selescu: New first integrals for the motion 
equation; The vortex equation; The continuity 
equation; Its first integral: the flow rate equation, in 
Proceedings of the XXXIIIrd “Caius Iacob” Conference 
on Fluid Mechanics and its Technical Applications – 
INCAS, Bucharest, Romania, September 29 – 30, 2011, 
pp. 253 – 273, INCAS “Elie Carafoli”, 2011; also see: 
http://www.incas.ro/images/stories/Caius_Iacob_2011/
Volume_Proceedings_Caius_Iacob_2011_internet.pdf. 
[9] H. Poincaré: Théorie des tourbillons, Georges 
Carré, Paris, 1893; (also: Jacques Gabay, Sceaux, 1990). 
[10] P. É. Appell: Traité de mécanique rationnelle, tome 
III, 3-ième éd., p. 410, Gauthier-Villars, Paris, 1921. 
[11] B. Segre: in Annali di Matem., 1, pp. 31 – 55, 1924. 
[12] B. Caldonazzo: in Rendiconti dell’Accademia 
Nazionale dei Lincei, 33, pp. 396 – 400, 1924. 
[13] B. Caldonazzo: in Rendiconti dell’Accademia 
Nazionale dei Lincei, IV, pp. 124 – 126, 1926. 
[14] B. Caldonazzo: in Bollettino dell’Unione Matematica 
Italiana, IV, pp. 1 – 3, 1925. 
[15] B. Finzi: in Rendiconti dell’Accademia Nazionale 
dei Lincei, VI, pp. 236 – 241, 1925. 
[16] B. Finzi: in Rendiconti del Circolo Matematico 

di Palermo, 51, pp. 1 – 24, 1927. 
[17] U. Cisotti: in Rendiconti dell’Accademia Nazionale 
dei Lincei, VI, pp. 612 – 617, 1925. 
[18] U. Cisotti: in Bollettino dell’Unione Matematica 
Italiana, II, p. 125, 1923. 
[19] A. Masotti: in Rendiconti dell’Accademia Nazionale 
dei Lincei, V, pp. 985 – 989, 1927. 
[20] A. Masotti: in Rendiconti dell’Accademia Nazionale 
dei Lincei, VI, pp. 224 – 228, 1927. 
[21] A. Masotti: in Rendiconti del Circolo Matematico 
di Palermo, 52, pp. 313 – 330, 1928. 
[22] V. Vâlcovici: Asupra mişcării turbionare a fluidelor 
barotrope, Bul. ştiinţ. Acad. R. P. R., Secţiunea de ştiinţe 
mat. şi fiz., IV, 3, pp. 541 – 545, 1952; (also in: “Opere”, 
vol. II, pp. 251 – 254, Editura Academiei, Bucureşti, 1971). 
[23] V. Vâlcovici: Liniile de curent şi liniile de vârtej 
în mişcarea permanentă a unui fluid ideal, barotrop, 
Bul. ştiinţ. Acad. R. P. R., Secţiunea de ştiinţe mat. 
şi fiz., V, 1, pp. 147 – 152, 1953; (also in: “Opere”, 
vol. II, pp. 263 – 271, Editura Academiei, Bucureşti, 1971). 
[24] V. Vâlcovici: Sur le mouvement des fluides 
barotropes, Rend. dell’Accad. Naz. dei Lincei, XII, 
série VIII, 21, 5, pp. 288 – 296, 1956; (also in: “Opere”, 
vol. II, pp. 272 – 282, Editura Academiei, Bucureşti, 1971). 
[25] V. Vâlcovici: Bernoulli’s surfaces, Revue Roumaine 
des Sciences Techniques, série de mécanique appliquée, 
VI, 1, pp. 5 – 32, 1961; (also in Romanian, in: “Opere”, 
vol. II, pp. 283 – 314, Editura Academiei, Bucureşti, 
1971, entitled: Suprafeţele Bernoulli). 
[26] L. Dragoş: Sur un mouvement fluide barotrope, 
Rendiconti dell’Accademia Nazionale dei Lincei, 
XXIV, pp. 142 – 148, 1958. 
[27] Cl. Ionescu-Bujor: Étude intrinsèque des 
écoulements permanents et rotationnels d’un fluide 
parfait, Thèse présentée à la Faculté des Sciences de 
l’Université de Paris, 1961. 
[28] R. Selescu: Getting the General ODE of the 
Velocity Potential for any Conical Flow; Part Two: 
The ODE of the Velocity Quasi-Potential for the 3-D 
Conical Flows, in “Mathematical Problems in 
Engineering & Aerospace Sciences” – Proceedings of 
the 6th International Conference on Nonlinear Problems 
in Aviation and Aerospace Sciences (ICNPAA) – 
Budapest, Hungary, June 21 – 23, 2006”, pp. 749 – 
757, Cambridge Scientific Publishers, Cottenham, 
Cambridge, U.K., 2007; one can see the abstract at: 
http://atlas-conferences.com/c/a/s/p/62.htm. 
[29] A. Steichen: Beiträge zur Theorie der zweidimen-
sionalen Bewegungsvorgänge in einem Gase, das mit 
Überschallgeschwindigkeit strömt, Doctoral dissertation, 
“Georg August” University, Göttingen, Germany 
(German Empire), 1909. 
[30] R. Selescu: The Velocity Potential PDE in a 
Certain Curvilinear Coordinate System, in “Advances in 
Fluid Mechanics & Heat & Mass Transfer”, including: 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 16 Volume 9, 2014



Proceedings of the 10th WSEAS International Conference 
on Heat Transfer, Thermal Engineering and Environment 
(HTE ’12); Proceedings of the 10th WSEAS International 
Conference on Fluid Mechanics & Aerodynamics 
(FMA ’12), Istanbul, Turkey, August 21 – 23, 2012, 
pp. 305 – 310, WSEAS Press, Stevens Point, Wisconsin, 
U.S.A.; also see the hyperlink: www.wseas.us/e-library/ 
conferences/2012/Istanbul/FLUHE/FLUHE-48.pdf. 
[31] R. Selescu: Getting the General ODE of the 
Velocity Potential for any Conical Flow; Part One: 
The Coordinate System and the First Integrable 
Continuity Equation, in “Mathematical Problems in 
Engineering & Aerospace Sciences” – Proceedings of 
the 6th International Conference on Nonlinear Problems 
in Aviation and Aerospace Sciences (ICNPAA) – 
Budapest, Hungary, June 21 – 23, 2006”, pp. 729 – 
739, Cambridge Scientific Publishers, Cottenham, 
Cambridge, U.K., 2007; one can see the abstract at: 
http://atlas-conferences.com/c/a/s/p/61.htm. 
[32] A. Ferri: Supersonic Flow Around Circular Cones, 
NACA TN, No. 2236, 1950. 
[33] A. Ferri: Supersonic Flow Around Circular Cones 
at Angles of Attack, NACA Report, No. 1045, 1951. 
[34] B. M. Bulakh: Nonlinear Conical Flow (in Russian: 
Nelinejnye konicheskie techenija gaza, Nauka, Moscow, 
1970, 344 pp), English translation by J. W. Reyn and W. J. 
Bannink, Delft University Press, 1985, 326 pp; [other 
English translation: Nonlinear Conical Flows of Gas, 
FTD-ID (Foreign Technology Division), WP-AFB (Wright 
Patterson Air Force Base, Air Force Systems Command), 
mil., Ohio, U.S.A., 1978, 572 leaves]. 
[35] N. A. Slezkin: On the Problem of a Gas Plane 
Motion; in Russian: K zadachi ploskogo dvizhenija 
gaza, Trudy NGM, 1935; DAN (Doklady Akademii 
Nauk) SSSR, Ser. LX, Vol. 3, No. 9, 1936. 
[36] H. S. Tsien: in Journ. Aer. Sci., Vol. 6, No. 10, 1939. 
[37] G. C. Lin: in Quart. of Appl. Mathem., Vol. 4, 
p. 291, 1946. 
[38] R. Selescu: An Intrinsic Study on a Certain Flow 
of an Inviscid Compressible Fluid, with Extension to 
Some Cases in Magneto-Plasma Dynamics; Part Two 
– An Extension to Some Special Cases in Magneto-
Plasma Dynamics, in “New Aspects of Fluid Mechanics 
and Aerodynamics” – Proceedings of the 6th IASME/ 
WSEAS International Conference FMA ’08, Ixia, 
Rhodes, Greece, August 20 – 22, 2008, pp. 277 – 282, 
WSEAS Press, Stevens Point, Wisconsin, U.S.A.; 
also see the hyperlink: http://www.wseas.us/e-
library/conferences/2008/rhodes/fma/fma42.pdf. 
[39] R. Selescu: An Intrinsic Study on a Certain Flow 
of a Viscous Compressible Fluid, with Extension to Some 
Cases in Magneto-Plasma Dynamics; Part Two – An 
Extension to Some Special Cases in Magneto-Plasma 
Dynamics, in “Recent Advances in Mathematical and 
Computational Methods in Science and Engineering –

Part II” – Proceedings of the 10th WSEAS International 
Conference MACMESE ’08, “Politehnica” University 
of Bucharest, Romania, November 7 – 9, 2008, pp. 438 
– 443, WSEAS Press, Stevens Point, Wisconsin, U.S.A.; 
also see the hyperlink: http://www.wseas.us/e-library/ 
conferences/2008/bucharest2/macmese/macmese79.pdf. 
[40] L. Sédov: Mécanique des milieux continus, tome I, 
Éditions Mir, Moscou, 1975; in Russian: Mekhanika 
sploshnoĭ sredy, 3-e izd., Izdatel’stvo Nauka, Moscow, 
1976. 
[41] L. Landau, E. Lifshitz: Electrodynamics of 
Continuous Media, Pergamon Press, New York, 1960; 
[also: Physique théorique, tome VIII (Électrodynamique 
des milieux continus), Éditions Mir, Moscou, 1969.] 
[42] L. D. Landau, E. M. Lifshitz, L. P. Pitaevskiĭ: 
Electrodynamics of Continuous Media, 2nd edition 
revised and enlarged by E. M. Lifshitz and L. P. 
Pitaevskiĭ (Landau and Lifshitz Course of Theoretical 
Physics Volume 8), translated from the second edition of 
Elektrodinamika sploshnykh sred, Izdatel’stvo Nauka, 
Moscow, 1982 (translation from the Russian by J. B. 
Sykes, J. S. Bell and M. J. Kearsley), Elsevier, 2004. 
[43] B. Yavorsky, A. Detlaf: Handbook of Physics, 
second edition, Mir Publishers, Moscow, 1975; (also 
Aide-mémoire de physique, 5-ième édition, Éditions 
Mir, Moscou, 1986.) 
[44] R. V. Deutsch, Unde magnetohidrodinamice, 
Editura Academiei, Bucureşti, 1969. 
[45] Cl. Ionescu-Bujor, Introducere în studiul intrinsec 
al clasei mişcărilor permanente ale plasmei perfecte 
într-un cîmp magnetic staţionar; Partea I: Introducerea 
sistemului redus de ecuaţii, Stud. şi cerc. de mec. apl., 
XIV (3), pp. 537 – 557, 1963. 
[46] R. V. Deutsch, Teoria magnetohidrodinamică în 
fizica plasmei, Editura Academiei, Bucureşti, 1966. 
[47] J. C. Maxwell: A Treatise on Electricity and 
Magnetism, Clarendon Press, Oxford, 1873 (third 
edition 1891); (also in two volumes at Courier Dover 
Publications, New York, 1954). 
[48] L. Dragoş, Magnetodinamica fluidelor, Editura 
Academiei, Bucureşti, 1969; also: Magnetofluid 
Dynamics, Editura Academiei, Bucureşti – Abacus 
Press, Tunbridge Wells, Kent, England, 1975. 
[49] P. Smith, The steady magnetodynamics flow of 
perfectly conducting fluids, J. Math. Mech., 12, pp. 
505 – 520, 1963. 
[50] P. Germain, Introduction à l’étude de 
l’aéromagnétodynamique, Cah. Phys., 13, p. 103, 1959. 
[51] P. Germain, Sur certains écoulements d’un fluide 
parfaitement conducteur, La Rech. Aéro., 74, pp. 13 
– 22, 1960. 
[52] H. Grad, Reducible problems in magneto-fluid 
dynamic steady flows, Rev. Mod. Phys., 32, pp. 830 – 
847, 1960. 
[53] Y. Kato, T. Taniuti, Hydromagnetic plane steady 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 17 Volume 9, 2014



flow in compressible ionized gases, Progress Theor. 
Phys., 21, pp. 606 – 612, 1959. 
[54] I. Imai, General principles of magneto-fluid 
dynamics, Progress Theor. Phys. Suppl., 24, pp. 1 – 
34, 1963. 
[55] G. Power, D. Walker, Plane gasdynamic flow 
with orthogonal magnetic and velocity field 
distribution, ZAMP, 16, pp. 803 – 816, 1965. 
[56] Ya. B. Zel’dovich, A. A. Ruzmaikin, Nonlinear 
problems of turbulent dynamo, article no. 5 in “Nonlinear 
Phenomena in Plasma Physics and Hydrodynamics”, 
Mir Publishers, Moscow, pp. 119 – 136, 1986. 
[57] R. Z. Sagdeev, S. S. Moiseev, A. V. Tur, V. V. 
Yanovskiĭ, Problems of the theory of strong turbulence 
and topological solitons, article no. 6 in “Nonlinear 
Phenomena in Plasma Physics and Hydrodynamics”, 
Mir Publishers, Moscow, pp. 137 – 182, 1986. 
[58] R. Selescu: New First Integrals for the Motion 
Equation; The Vortex Equation, in “Advances in 
Fluid Mechanics & Heat & Mass Transfer”, including: 
Proceedings of the 10th WSEAS International Conference 
on Heat Transfer, Thermal Engineering and Environment 
(HTE ’12); Proceedings of the 10th WSEAS International 
Conference on Fluid Mechanics & Aerodynamics 
(FMA ’12), Istanbul, Turkey, August 21 – 23, 2012, 
pp. 293 – 298, WSEAS Press, Stevens Point, Wisconsin, 
U.S.A.; also see the hyperlink: www.wseas.us/e-library/ 
conferences/2012/Istanbul/FLUHE/FLUHE-46.pdf. 
[59] D. Bernoulli: Hydrodynamica, sive de viribus et 
motibus fluidorum commentarii, Argentoratum 

(Strasbourg), published by Johann Heinrich Decker, for 
Johann Reinhold Dulsecker, Kingdom of France, 1738. 
[60] L. Euler: Principes généraux du mouvement des 
fluids, Hist. de l’Acad. Sci. de Berlin, pp. 274 – 315, 
Berlin, Kingdom of Prussia, 1755. 
[61] L. Euler: De principiis motus fluidorum, Novi 
Comm. Acad. Sci. Petrop., XIV, 1, Saint Petersburg, 
Russian Empire, 1759. 
[62] J. L. Lagrange: in “Miscellanea Taurinensia”, II, 
Turin, Kingdom of Piedmont – Sardinia, 1760; (also in: 
“Oeuvres”, vol. I, Gauthier-Villars, Paris, 1867 – 1892). 
[63] J. L. Lagrange: Mémoire sur la Théorie du 
Mouvement des Fluides, in “Nouv. Mém. de l’Acad. de 
Berlin”, Berlin, Kingdom of Prussia, 1781; (also in: 
“Oeuvres”, vol. IV, pp. 695 – 748, Gauthier-Villars, 
Paris, 1867 – 1892). 
[64] J. L. Lagrange: Mécanique Analitique, Desaint, 
Paris, 1788; (also: eds. J. P. M. Binet and J. G. Garnier, 
publisher Ve Courcier, 1811; Jacques Gabay, Sceaux, 
1989; reissued by Cambridge University Press, 2009). 
[65] I. S. Gromeka: Some Cases of Incompressible 
Fluid Flow (in Russian), Kazan, Russian Empire, 
1881; reprinted in: “Collected Works” (in Russian), 
USSR Academy of Sciences, Moscow, 1952, p. 76. 
[66] H. Lamb: A Treatise on the Mathematical Theory 
of the Motion of Fluids, Cambridge University Press, 
1879. 
[67] H. Lamb: Hydrodynamics, 1895; sixth edition, 
1932, Cambridge University Press; (also at Dover 
Publications, New York, 1945). 

WSEAS TRANSACTIONS on FLUID MECHANICS Richard Selescu

E-ISSN: 2224-347X 18 Volume 9, 2014




