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Abstract - The paper is aimed at mathematical modeling of flows in porous medium. The 

results are compared with model experiments performed under microgravity conditions. Numerical 
investigations of the instability in displacement of viscous fluid by a less viscous one in a two-
dimensional and three-dimensional geometry were carried out. The effect of the three-dimensional 
phenomena on instability growth was investigated. 
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1. Introduction 
 

The background for the performed research 
is the following. Dimensions analysis of the 
governing system of equations shows that 
surface tension relevant effects turn to be 
essential in the momentum equations for small 

Bond numbers: Cm = (ρ1 − ρ2 )gr*
2

σ 12

. Thus, to 

measure the capillary forces accurately one 
needs to reduce the Bond number Cm  as much 
as possible. It could be done by various means: 
decreasing the density difference (ρ1 − ρ2 ) , 
increasing the surface tension ( 12σ ), 
decreasing the pore size(r) and decreasing the 
gravity acceleration (g). The first three groups 
of parameters are those characterising the 
media under investigation. Thus, these 
parameters could not be varied arbitrary. The 
last of the parameters – g  – characterises the 
environment for the experiment. It could be 
varied without affecting the media properties. 

Microgravity environment provides a unique 
possibility to reduce the Cm  parameter 

practically as low as necessary to get the 
needed accuracy of measurements. Besides, 
using the microgravity environment one can 
essentially increase the characteristic pore size 
r*  to study the microscopical capillary 
processes, maintaining the small value of the 
capillary microgravity parameter Cm . 

The problem is relevant to a 
hydrocarbon recovery, which is performed by 
the flow of gas under a pressure differential 
displacing the high viscosity fluid. Entrapment 
of high viscosity fluid by the low viscosity 
fluid flow lowers down the quality of a 
hydrocarbon recovery leaving the most of 
viscous fluid entrapped thus decreasing the 
production rate. The developed models and 
obtained results are applicable to description 
of liquid non-aqueous phase contaminants 
underground migration, their entrapment in the 
zones of inhomogenity, and forecasting the 
results of remediatory activities in the 
vicinities of waste storages and contaminated 
sites.  

Experimental investigations were performed 
using artificial porous medium. The artificial 
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porous medium was composed of glass 
spheres. This type of a medium preserves all 
the characteristic features of the natural porous 
medium and allows direct optical registration 
of flow peculiarities.  

The motivation to develop the present 
theoretical approach to capillary driven 
filtration modelling was the following. The 
widely used generalised Darcy law and 
capillary seepage equations[1-3] are based on 
the assumption of local equilibrium phase 
distribution in an elementary volume of a 
porous medium. In particular, it is assumed 
that: (1) the effect of viscous drag and inertia 
on phase distribution in pores is negligibly 
small being compared with capillary forces 
action; (2) each phase is moving in its own 
system of pore channels and interaction 
between fluid phases could be neglected in 
comparison with the interaction between fluids 
and the skeleton; (3) all the changes of 
saturation take place in a quasi-static 
equilibrium way and are independent on the 
flow regime. But usually in the flows of two 
immiscible fluids in a porous medium, the 
non-equilibrium phenomena caused by the 
delay of establishing the equilibrium phase 
distribution after a saturation change, are of no 
less importance than the direct influence of 
viscous forces [1]. Establishing equilibrium 
phase distribution demands a certain time 
interval, which depends on the processes 
taking place in a “macroscopically small” 
volume (an ultimate degree of space 
discretization permitted in the seepage theory). 
Thus the characteristic time eq

capτ  is introduced 
depending on the discretization scale, which 
separates the slow processes of two-phase 
flow, to which the quasi-equilibrium theory is 
applicable, from the “fast processes”, which 
could be considerably influenced by non-
equilibrium effects. Such non-equilibrium 
processes occur in hydraulic fracturing [4], 
wherein the characteristic time of fracture 
propagation is much less than eq

capτ  [5]. 
Capillary seepage processes in granular beds 

under microgravity conditions were 
investigated in [6-8]. The model introduced 

empirical coefficients to be measured 
experimentally. To provide non-equilibrium 
conditions experiments on capillary driven 
imbibition under microgravity were performed 
[8].  

The present paper gives the coverage of some 
results on capillary driven seepage flows 
porous media incorporating multidimensional 
inhomogeneties. The role of permeability non-
uniformity in determining the mean seepage 
rate in drainage and imbibition is investigated. 

 
2. Mathematical model 
The theoretical model accounting for the 

influence of capillary forces in multiphase 
filtration of immiscible fluids in porous media, 
developed in [7-10] introduced rheological 
relationships to determine the capillary forces. 
The full set of equations for the general case 
can be found in [7,9]. Here we shall use the 
developed model for investigating capillary 
driven filtration in porous media of variable 
properties. We shall assume that there is no 
mass transfer between phases. Then the mass 
and momentum equations for phases have the 
form: 

 

∂α iρi

∂ t
+ div(α iρi

ui ) = 0  i N= 1,...,   (1) 

   

∂α iρi
ui

∂ t
+ div(α iρi

ui
ui ) =

−α igrad( pi ) +α igrad( pci )−α iρi
g + div(


Ji )−


Fij

j=1

N

∑
;  (2) 

and the rheological relationships for the 
introduced notation of averaged capillary 
pressures: 

1 2
*

1

1 ( , , , , ,...),
k kj

N

c j c kj kj kj kj
j

p p rα σ θ χ χ
α =

= ∑    (3) 

where ρ αi i i iu p, , ,  – density, velocity, volume 
fraction, pressure of the i-th phase; g – mass 
forces density; 


Ji – viscous stress tensor; 


Fij – 

forces of phase interactions, incorporating 
microscopical viscous and inertial forces; 

1
kj

kj

c kj S
kj S

p K ds
S

σ= ∫∫  is a capillary tension on 

the interface separating k-th and j-th phases 
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and positive direction of the normal vector to 
the interface is assumed to be from k-th to j-th 
phase thus the sign of mean curvature KS of 
the interface kjS  determining the sign of 
capillary tension (or pressure). 

The positive direction for the introduced 
capillary tension 

kjcp  coincides with the 
external normal vector to an elementary 
interface separating the k-th phase while 
positive pressure gives the tension of the 
opposite orientation npp knk

 −= . Thus due to 
our definitions we have opposite signs in front 
of gradients in the equation (2). 

The rheological investigations [7] showed 
that capillary pressure can be the following 
function: 

1
*( , , , ,... ),

kj

n
c kj kj k kp f rσ θ χ χ=  

where σ kj  – surface tension at the interface, 
separating the k-th and j-th phases; θkj  – 
wetting angle; r*  – characteristic pore size; 
χ χk k

n1 ... – dimensionless parameters 
characterising preimbibition of the solid 
matrix, saturation, shape of the interfaces, etc.; 
θ ϕ ρ ρ µ µ σ χkj kj k j k j kj kj kjr u= ( , , , , , , , )*

  – the 
dynamic contact angle can depend on velocity 
of the contact line viscous and inertial 
properties of fluids, etc. 
The following dimensionless combinations can 
be arranged from the parameters involved: 

Ca k
k kj

kj

u
=

µ
σ

 ;       Ca j
j kj

kj

u
=

µ
σ

 ; 

Wek
k kj

kj

u r
=
ρ
σ

2
*  ;   We j

j kj

kj

u r
=
ρ
σ

2
*  . (4) 

Then the formula (3) can be transformed into 
the relationship of dimensionless parameters: 

* 1( , , , , ,... )kjc n
kj k j k j k k

kj

p r
Ca Ca We We χ χ

σ
⋅

= Ψ      (5) 

Thus, the universal dimensionless functional 
parameter kjΨ  can be introduced as a main 
characteristic determining the capillary forces 
in porous media. Introducing one mean value 

*r  as a characteristic pore size is of course a 

serious simplification as in a real porous 
medium a network of pores is usually 
connected by smaller capillaries distributed in 
a random manner. The capillary pressure in 
smaller capillaries is much larger then the 
average capillary pressure that brings in 
drainage to appearing of irreducible saturation 
of the wetting phase. That should cause 
different behaviour of a wetting fluid capillary 
creeping into dry or preimbibitted unsaturated 
porous media. These effects were detected in 
microgravity experiments on capillary driven 
filtration and discussed in [7]. But introducing 
mean value for the characteristic pore size is 
nevertheless acceptable and rather convenient 
because, the influence of preimbibition can be 
taken into account defining the dimensionless 
Ψ-factor. The characteristic radius will be 
determined as the one for a cylindrical 
capillary providing drag forces similar to that 
in a porous medium under the same flow rate: 

* 2 2r K= . 
The successive derivations will be aimed at 

deriving from the basic conservation equations 
(2) the Darcy formulae for multiphase fluid 
filtration in porous matrix. Usually the Darcy 
equations for multiphase fluid filtration are 
obtained in a different manner ⎯ by 
generalising the Darcy formula derived for one 
fluid [1-3]. Our derivations will make it 
possible to obtain a more accurate form of the 
Darcy equations for multiphase flows and to 
find out actual approximations bounding the 
validity of the existing equations of the 
equilibrium seepage theory. 

The mean forces accounting for phase 
interactions can be determined by the 
following formulae [2,3]: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−−

≠−−
=

jiSuuuuC

jiSuuuuC
F

iisisiifij

ijijiijiifij

ij

;||)(
2
1

;||)(
2
1






ρ

ρ
              (6) 

where Fii is the force due to the interaction of 
the i-th phase with the porous matrix, uij is the 
velocity of the interface between the i-th and j-
th phases, us is the velocity of the solid matrix 
(in most cases it is assumed to be zero, 
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us = 0 ), Sij is the area of contact between the 
i-th and j-th phases per volume unit, Sii is the 
area of contact between the i-th phase and the 
solid porous matrix. The drag coefficient 
usually depends on the Reynolds number in 
the following way : 

 

Cfij = Cf
0 1

Reij

+ k2

⎛

⎝⎜
⎞

⎠⎟
,   

Reij = ρi
ui −
uij ⋅2 r∗ µi

.  (7) 

The velocity at phase interfaces could be 
determined based on the conditions of 
matching  
F Fij ji= − ; S Sij ji= ;  u uij ji= ;            (8) 
that gives the following formula : 
   u u u uij i

j

i j
j i= +

+
−

µ
µ µ ( )           (9) 

On introducing the following notation for 
saturation of the matrix with the i-th phase 
si i= α α  one could assume the formula for 
the area of interfaces: 

4 , ;
3ij i j ii iS S s s i j S S s= ⋅ ⋅ ≠ = ⋅ , where S is 

the mean area of pores per volume unit 
( S r= ∗α 2 ). Substituting the above notations 
in momentum equation for the i-th phase (2), 
neglecting inertial terms as it is done in the 
seepage theory for low filtration velocities, 
and assuming interface drag being collinear to 
the i-th velocity vector, one obtains the 
generalisation of Darcy equation for 
multiphase flow: 

)gradgrad( gppKKu icii
i

ir
i

 ρ
µ

+−⋅−= ,         (10) 

where permeability coefficient for the matrix 
accounting for (10) is determined as follows : 

1 1
2 2

1
2 4

0
0

2K
C

S
r

C

rf
f

=
⋅ ⋅

=
∗ ∗α ( )

   (11) 

Coefficient Kir could be named a relative 
permeability coefficient for the i-th phase. The 
undertaken derivations showed that even 
within the frames of all the above assumptions 
relative permeability coefficient should be a 

function of relative velocities of phases and 
their volume fraction: 

   
Kir = 1+

µ j

µi + µ j

⋅
β j | uj −

ui |
| ui |

sj
i≠ j
∑

⎛

⎝
⎜

⎞

⎠
⎟

−1

                     (12) 

Very often mean flux velocities are 
introduced in the seepage theory as follows:  v ui i i= α , that brings to a different form of 
permeability coefficients to keep the form of 
the equation (10) : 

k K f s Ki i ir= =α ; . 
Introducing the relative permeability as a 

function of saturation only, as it is always 
done in the seepage theory, thus is not 
consistent, as one can see it being dependent 
on velocities. 

The derived formula (12) defining relative 
permeability is, nevertheless, an approximate 
one based on a number of assumptions 
concerning internal flow and geometry of 
pores. Thus relative permeabilities are more 
often determined experimentally though the 
necessary precision could not be guaranteed 
for multiphase filtration. To avoid the 
necessity of taking into account the interaction  
at fluid-fluid phase interfaces one should 
derive the equations for the mean flow of the 
mixture. 

To derive the equations for the mean flow we 
introduce the following notations: 

 – density of the mixture; 

 – porosity of the mixture; 

∑=
i

iii uu
αρ
ρα 

  – mean mass velocity; 

uuw ii
 −=  – diffusive velocity; 

α
ρα iii

i
WI



=  – 

diffusive flux. 
For the case of two fluids capillary affected 

filtration, under the conditions  (the 
fluid 2 is gas) the formula (5) defining the 
local capillary pressure takes the form: 

                (13) 
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where the dimensionless -factor could be 
the function of capillary number, saturation, 
and other parameters characterizing shapes of  
interfaces, roughness of the surfaces, the flow 
history, etc. Then using the definition for the 
bulk capillary pressure (3) one obtains: 

    (14) 

For the case of two fluids filtration, we will 
use the following definitions : 

   

s1 = s; s2 = 1− s;

I1 = −


I2 =

I =αs( u1 −

v );
µ = µ1s + µ2(1− s).

 

Then, assuming the porous matrix non-
deformable the system  of equation (1,2) takes 
the following form: 

),(div)(div Ivs
t

s  αα
∂
α∂ −=+          (15)          (15) 

,0)(div =vα                                    (16)       (16) 
  v I

K
grad P g+

−
= − −

µ µ
µ µ

ρ1 2 ( ),      (17)        (17) 

where 
P sp s p s p pc s c s s= + − + − −= =1 2 12 0 121 1( ) ( )( | | ).
 

Taking into account, that for the two phases 
p p pc s2 1 12 0= − =|  one obtains a different 

equivalent form for the equation (17) : 

 

v +

I µ1 − µ2

µ
=

− K
µ

(gradp1 − (1− s)pc12 (s)− ρ g).
        (18)   (18) 

Analysis of equations (17, 18) shows that the 
term, containing the mixing flux 


I turns to be 

of low importance for fluids of close 
viscosities and disappears for fluids of equal 
viscosities. That term could also be neglected 
under the conditions of frontal displacement, 
when   u u v1 2≈ ≈ . In the absence of bulk 
pressure gradients and gravity forces the 
capillary forces present in the second term in 
the right hand side of (18) become the main 
driving forces determining the bulk flow 
velocity. 
Thus the mixing flux and capillary factor 

should be determined in independent 

experiments. The necessary experimental 
procedures and theoretical derivations to 
develop the model parameters were described 
in [10-11]. The values of capillary factors for 
fluid filtration into unsaturated porous medium 
were determined. In case porous medium is 
partially saturated by a wetting fluid the 
effective cross-section area of pores would be 
reduced that would bring to an increase of the 
effective capillary factor as compared to 12

wΨ  
determined in imbibition into unsaturated 
media: 

srr
r w

ef

efw

−
Ψ=

Δ−
Ψ=Ψ

1
12

1212 .      (19) 

 
3. Results of numerical 

investigations 
Inhomogenity normally present in porous 

media, brings to a multidimensional spatial 
structure of the sample that could influence the 
capillary driven filtration. Numerical 
investigation of capillary driven imbibition 
into unsaturated inhomogeneous sample was 
undertaken. 

 
Fig. 1.  The scheme of a porous medium filled cell used 

in physical experiments and numerical simulations. 
Porous medium inside the cell incorporates a zone of 

different permeability: X1<x<X2 , 0<y<Y1. 

 

WSEAS TRANSACTIONS on FLUID MECHANICS V. R. Dushin, V. F. Nikitin, J. C. Legros, M. V. Silnikov

E-ISSN: 2224-347X 120 Volume 9, 2014



The typical 2D cell with permeability 
inhomogenity is shown in the Fig.1. Two 
different scenario of imbibition were regarded: 
1) K2<K1 and 2) ) K2>K1. The numerical 
modelling was performed using the 
determined ψ-factor value.  

The succession of images (Fig. 2) illustrates 
the fluid saturation maps and flow velocities 
for different times for both fluid phases: the 

displacing liquid and the displaced gas. The 
results were obtained for the following values 
of governing parameters: K1 = 10-9m2, K2 = 
10-10m2, ψ = 1.0, x0 = 10 mm, x1 = 25 mm, x2 
= 75 mm, y0 = 100 mm, y1 = 50 mm, L = 100 
mm, µ1=10-3kg/(m⋅s), µ2=10-3kg/(m⋅s), 
σ12=5⋅10-2kg/s2. 

                     
                                  Fig. 2a.                                                                                      Fig. 2b. 

                    
                                   Fig. 2c.                                                                                        Fig. 2d. 

                    
                                   Fig. 2e.                                                                                       Fig. 2f. 

Fig. 2.  Fluid saturation maps and velocity fields obtained for successive times in numerical simulations of fluid 
imbibition and drainage in a porous sample incorporating a zone of lower permeability: a-e - imbibition, f - drainage. 
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The results show that capillary driven 

imbibition brings to the gas outflow from the 
sample. The velocity field in gas is not 
uniform: maximal flow rates are in the high 
permeable zone. On approaching the zone of 
lower permeability fluid velocity decreases 
due to the damping by the gas slug entrapped 
between the fluid interface and the low 
permeable zone. The displacement front in the 
low permeable zone lags behind the front in 
the high permeable zone, due to the increasing 
drag forces as well. Thus the interface 
curvature occurs, and finally the liquid in the 
high permeable zone overtakes the one in the 
low permeable zone thus creating a tendency 
to entrapping the remaining gas in the zone of 
low permeability. Those results are obtained 
for capillary driven imbibition under zero 
gravity conditions. The presence of gravity 
could change the picture not only 
quantitatively but qualitatively as well. 

The drainage of fluid from the porous cell 
incorporating inhomogenity was also 
investigated numerically. In numerical 
experiments changing imbibition for drainage 
was achieved by applying a 2 g gravity 
acceleration at a definite moment and keeping 
it constant for some period of time. The 
present scheme of the numerical experiment 
simulates the conditions of low gravity 
experiments in aircraft parabolic flights. Under 
the conditions of parabolic flights the 
successive free-fall parabolic trajectories of 
the aircraft (20-25 seconds) are changed for 
the climbing trajectories characterised by 
17 2 0. . .− g  

Fig.2e illustrates one of the stages of the 
drainage of fluid from the saturated 
inhomogeneous porous sample. The results of 
numerical modelling show, that drainage 
brings at first instant to flattening the interface 
and fast saturation of the low-permeable zone 
in the left hand side. Drainage takes place 
much faster in the high-permeable zone in the 
right hand side, while fluid saturating the low-
permeable zone is entrapped there. The rapid 
decrease of the level of fluid in the sample 

brings to a formation of an air-filled gap below 
the low-permeable zone separating the 
entrapped fluid from the main flow. Due to 
saturation non-uniformity within the entrapped 
fluid a liquid bridge is being formed in a 
definite place below the entrapped. The further 
drainage of fluid from this zone takes place 
through the liquid bridge. 

The results show that the flow pattern is 
strongly non-uniform and multidimensional. 
Thus, to register such flows in experiments 
one needs to apply techniques enabling to take 
into account their multidimensional character. 
For example, detecting the displacement front 
trajectory along the A–A line (Fig. 2) one 
could come to a situation under which the 
phase interface would be detected not 
sequentially along A–A, but arbitrary 
appearing in different places. A typical 
example is shown in the Fig. 3. The detected 
velocity would be not the actual velocity of 
imbibition, but the visible velocity of the phase 
interface intersection with the line A–A. Thus, 
the detected by the 1D techniques velocity 
could be both much smaller and much larger 
than the actual velocity. This possibility was 
taken into account in developing the software 
for processing the experimental results. 

 
Fig. 3. Displacement front trajectory in the A-

A cross-section. 

 
4. Experimental investigations 
Experiments on imbibition and drainage of a 

wetting fluid (water) in an artificial porous 
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medium composed of glass spheres were 
performed during aircraft parabolic flights. 
The gravity level varying from 0-g to 1.7-g 
allowed to investigate both the capillary driven 
imbibition of water into unsaturated sample 
and the drainage caused by the increase of 
gravity. The experimental techniques is 
described in details in [8]. Here we’ll 
concentrate our attention on the peculiarities of 
filtration in a media containing permeability 
inhomogenity. The zones of different 
permeabilities were arranged in the 
experimental cells using glass balls of different 
diameters (Fig.4). The assembled experimental 
cells are shown in Fig. 5. 

On reducing the gravity level the capillary 
driven imbibition of fluid into unsaturated 
initially dry porous sample begins. The phase 
interface remains relatively flat in a 
homogeneous zone (Fig. 4a). On approaching 
the zone of lower permeability the interface 
becomes curved (Fig. 4b), the capillary 
creeping is faster in the zone of high 
permeability (Fig. 4c). The phase interface in 
the low permeable zone lags behind the one in 
a high permeable zone that is in a good 
agreement with the results of our numerical 
modelling (Fig. 2a-e). On increasing the 
gravity level the drainage of fluid from the 
sample begins (Fig. 4d,e). The drainage goes 
faster in the zone of high permeability as well. 
Some part of fluid remains entrapped in the 
zone of low permeability (Fig. 4d). Liquid 
bridges are being established between the 
entrapped fluid and the saturated zone (Fig. 
4d,e) through which evacuation of fluid from 
the zone of entrapment continues after the 
phase interface goes down far below the zone 
of low permeability (Fig. 4e). But some fluid 
still remains in the zone of low permeability. 

On reducing the gravity level for the second 
time (entering the new parabola) capillary 
driven imbibition begins again in the cell (Fig. 
4f,g,h). This time it goes faster as the medium 
was preimbibitted. On approaching the zone of 
low permeability the phase interface again 

changes its curvature, but this time the 
capillary driven filtration in the zone of low 
permeability containing the residual entrapped 
fluid goes much faster (Fig. 4f). The phase 
interface in the zone of high permeability lags 
behind the one in the zone of low 
permeability. By the time it goes up to the 
middle level (Fig. 4g) the whole zone of low 
permeability is already saturated. The 
reistablished liquid bridges between that zone 
and the main flow supply it with fluid. 

The experimental results show the important 
role of liquid bridges established in the zones 
of permeability gradients and initial saturation 
in determining the regimes of capillary driven 
filtration. 

To perform the quantitative comparison of 
experimental results with the developed 
theoretical model it was necessary to digitise 
the images with the frequency 2 images per 
second and reconstruct the trajectory of the 
phase interface to be compared with results of 
numerical modelling accounting for the actual 
gravity variation data supplied by the 
accelerometer.  

The residual microgravity accelerations are 
nearly twice lower during the first parabola 
(g=0.05…0.06g0) as compared with that 
during the second parabola (g=0.09…0.10g0). 
Nevertheless, imbibition in the zone with high 
permeability takes place much slower during 
the first parabola, because the medium is 
initially dry and the capillary factor is lower. 
On approaching the zone of lower 
permeability the flow turns to be faster in the 
zone of higher permeability, that seems 
consistent with the results on filtration in 
homogeneous samples for the present low-
gravity conditions [8]. Comparison of results 
of experimental investigations and numerical 
simulations shows that within the time interval 
6s<t<10s mean velocities of phase interface in 
the control cross-sections are equal to V1=4.5 
mm/s, V2=9.4 mm/s. The zone of lower 
permeability is only partially saturated by the 
end of the first parabola (Fig 4c,d).  
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Fig. 4. Successive images for capillary driven flow of water in the cell filled in with artificial porous medium 

incorporating a zone of different permeability (X1<x<X2 , 0<y<Y1) composed of glass beads of a different diameter. 
Experiments under variable gravity conditions: a - c - imbibition, d - e - drainage, f - h - imbibition. 
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a  
 

b  
Fig. 5. Experimental cells used for capillary driven seepage 

flows studies under variable gravity conditions. 

On increasing gravity drainage of fluid from the 
cell begins. A distinct fluid-air interface diffuses 

and turns to be a continuous zone, wherein fluid 
saturation changes from smax in the bottom down 
to smin on the top. The trajectories of the upper and 
lower boundaries of that zone are shown in Fig. 5 
b by two solid lines appearing within the time 
interval 12s<t<14s. (The boundaries were 
determined by analysing the grey scale level 
variations with the accuracy 10%.) Drainage from 
the zone of lower permeability takes place in a 
very slow manner and fluid remains entrapped in 
that zone for a long time. Fluid is slowly leaking 
from that zone through the liquid bridges, one of 
which is clearly seen in Fig. 4 d.  

 

5. Numerical simulation of displacement 
instability in 3d 

Theoretical and experimental studies of 
displacement front instability in porous media 
(viscous fingering) were performed, for example,  
in [9, 12-14]. Analytical studies of the width of 
fingers are present in [15]. Below we present 
results for 3-D unstable displacement of miscible 
viscous fluid from porous medium by a less 
viscous one are shown in Figs. 6-7. Results were 
obtained by numerical simulations based on 
mathematical models and numerical algorithms 
developed in [12-14].  

Fig. 6 shows the influence of Péclet number. 
We fix the medium viscosity ratio ( 100M = ) and 
compare patterns of the front for different 
Pe ( /Pe UH D= , U-mean flow velocity, H – 
channel width, D-diffusion coefficient) at aspect 
ratio 0.5a =  ( /a h H= ). The Péclet numbers 
increase from left to right in each row; a wide 
range of Péclet numbers was investigated both 
lower and higher than the characteristic artificial 
Péclet number. Each plot corresponds to some 
characteristic time moment. Numerical 
investigations showed high irregularity of the 
displacing zone; however, the fingers number 
naturally grows with the growth of the cross 
section area. For high a , development and 
splitting of the most advancing fingers looks 
similar; for low a , the front is bounded by the 
walls, and the fingers split in lower number of 
daughter structures. Therefore, the secondary 
aspect ratio is expected to influence the 
displacement features mostly when it is low. 
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Péclet numbers 100, 200, 500 

   
Péclet numbers 1000, 2000, 10000 

Fig. 6. Flow patterns illustrated by displacing front surface ( , , ) 0.25s x y z =  for 100M = , 0.5a =  and various Péclet 
numbers. 

   

Pe 200=  

   

Pe 1000=  

   

Pe 2000=  

   

Pe 10000=
 

Fig. 7. Saturation of the displacing fluid for 2D displacement process. Flow patterns for different Péclet numbers and viscosity 
ratios.
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Fig. 7 summarizes the flow patterns for 2D 
displacement simulations illustrating the 
saturation patterns for the displacing fluid. The 
flow patterns in each row are made for the 
same Péclet number and different viscosity 
ratio of displaced and displacing 
fluid 10,  100,  1000M =  (from left to right). 
However, two significant differences take 
place. First, the total number of fingers is very 
small compared with 3D displacement at high 
aspect ratio. Second, for high viscosity ratio 
and Péclet number, separation of tips of the 
fingers takes place instead of their split. We 
can not observe this separation on the 
displacement front patterns for 3D case 
because we monitor the surface of the 
displacement front there for 0.25s =  only, but 
the separated fingers have much less 
saturation. 
Fig. 8. demonstrates the displacement front for 
rectangular cross-section and 0.5a = . 

 
t = 0.046 

 
t = 0.069 

 
t = 0.098 

 
t = 0.131 

 
t = 0.323 

Fig. 8. Development of the displacement front for 
rectangular cross-section and 0.5a = . 
 
It can be seen from fig. 8 that many fingers 
develop initially; a comparably high number of 
them are advancing by t = 0.069. By t = 0.098 
several fingers split, three of them split into 
palms of daughter fingers. At t = 0.131 one of 
the fingers have formed a channel near a 
lateral wall of the domain. Two other most 
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advancing fingers, still split at their tips, are 
slowed down in their growth. At t = 0.323 
they, however, reach the outflow surface, and 
the displacing fluid flow through the domain 
by three channels. One can see that 
qualitatively the picture is also the same 
except for the number of most developed 
fingers. 
Fig. 9 demonstrates the displacement front for 
elliptic cross-section and 0.5a = . 

 
t = 0.049 

 
t = 0.075 

 
t = 0.107 

 
t = 0.155 

 
t = 0.355 

Fig. 9. Development of the displacement front for 
elliptic cross-section and 0.5a = . 
 
One can see from fig. 9, that the results for the 
elliptic cross section are similar to the results 
for the rectangular one. However, a peculiarity 
is seen at t = 0.155: three daughter fingers 
form separate breakthrough channels. With 
time, however, they merge into one wide 
channel. Only one channel is formed by t = 
0.355. We expect that this difference is a result 
of the fundamental instability of displacement, 
which is very sensitive to minor perturbations, 
and it is not a specific peculiarity of the elliptic 
cross section.  
 

5 Conclusions 
Theoretical and experimental investigations 

of capillary driven filtration in porous media 
with homogeneous and inhomogeneous 
characteristics (permeability, porosity) carried 
out under microgravity conditions showed that 
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seepage flow regimes were very sensitive to 
permeability and porosity gradients in porous 
media.  

The mathematical model for multiphase 
filtration in porous media under non-
equilibrium conditions was developed along 
with experimental procedures to determine the 
influence of capillary forces and mixing 
fluxes. In contrast to the existing theories the 
present model does not rely on relative 
permeability functions for phases. 
Experimental and theoretical investigations 
showed that zones of lower permeability could 
serve as capillary traps for wetting fluids. 

The capillary Ψ -factor determined for fluid-
air interfaces in homogeneous porous samples 
proved to be valid for inhomogeneous samples 
as well thus serving a universal parameter 
characterising capillary properties only of a 
fluid pair in a porous sample. 

The important role of liquid bridges 
established in the zones of permeability 
gradients and initial saturation in determining 
the regimes of capillary driven filtration was 
proved experimentally. 

Instability of viscous fluid displacement by a 
less viscous one was simulated numerically in 
2-D and 3-D cases. The role of governing 
parameters was studied: the thickness of 
viscous fingers decrease on increasing 
viscosity ratio and Peclet number. 
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