
Abstract: - Geodynamic phenomena monitoring is constantly evolving; however, earthquake prediction is still 
impossible. The acquired big data over time availability allows us to create specific models to simulate these 
phenomena. Generally, earthquakes happen in clusters, and major aftershocks are preceded by other small 
aftershocks. Applying mathematical models to the swarm measurement data provides the seismic event 
probability of a given magnitude in a given region. Predictive systems of seismological phenomena and soft 
computing techniques can therefore help to obtain good choices for the citizens’ safety when a given danger 
threshold is exceeded. 

In this regard, the possibility to have significant and reliable displacement data of network points repeated over 
time deriving from GPS monitoring networks set up across the monitored faults, as well as the use and 
implementation of dynamic GIS that also use “predictive” layers based on the use of neural networks and soft 
computing, can provide on one hand databases useful for the implementation of predictive models (soft 
computing techniques that use displacements as input data) and on the other hand valid information on 
propagation of the isoseismal (starting from information relating to the study area, the hypocenter of the 
considered earthquakes and the seismic intensity determined according to standard procedures). 

The objective of the following work is therefore to present and analyze the results of a prototypal predictive 
system developed by the Reggio Calabria Geomatics Laboratory. This prototype use a GIS systems and soft 
computing techniques. It allows on one hand to calculate the probability of seismic event's occurrence (event of 
known intensity that follow another also known) and on the other to identify and predict the isoseismal's 
propagation. The Gis system incorporate and implement rigorous methodologies for displacements computing 
on GPS networks repeated over time, while the soft computing uses the surface's displacements points monitored 
by a GPS network and the events that took place in their surroundings. 
The methodology was tested in the central Tyrrhenian area of Calabria (where there are a series of active faults). 
focusing in particular on the Falerna -Fuscaldo fault (Italy). 

Key-Words: - GPS, GIS, Neural Network, Earthquake, Monitoring, 

Received: January 23, 2021. Revised: April 20, 2021. Accepted: April 28, 2021. Published: May 5, 2021. 

1 Introduction 
Among the Mediterranean countries, Italy has one of 
the highest seismic risk both for the frequency of the 
earthquakes that have historically struck its territory, 
and for the intensity that some of them have reached 
[1]. 

Even now, earthquake prediction is impossible: 
we know that an earthquake, in fact, is the result of a 
complex system of events and factors occurring 

below the earth's crust. Timing and magnitude of a 
seismic event, for example, depend on the energy 
stored in a point of the fault and the level of "stress" 
which that precise point of the earth's crust reaches. 
Accurate measurements of the mentioned values 
would require kilometric drilling under the earth's 
surface; would also require the installation of 
extremely sensitive sensors, that have not yet been 
developed [2]. 
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Nevertheless, earthquakes happen in clusters: 
major aftershocks are prefaced by minors tremors as 
"warning". When the proximity, frequency and 
intensity of these shocks increase, a seismic swarm 
occurs, a real wake-up call for natural disaster experts 
and seismologists. 

In this regard, it should be noted that (through 
geomatic techniques) it is now possible to easily 
measure the surface movements of well-defined 
points, straddling active faults (using rigorous 
methodologies to compute the vertexes 
displacements significance highlighted in time and 
space). 

On the other hand, the use of soft computing 
techniques for predictive purposes (successful used 
in many other scientific and application sectors) is 
also leading to interesting contributions in the field of 
seismic prevention. 

GIS systems, then, thanks to their potential for 
managing and displaying data as well as the 
possibility of being implemented in an open way, 
certainly provide useful contributions in relation to 
the study of the topics proposed in the field of 
monitoring and prevention 

The integrated use of these methodologies 
(geomatics / soft computing) can therefore provide a 
valuable contribution in relation to the prevention of 
seismic risk 

The methodology proposed in this note, thanks to 
the use of a GIS platform, would allow on one hand 
the evaluation of the "short-term seismic hazard" (in 
order to obtain a percentage value with respect to the 
probability that a given earthquake will occur on a 
given area) and, on the other hand, the isoseismal 
prediction and estimation related to the study area. 

The potential provided by the proposed 
methodology could help both the authorities (in order 
to prepare the emergency machine in time and to 
ensure the physical safety of citizens), and the 
citizens (that could constantly be informed about the 
risks that occur in real time). 

Currently there is no general methodology for 
earthquake prediction. Moreover, there is still no 
consensus in science community on whether it is 
possible to find a solution of this problem. However, 
rapid development of machine learning methods and 
successful application of these methods to various 
kinds of problems indicates that these technologies 
could help to extract hidden patterns and make 
accurate predictions. Some actual research are 
focused on precursor study: for instance, an  
application regard to the discovery of the small 
quakes aftershocks patterns that follow a large 
earthquake ( mainshock) and occur in the same area. 
One of the most recent examples is discussed in [3], 

where an artificial neural network in trained on more 
than 130.000 mainshock-aftershock pairs in order to 
model aftershock distribution and outperforms the 
classic approach to this task.  

Previous studies have applied several statistical 
and ML (Machine Learning) algorithms for the 
classification of aftershocks. For example, Kortström 
et al. [4] classified blast-related and nature-related 
aftershocks and sources of noise using an automated 
support vector machine (SVM) technique in regions 
that suffer from sparse seismic networks; their results 
showed that man-made (explosions) and natural 
(seismic) aftershocks can be identified with a high 
level of reliability using their approach. 
Discrimination analysis was used by Che et al. [5] to 
identify an explosion-induced event in North Korea. 
In addition, Lyubushin et al. [6] classified seismic 
records acquired from the Aswan Dam region in 
Egypt as either natural events or blasts using the 
spectral support widths method. Rouet-Leduc et al. 
[7] investigated laboratory earthquakes to predict the 
failure time of a fault based on acoustical information 
and an ML method called random forest (RDF) 
classification. A few works have attempted to predict 
the locations of earthquakes based on an adaptive 
neural fuzzy inference system (ANFIS) and a 
supervised radial basis function (RBF) network [8,9]. 

 
1.1 Geo-topographic characteristics of the 

fault 
As is well known, Calabria is in a very complex 
geodynamic position with a high seismic risk. In fact, 
it has a very high seismic risk (due to the frequency 
and intensity of phenomena that occurred in 
historical times), a very high vulnerability (due to the 
fragility of the building, infrastructures, industrial, 
production and a very high exposure (due to density 
housing and the presence of a historical, artistic and 
monumental heritage in areas affected by active 
faults). For this reason, Calabria is at high seismic 
risk, in terms of potential victims, damage to 
buildings and direct and indirect costs [10]. 

Central Calabria is crossed by a system of faults 
in full activity (red lines in fig. 1), which develops 
from the “Crati Valley”, passes through the Strait of 
Messina and ends in eastern Sicily [11]. These faults 
(represent high seismic risk sectors) caused almost all 
the catastrophic earthquakes that hit Calabria in 
historical times: the “Crati Valley” earthquake of 
1183, the “Reggio and Messina” earthquake of 1908, 
the earthquake crisis of southern Calabria in 1783, 
the earthquakes in central Calabria in 1638 and 1905, 
the "Cosentino" earthquakes of 1835, 1854 and 
1870.[12] 
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 The Fuscaldo Falerna fault (CS4) (Figure 1) is the 
westernmost Calabrian fault located almost at the 
western coast. It develops for a total length of about 
55 km, with a maximum credible break of 20 km. The 
geometry is mostly planar with direct kinematics and 
a paleoseismicity that varies from 0.2 to 0.5 mm / 
year. 

The San Marco Argentano - Domanico fault 
(CS2) (Figure 1) is located on the west side, almost 
in correspondence with the west coast and parallel to 
the CS4. It develops for a total length of about 50 km, 
with a maximum credible break of 25 km. The 
geometry is mostly listric with direct kinematics and 
a paleoseismicity that varies from 0.5 to 2 mm / year. 

The Piano Lago fault (CS5) (Figure 1) is located 
on the west side, almost in correspondence with the 
west coast, parallel to the CS4 and CS2. It develops 
for a total length of about 15 km, with a maximum 
credible break of 10 km. The geometry is mostly 
planar (synthetic - antithetical) with direct kinematics 
and a paleoseismicity ranging from 0.2 to 0.5 mm / 
year. 

The Valle del Savuto - Decollatura fault (CS6) 
(Figure 1) is located on the west side, almost in 
correspondence with the west coast, parallel to the 
CS4 and continuously to the CS5. It develops for a 
total length of about 30 km, with a maximum credible 
break of 8 km. The geometry is mostly planar 
(synthetic - antithetical) with direct kinematics and a 
paleoseismicity ranging from 0.2 to 0.5 mm / year. 

The Lamezia Catanzaro fault (CS18) (Figure 1) is 
located on the junction of the two cities (from which 
it takes its name), orthogonal to CS4. It develops for 
a total length of about 45 km, with a maximum 
credible break of 45 km. The geometry is mostly 
planar (synthetic - antithetical) with direct kinematics 
and a paleoseismicity ranging from 0.2 to 0.5 
mm/year. 

 

 
a) 

 
b) 

Figure 1 - Central Calabria a) Active faults (red) and dormant 
faults (blue) b) Active faults (red) and Earthquake (yellow). 

 

2 GPS/GIS data 
As part of a monitoring project of Calabrian active 
faults and consequent capable faults database (DB) 
updating, the Geomatics laboratory of the 
"Mediterranea" University is working on a 
monitoring project related to several faults present in 
the Calabrian territory, through survey, monitoring 
and control activities that are organized into three 
portion of regional territory (Northern - Central - 
Southern). 

Specifically, this note focuses on the central 
Tyrrhenian part of Calabria (San Marco Argentano 
fault - Domanico, Piano Lago fault Valle del Savuto 
fault - Lamezia Catanzaro fault and Fuscaldo Falerna 
fault), focusing particularly on the analysis of the 
Fuscaldo Falerna fault. 

In general, the survey activities carried out by the 
Geomatics Laboratory provided the establishment on 
these 5 faults of "mobile" GNSS networks consisting 
respectively of single GPS networks (on each fault)  
connected to other external vertices (different for the 
5 networks) that act as external references for the 
whole area. 

In particular, the Fuscaldo Falerna fault (CS4) 
consists of 8 vertices. 
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The San Marco Argentano - Domanico fault 
(CS2) consists of 6 vertices. 

The Piano Lago fault (CS5) consists of 4 vertices. 
The Valle del Savuto - Decollatura fault (CS6) 

consists of 4 vertices 
The Lamezia Catanzaro fault (CS18) consists of 8 

vertices. 
The acquisition of Gps data was carried out so as 
regular and constant as possible over time from 2010 
(weekly / monthly) with particular reference to the 
Fuscaldo - Falerna fault (CS4) in order to have a 
database as broad as possible. 
 

 

Figure 2 - Faults CS2 CS4 CS5 CS6 and CS18 (blue lines), the 
measured vertices (in red) and vertices on stable area (in blue). 

As mentioned, the 5 networks consist of some 
points straddling each fault and others positioned on 
the external area, (located in a "presumably" stable 
area), two of them on the east side and one on the 
west side (Fig.2). 

As is well known (with particular reference to 
active networks for monitoring and controlling active 
faults) a rigorous data acquisition methodology 
would imply the simultaneous use of a certain 
number of GPS receivers coinciding with the number 
of network cornerstones and the materialization on 
rock of the station points (vertices of the network) by 
means of pillars in order to reduce the centering error 
below one millimeter (the use of a steel antenna port, 
properly designed, allows to meet the stringent 
requirements mentioned above) Moreover, an 
optimal condition would provide simultaneous 
measurements on consecutive days, with observation 
windows of eight hours for each day, cut-off angle of 
15 degrees and sampling time of 15 hours. [13- 14] 

Unfortunately, due to the lack of both funds and 
instruments (3 GPS receivers) and personnel for such 
a long period of time, the measurement campaigns 
carried out by the Geomatics Laboratory (from 2010 

to date  monthly and / or weekly), have used the 
triangulation method on three network points (using 
a "mobile network" without to perform forced 
centering with a steel antenna as originally designed), 
however covering all the network vertices (even if 
sometimes, for organizational/economical reasons, 
the surveys were carry out also in different periods 
from each other). 

Although the survey methodology used (all the 
established networks are as already said "mobile" 
networks as the vertices are not actually materialized 
on site) provides a lower precision than the strictly 
hypothesized and usable precision (in [15] high 
standards for the subsequent global adjustment 
analysis of the test network are shown).  

Perhaps in the future having a number of GPS 
receivers and staff equal to the number of network 
points it hoped to have a set of rigorous temporal 
series measures in order to improve the results that 
we could obtained with what is today available. 

Rigorous adjustment of the entire network, then, 
allows us to obtain the coordinates of the network 
points relating to the different measurement periods. 

In fact, the subsequent use of rigorous statistical 
techniques [16] (for the computing of the 
significance of the displacements deriving from GPS 
networks repeated over time having a certain number 
of common points without having a priori 
information on their stability available), allows to 
identify a stable DATUM and then to rigorously 
calculate the effective displacements significance of 
the network points highlighted over time (final aim 
of the analysis of space / time monitoring). 

Referring (for example) to the Fuscaldo Falerna 
network, Tables 1 and 2 respectively show an 
example of estimated coordinates of some network 
points and the statistics and parameters obtained from 
the adjustment in several years [17]. 

 
 

Table 1 - Coordinates of some network points. 

STAZIONE 𝐗 (𝐦) σ x Y (m) σ y Z (m) σ z 

Fuscaldo 4 765 948,703 0.012 3 859 389,163 0.009 1 746 731,312 0.0002 

Paola 4 765 955,427 0.008 3 859 394,607 0.017 1 746 733,792 0.0002 

San Lucido 4 765 952,438 0.011 3 859 392,188 0.015 1 746 732,690 0.0002 

Falerna 4 832 579,969 0.014 3 775 625,269 0.005 1 746 731,863 0.0002 

 
Table 2 - Global adjustment parameters. 

 �̂�𝟎 χ2SP χ295% Smax(m) Smed(m) 

2010 1.11 70.3 71.2 0.052 0.019 
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2011 1.12 77.8 76.4 0.053 0.016 

2012 1.12 80.5 82.1 0.051 0.014 

2013 1.10 75.2 81.4 0.049 0.021 

2014 1.11 75.6 84.0 0.048 0.022 

2015 1.12 79.4 79.9 0.040 0.024 

2016 1.13 81.1 81.2 0.045 0.020 

2017 1.12 79.5 85.7 0.032 0.018 

2018 1.11 80.9 88.4 0.038 0.017 

2019 1.11 78.1 82.5 0.037 0.019 

σ̂0 
 

Χ2
SP   

Χ2
95% 

 

Smax  
Smed 

 

Estimation of Root Mean Square of the unit 
weight 

Experimental statistic value for the model 
global test and upper limits at 5% significance 
level 

Maximum and average values for standard 
error ellipsoids semi-axes  

 

 

Once we have available the coordinates of the 
vertices of the network in the various epochs as 
well as all the statistical parameters deriving 
from the different rigorous adjustment of the 
networks carried out over time, the analysis aim 
is the significance evaluation of coordinate 
deviations in two different GPS surveys with some 
points in common, even without a pre-defined 
stability information. The basis of the analysis is the 
presence of the Cartesian elements of the GPS bases 
and of their covariance matrix resulting from the 
elaboration of the GPS phase measurements, already 
cleaned from possible outliers and defined in the 
same reference system. The result of this analysis 
therefore consists in the separation of the 
common points between the two surveys into 
two groups: 

• points with non-significant coordinate variations 
(final datum) 

• points with significant coordinate changes 

starting from the differences coordinates δX estimated 
with their covariance matrix Cδδ obtained from 
adjustment with minimum constraints of the two 
surveys. For this purpose, we use the procedure 
illustrated in [18] that allows us to select the resulting 
datum automatically by using an iterative procedure 
that is based on the classical Fisher test under the 
assumption of normal distribution of observations 
and, thus, of differences in coordinates. In this 
routine, starting from these obtained differences in an 
initial datum that contains part or all of the network 
points (these are adjustments with minimum 
constraints in which the barycenter of the points 
encompassed in the datum is fixed), we test the 
differences of the three coordinates for each point, 
excluding from the datum the points for which such 
differences are meaningful; the procedure stops once 
the datum is no longer modified from one iteration to 
the next. 

The above activities have been implemented 
within an "open" dynamic GIS [19] (Fig 3) which 
therefore allows to determine the significance of the 
displacements of the points GPS network (which 
have common points without a priori information on 
the stability of the network point coordinates) 
repeated over time. 

In detail, through the GIS potential it is possible 
to process, to have available and to view: 

- The coordinates of the network points deriving 
from a “free” or “constrained” network adjustment; 

- the DATUM (set of statistically stable network 
points) identified through statistical tests (Fisher's 
test) (Fig. 3 a); 

- the estimate of the new coordinates of the 
network points in the identified DATUM 
(transformation) (Fig 3 b); 

- the displacements of the network points deriving 
from an adjustment of the bound networks, in the 
identified DATUM (Fig 3 c). 

 
Fig. 3 shows the result of the proposed 

methodology relating to the Fuscaldo Falerna fault 
area between 2018 and 2019 where the red dots 
represent the measured vertices, the blue dots 
represent the chosen vertices on external stable areas; 
the blue lines represent the faults; the red crosses 
instead represent the transformation of the 
coordinates of the network vertices in the identified 
Datum; the red circles and arrows represent the 
measured and calculated displacements. 
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a) 

 

 
b) 

 

 
c) 

Figure  3 - a) Identification of the DATUM (red crosses); b) 
Transformation of the coordinates of the network vertices in the 
identified Datum; c) Computing of displacements in the selected 
Datum on all faults. 
 

In fig. 4, only the displacements calculated in the 
selected DATUM relating to the Fuscaldo Falerna 
fault in the period between 2018 and 2019 are 
highlighted.  
 

 
 

 
Figure 4 - Calculation of displacements in the Datum selected on 
the Fuscaldo Falerna fault example of representation of 
displacements between 2018 and 2019. 
 
The figures 5 (a, b, c) instead show the graphs 
relating to some principal vertices displacements 
over time (shown in Table 1) of  the Fuscaldo - 
Falerna network (we reported as example only 
Fuscaldo x coordinate, Paola y coordinate and San 
Lucido z coordinate.)  

 
a) 

 
b) 

 
c) 
Figure 5 – displacements over the time of: a) Fuscaldo x 
coordinate, b) Paola y coordinate, c) San Lucido z coordinate. 
 
2.1 Seismic data 
The seismic data used in our work (Figs. 6, 7, 8) were 
those provided by the National Institute of 
Geophysics and Volcanology (seismic surveys 
carried out throughout the country for 24 hours a day, 
and for 7 days a week), regarding:  
 
- events that occurred around (30 km radius) in 
relation to the study area, 
- a time window from 2010 to today, 
- seismic events of magnitude greater than 3, 
- seismic events of magnitude less than 3. 
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Figure 6 - Example of  seismic events that took place around 
(radius 30 km) of Falerna Fuscaldo. 

 

Figure 7- Seismic events of magnitude greater than 3 from 
2010 to today. 

 

Figure 8 - Seismic events of magnitude less than 3 from 2010 
to today. 

3 Prediction of large aftershock 

sequences 
Using a neural network, we tried to connect the 
surface displacement data (GPS network) to the 
seismic data, to verify the possibility to create a risk 
map, that shows the probability of a new earthquake 
and its magnitude (greater or less than 3), in a defined 
area, upon the occurrence of a seismic event [30]. 

The occurrence of a major earthquake almost 
always triggers secondary seismic tremors, known as 
aftershocks. The behavior of aftershocks (that are 
known to be as dangerous as main shock sequences) 
resembles that of a decaying probability model 
(gradually decreasing values). The magnitude of an 
aftershock depends significantly on the time of 
occurrence and the magnitude of the main shock [31- 
32-33]. 

The data analysis shows that the highest value of 
the aftershock was observed away from the main 
shock, suggesting that the transfer of stress from the 
main shock to the aftershock is static.  

 
From the statistical study of the aftershock 

sequences, it emerge that surface events are generally 
not events related to surface movements, being also 
influenced by the distance of the epicenters from the 
the earth surface [34]. 

As known, neural networks are non-linear 
structures of statistical data organized as modeling 
tools. They can be used to simulate complex 
relationships between inputs and outputs that other 
analytic functions cannot represent [35-36]. 

Our goal was to test a machine learning classifier 
able to predict the correct risk class (low entity or 
high entity) based on the Δx, Δy and Δz coordinates 
(displacement of network points and epicenter of the 
earthquake) [37].  

In this regard, a 9-level neural network was 
created with an input level, a hidden level and an 
output level. The number of nodes in the input layer 
was determined by the dimensionality of our data. 
Similarly, the number of nodes in the output layer 
was also determined by the number of classes we 
have. The network input are therefore the Δ x, Δ y, 
and Δ z coordinates (displacement of the network 
points and epicenter of the earthquake) and its output 
will be a different probability value, respectively for 
class 0 ("magnitude <3") and for class 1 ( 
"magnitude> 3"). 

 
The training technique used to implement the 

network is the "reinforcement learning", in which an 
appropriate algorithm tries to identify a certain 
modus operandi, starting from a process of 
observation of the external environment; in 
particular, every action has an impact on the 
environment and the environment produces feedback 
that guides the algorithm itself in the learning 
process. Such a class of problems requires a 
perceptive agent that explores an environment in 
which it learns a series of actions. The environment 
itself provides an incentive or a disincentive in 
response, at random [38-39]. The reinforcement 
learning algorithms ultimately attempt to determine 
choices to maximize the cumulative incentives 
received by the agent during the problem analysis. 
Reinforcement learning differs from supervised 
learning because it never presents input-output pairs 
of known examples, nor does it explicitly correct 
itself with suboptimal actions. Furthermore, the 
algorithm is focused on online performance, that 
involves the balancing and the exploration of 
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unknown situations with the exploitation of current 
knowledge [40]. 

 
Furthermore, it is possible to choose the 

dimensionality (number of nodes) of the hidden 
layer. The more nodes we insert in the hidden layer, 
the more complex the functions we will be able to 
adapt. But a higher dimensionality has a high 
computational cost. Indeed, we need more 
calculations to make predictions and learn network 
parameters. 

In our analysis, to activate the hidden layer, we 
have chosen the fuction “tanh” as the activation 
function. It is an unilinear activation function that 
allows us to fit non-linear hypotheses. A good 
property of these functions is that their derivative can 
be calculated using the value of the original function. 

Since we want our network to generate 
probabilities, the trigger function for the output level 
will be the function “softmax”, which is simply a way 
to convert raw scores into probabilities. 

Our network makes estimates using the forward 
propagation alghoritm, that is a series of array 
multiplications and the application of the activation 
functions we defined above (Fig. 9). We need to find 
parameters that minimize the error on our training 
data, to let our network learn the parameters. To 
define the error we use the “softmax” output function 
(the categorical loss of cross entropy also known as 
negative log probability). Subsequently to define if 
the system predict the wrong risk class we compare 
the gap between the parameters in the Training DB 
and the forecasting parameters. 

The farther away are the two probability 
distributions y (the correct labels) and y ̂ (our 
predictions) greater is our gap. By finding parameters 
that minimize our gap we maximize the likelihood of 
our training data.  

 
 

Figure 9 - Forward propagation scheme 

Then, taking into account the large amount of 
network point displacement data resulting from the 
processing of GPS/GIS data and the equally large 
amount of seismic data provided by the INGV), the 
neural network tests, in a given region (study area) 
the relative probability of the occurrence of a seismic 
event with a magnitude greater or less than 3 in 
relation to the occurrence of a "significant" event 
recorded by the INGV around 50 km from the study 
area [40-41]. 

The result can be displayed on GIS through 
suitable functions (Fig.10). 
 

 
 
Figure 10 - Risk map (green area: area with probability of 
magnitude <3, Blue area: area with probability of magnitude> 3; 
red: earthquake magnitude <3; dark blue: earthquake magnitude> 
3). 
 
In Fig.10, for example, is reported the area of the Fuscaldo 
Falerna fault that shows the forecast of occurrence over a 
two-week period; in particular in green is reported the area 
with a probability of magnitude less than 3and in blue the 
area with a probability of magnitude greater than 3. 
 
4 Isoseismal generation 
In order to provide information on the propagation of 
isosisms starting from information relating to the 
study area, the hypocenter of the earthquakes 
considered and the seismic intensity determined 
according to standard procedures, a methodology 
was proposed that integrates the use of Neural 
networks through the generation of an informative 
layer with Artificial Intelligence (defined with the 
name of “OverlayAI”) [42] 

A hazard map is therefore proposed, obtained 
jointly using an artificial intelligence operator 
(OverlayAI) integrated in the GIS environment to 
determine the attenuation of the macroseismic 
intensity in the study area. 

The generation of a seismic hazard map as 
proposed by the aythors takes place in various 
phases, using different data structures organized as 
GIS layers [43]. 

In particular we use: 
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• a layer of the epicenters where the point features 
are referred to the epicenters of appropriate seismic 
events collected through the historical database of the 
National Institute of Geophysics and Volcanology 
(INGV) (fig 10); 

• a layer that classify the geology of the examined 
territory (fig 13);  

• a TIN layer for the altimetric representation of 
the territory (fig 14). 

The first phase consists in the selection by the user 
of one or more epicenters and in the consequent 
generation of a layer with polygonal features where 
the boundaries of the polygons are the isoipses useful 
for the description of the attenuation of the 
macroseismic intensity. The operator that generates 
this layer was built within the GIS system with a 
Neural Network [34], which implicitly implements 
the earthquake energy propagation function. For the 
implemented model  (fig 11) it was assumed that this 
function has the following dependencies: 
 
𝑃𝑗(𝑙) = 𝑓[𝑝𝐴, 𝑀𝑗(𝑙), 𝐻𝑗(𝑙), 𝜃𝑗, 𝑃𝑗(𝑙 − ∆𝑆), ∆𝜔]     (1) 
 
 
Where  
θj is the angle indicating the direction along which the 
j-th simulation is performed; 
pA is the epicenter of the seismic event; 
l is the distance of a generic point from the epicenter; 
Mj(l) and Hj(l) respectively represent the coding 
(carried out through a progressive natural number) of 
the surface geological layer and the altitude above sea 
level of a point located at a distance D from the 
epicenter and on the j-th line; 
Pj(l), is the seismic wavefront power associated to the 
point of polar coordinates l, θj. 
Pj (l -∆S) is the seismic wavefront power associated 
with the point lying on the jth directrix, but at the 
distance l – ∆S. 
 ∆S, finally, is a constant step used by the solution 
algorithm to determine the points for which the 
seismic wavefront power will be calculated 
gradually. 
 
Specifically, the activities carried out by the 
(iterative) algorithm, proposed for tracing the 
isoseismal, are carried out in the manner illustrated 
below (Fig.11). 
Starting from the supposed power already calculated 
in a point having coordinates li,j, θj (li,j is the distance 
from the epicenter of a point lying on the j-th directrix 
and, at the same time, on the i-th isosism)  and 
expressed as Pj(li,j), the power Pj (li, j + ∆S) is 
calculated at the point of coordinates li,j+∆S, θj (in 
particular for points 1 and 2: 11,2+ ∆S, θ2). At this 

point, the power Pj (li, j + ∆S) is compared with the 
power value Pj-1 (li + 1, j-1) (in particular for the point 
1 P1(l2,1)). If this last value is greater of the value 
calculated with the previous iteration, we proceed 
iteratively along the j-th directrix (in figure j = 2), 
until we found a point, whose power values are 
comparable according with (1). The power values 
that are calculated iteratively are obtained from a 
network neural that implements function (2). 
 

 𝑃𝑗(𝑙𝑖,𝑗+∆𝑆)

 𝑃𝑗−1(𝑙𝑖+1,𝑗−1)
≅ 0.02                       (2) 

 

 
 
Figure 11 – Tracking of isoseismal by the OverlayAI operator. 
 
In this case, the power considered for the purpose of 
tracing the isoseismal is represented by the seismic 
intensity relative to the magnitude of the individual 
earthquakes, (INGV DATA), considering the varied 
morphology of the Calabrian land, evaluating the 
height of the various points from the sea level, as well 
as the geological nature of the different types of 
materials present in the area considered. 
The types of material are very important (they 
constitute the results of sedimentations in the various 
geological periods and therefore present a different 
behavior to the reflection and / or transmission of 
seismic waves) and in this regard, in our work  the 
different material typology was highlighted through 
an appropriate numerical coding. This coding was 
implemented by associating a positive integer to each 
type of material. 
An example of the results obtained from the 
experiments carried out is shown in Fig.12, which 
highlights two layers generated with the OverlayAI 
operator and modeling the isoseismal in the study 
area. 
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Figure 12 – Layer generated with Overlay operator 
implemented. 
 
Figure 13 shows the geological map of the Fuscaldo 
area (Paola - San Lucido quadrant) while Figure 14 
shows, a portion of the TIN layer used to take into 
account the effect of the altitudes on the propagation 
of the seismic front. 
 

 
Figure 13 – Geological Layer.  
 

 
Figure 14 – TIN Layer.  
 
The last phase for the calculation of the hazard map 
is resolved in carrying out a standard Geoprocessing 
Intersect operation among all the layers (generated by 
OverlayAI) with polygons delimited by isoseismal, 
and whose features have the calculated attribute from 
the Neural Network in the first phase (the intensity of 
the earthquake is classified for the surface of the 
polygon itself). This operation generates a layer 
where the features are many polygons obtained from 
the intersection of the polygons of the layers of the 
isoseismal (Fig.15). 
 

 
Figure 15 – Isoseismal layer 
 
 
The layer resulting from this operation has an 
attribute where is inserted an index proportional to 
the sum of the indices representing the powers of the 
layers participating in the same Intersect operation. A 
thus made layer classifies the areas according to the 
index mentioned above; the meaning of this mapping 
therefore refers to the probability that a given area is 
hit by a seismic event of considerable intensity. For 
example, a given center, although close to a 
considerable number of "potential" epicenters, may 
be less at risk than a center far from these epicenters 
but delimited by a geological layer (together with 
other factors) which does not dissipate the energy of 
the earthquake [35.]. 
In Figure 15, aggregated areas for forecasted 
characteristics are reported in different color scales . 
 
5 Discussions 
 
Preliminary, it should be noted  that the results 
obtained derive from a preliminary experimental 
analysis carried out exclusively  in order to create and 
test a scientific methodology as rigorous as possible 
Of course, the proposed application requires the use 
of additional data (acquired in a rigorous manner 
through the use of networks materialized on site with 
stable pillars as materialized vertices and with forced 
centering) and refinements of the neural network 
used today, in order to provide potentially valid 
results also for application purposes and not only 
from the point of methodological experimentation. 
As is well known, it is not yet possible to predict 
earthquakes and there are many variables to take in 
account [36]. Consequently, the link or the "unique" 
correlation between surface movements and 
earthquakes is certainly reductive. Infact, it is well 
known that many parameters play a fundamental role 
in the field of earthquake prevention:  

- geophysical precursors:  anomalies in the 
speed and characteristics of the seismic 
waves P and S  and variations in the magnetic 
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and electrical characteristics of rocks and the 
atmosphere;  

- seismological precursors: before a major 
seismic event can occur a series of micro-
tremors (detectable only by instruments) or a 
change in the distribution of seismicity;  

- geodetic precursors: changes in altitude, 
position, inclination of parts of the soil 
surface and velocity of the measured 
displacements;  

- geochemical precursors: variation of the 
concentration in water underground and in 
the ground gases of some chemical elements 
radioactive, including radon gas;  

- hydrological precursors: variation of the 
subsoil level of the acquifer, measured in the 
wells,  

and so on. 
These parameters have not yet been taken into 
account experimentation. 
In relation to the determination of the isoseismal, it 
should also be said and emphasized that the different 
behavior of each single geographical point in the 
transmission of seismic waves is due not only to the 
geo-morphological characteristics, but also to the 
type (epicentral, hypocentral, etc. .) and the 
magnitude of the earthquake. This dependence was 
not taken into account in this study because as 
mentioned, its still merely preliminary phase. 
It is also worth noting that the neural network used 
and implemented for this work comes from an 
experimental test, initially built and tested by authors 
with different data and different application 
purposes. The neural network test used in this work 
is therefore certainly susceptible to improvements in 
order to obtain better and reliable results; in addition, 
it should be noted that the GPS networks are 
currently present on the territory in "mobile" mode 
without providing for any on-site vertices 
materialization, forced centering, and making 
acquisitions on quick geometries (due to economics 
and organization factors). In the future the whole 
methodology could be made more efficient reducing 
most of the approximations above mentioned.  
However, the experimentation carried out, even if it 
requires further tests and analyzes, to date, 
unexpectedly also for authors, however, has shown 
that, it would seem to exist a certain link between 
displacements and earthquakes (which must be 
further studied and ascertained in order to contribute 
to the definition of the earthquake propagation 
mechanism) verified in relation to the expected 
earthquakes of given intensity following an already 
realized event of known intensity. Similarly, 

appreciable, seems to be, the results obtained relating 
to the isoseismic modeling.  
 

6 Conclusions 
The large number of GPS data acquired over time 
allows us to highlight a speed of displacements of the 
earth's crust in the Fuscado Falerna fault; this 
displacement is about 3 (mm / year). Geological 
studies carried out underground show a speed of 
movement of 2-5 (mm / year). The ambitious study 
of the surface deformation of the crust in the 
Calabrian area aims to highlight the possibility of a 
scientific comparison between deformations of the 
subsoil and surface deformations, in order to improve 
the knowledge of the active geo-structural fault. 
Through the appropriate use of a Neural Network 
(specially trained and tested on historical data made 
available by the INGV) and soft computing 
techniques in general, it was possible on the one 
hand, to estimate the probability of occurrence of 
events following the realization of a given event of 
given intensity and on the other to proceed to the 
isoseismic modeling. From our application we 
obtained a preliminary quite good result in the 
context of earthquake prevention studies. In fact, the 
predictive obtained maps if adequately superimposed 
(within the proposed GIS) to socio-economic layers, 
allows to obtain results for the purposes of decision-
making and to support the various local authorities 
for the protection and safeguarding of the population. 
The proposed methodology does not presume to be 
exhaustive nor in relation to the probability 
computing of events occurrence (subsequent to a 
given event) nor in relation to the isoseismic 
computing, since, both in the first and in the second 
case a series of simplifications have been used and 
more insights need to be carried out. The 
methodology used is however satisfactory as a 
starting point to be integrated with further and 
subsequent data and in any case it can still be 
considered a fast methodology for a quick evaluation 
(that in any case seems to provide results comparable 
to those obtained with more complex expensive and 
complete studies) of the earthquake prediction (to 
date, earthquake prediction is still beyond being 
considered an acquired and tested discipline). 
 
 The main purpose of this paper, in fact, is to 
introduce possible innovations in the structuring of a 
seismic risk map starting from the potential offered 
by GPS, GIS and Neural Networks. The research 
proposed, while presenting satisfactory results, is not 
to be considered exhaustive and future developments 
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will necessarily have to take into account the 
simplifications and the highlighted problems. 
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