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Abstract: - The aim of this study is to employ a Time Lagged Recurrent Neural Network (TLRNN) model for 
forecasting near future reference evapotranspiration (ETo) values by using climate data taken from 
meteorological station located in Velestino, a village near the city of Volos, in Thessaly, centre of Greece. 
TLRNN is Multilayer Perceptron Neural Network (MLP-NN) with locally recurrent connections and short-term 
memory structures that can learn temporal variations from the dataset. The network topology is using input 
layer, hidden layer and a single output with the ETo values. The network model was trained using the back 
propagation through time algorithm. Performance evaluations of the network model done by comparing the 
Mean Bias Error (MBE), Root Mean Square Error (RMSE), Coefficient of Determination (R2) and Index of 
Agreement (IA). The evaluation of the results showed that the developed TLRNN model works properly and 
the forecasting ETo values approximate the FAO-56 PM values. A good proximity of predictions with the 
experimental data was noticed, achieving coefficients of determination (R2) greater than 75% and root mean 
square error (RMSE) values less than 1.0 mm/day. The forecasts range up to three days ahead and can be 
helpful to farmers for irrigation scheduling.   
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1 Introduction 
Irrigation scheduling is one of the most important 
procedures in irrigation science and technology as it 
plays a crucial role in water resource management. 
The water resource management strategies should 
be balanced between water supply and demand 
within a time-frame of quantitative and qualitative 
conservation of the characteristics of these resources 
[1].  

The irrigation water needs of a crop are defined 
as those that produce the maximum economic 
impact. These needs are expressed by the crop 
evapotranspiration (ETc). Crop evapotranspiration is 
based on the calculation of the reference 
evapotranspiration (ETo) and on the plant 
coefficients (Kc) that represent the growth 
differences of the crops. The FAO Penman-
Monteith (FAO-56 PM) equation has been 

recommended as the standard method for 
calculation of the ETo [2-4].  

Forecasting should be an integral part of the 
decision-making activities of farm management, as 
it can play an important role in many areas. Modern 
farms require short-term, medium-term and long-
term forecasts, depending on the specific 
application. The forecasting methods depend largely 
on available data. A forecasting task usually 
involves the following steps: a) problem definition, 
b) gathering information, c) preliminary analysis, d) 
choosing and fitting models, e) using and evaluating 
a forecasting model [5]. 

In irrigation management, the terms "forecast" 
and "forecasting" are reserved for estimates the 
water status of plants at future times as accurately as 
possible, based on historical data and knowledge of 
any future events that might impact the forecasts 
[6]. Climate-based data are used to perform ETo 
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forecasting. Although the availability of climate 
data may be satisfactory, nevertheless there are still 
challenges with ETo forecast, as good accuracy is 
required depending on the good quality of the 
weather data retrieved from public sources. The 
procedures for ETo forecast were derived from 
simple models, commonly from empirical equations 
based on temperature. However, the ETo is a 
nonlinear physical complex process, which makes 
the empirical equations to often fail in computing 
the relationship between weather, soil and crops 
factors [7]. In recent years, soft computing methods 
have been studied and used for modeling the ETo as 
a function of climatic data. Soft computing methods 
include Fuzzy Logic (FL), Genetic Algorithms 
(GAs), and Artificial Neural Networks (ANNs) [8-
12]. 

ANNs have more applications in irrigation and 
ETo calculations when compared with other soft 
computing methods [13]. For instance, Chauhan and 
Shrivastava [14] studied the ability of AANs to 
estimate the ETo in comparison to climatic based 
methods. The analysis of results showed that ANN 
model estimated ETo with high reliability. Traore et 
al. [15] investigated a multilayer feed forward 
backpropagation neural network (BPNN) for 
estimation of ETo nonlinear complex process using 
limited climatic data. The results showed that BPNN 
temperature-based model has better performance in 
comparison to the empirical Hargreaves method. In 
addition, it was found that relative humidity and 
wind velocity improved the BPNN accuracy when 
applied into the models inputs. Tabari and 
Hosseinzadeh Talaee [16] examined four multilayer 
perceptron (MLP) networks comprising various 
combinations of meteorological data for estimating 
ETo. The MLP network that uses all of 
meteorological data showed best estimation for ETo 
in comparison to the other MLP networks. Traore et 
al. [17] developed four ANNs learning algorithms 
(Generalized Feedforward (GFF), Linear Regression 
(LR), Multilayer Perceptron (MLP) and 
Probabilistic Neural Network (PNN)) for 
forecasting ETo values by using restricted climate 
information retrieved from public weather forecast 
source. The results showed that minimum (Tmin), 
maximum (Tmax) daily air temperatures and net solar 
radiation (Rs) input dataset yielded the highest 
performances with the Multilayer Perceptron (MLP) 
backpropagation network capable to reproduce the 
closest values to the observed FAO-56 PM method. 
Short periods of field data from low-cost sensors 
were used by Kelley and Pardyjak [18], to first train 
the ANN to estimate actual evapotranspiration 

(ETa). This approach demonstrated that can estimate 
site-specific and crop specific ET. 

In this study used a Time Lagged Recurrent 
Neural Network (TLRNN), which is Multilayer 
Perceptron Neural Network (MLPNN) with locally 
recurrent connections and short-term memory 
structures that can learn temporal variations from 
the dataset [19]. TLRNN provides a way to 
approximate any nonlinear function as y=f(x,w), 
where w is a set of weight parameters [20]. It is 
useful for time-series prediction applications, 
system identification, etc. A TLRNN is found to be 
suitable for forecasting suspended sediment load 
occurring episodically during the storm events in 
river basins [21]. Kote and Jothiprakash [22] used 
TLRNN for river level prediction. Saharia and 
Bhattacharjya [23] developed a model using 
TLRNN to estimate runoff for river Dikrong, a 
tributary of river Brahmaputra in India. It should be 
noted that there is a very limited literature related to 
TLRNNs application in forecasting of ETo. The aim 
of this research is to forecast near future reference 
evapotranspiration (ETo) values by means of a 
TLRNN model. 
 
2 Materials and Methods 
The methodology followed in this research is 
illustrated in Fig.1. First step is the data collection. 
The next step involves data processing. Then 
TLRNN model was developed, validated, and 
tested. 
 

 
 

Fig.1. Methodology flowchart. 
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The above methodology can be used to estimate 
ETo. Moreover, given enough information, 
correlation is adequate to make robust and 
informative predictions of ETo. However, it has 
limitations. It can be influenced by the quantity and 
quality of input data. 
 

2.1 Study area 
Meteorological data were available from the 
meteorological station located in Velestino, village 
in Magnesia regional unit that is situated at the 
south-eastern end of the Thessalian Plain, 17 km 
west of Volos and 40 km southeast of Larissa, 
central Greece (Fig.2).  
 

 
 
Fig.2. Location map of the study area (Source: 
GEODATA.gov.gr).  
 
2.2 Empirical ETo model  
Wind speed, air temperature, relative humidity data 
as well as radiation values were used for the initial 
calculation of ETo as defined by the FAO-56 PM 
method [24]. This is calculated according to 
equation (1).  
 

𝐸𝑇𝑂 =
0.408∙𝛥∙(𝑅𝑛−𝐺)+𝛾∙

900

𝑇+273
∙𝑢2∙(𝑒𝑠−𝑒𝑎)

𝛥+𝛾∙(1+0.34∙𝑢2)
                   (1)          

 
where ETo reference evapotranspiration (mm day-1), 
Rn net radiation at the crop surface (MJ m-2 day-1), G 
soil heat flux density (MJ m−2 day−1), T daily air 
temperature at 2m (∘C), u2 wind speed at 2 m (m 
s−1), es saturation vapour pressure (kPa), ea actual 
vapour pressure (kPa), es-ea saturation vapour 
pressure deficit (kPa), Δ slope vapour pressure 
curve (kPa ∘C−1), and 𝛾 psychrometric constant (kPa 
∘C−1). 
 
2.3 TLRN model 
There are various designs of ANNs aimed to 
performed on different tasks. The designs used in 
making neural network predictions can be classified 
from the simplest that are easy to implement, 
through the more complex and more powerful. In 
this study, we focused exclusively on the Time-

Lagged Recurrent Neural Network (TLRNN). 
Neural network model was developed using 
Neurosolutions package. Fig.3 gives an illustration 
of the TLRNN architecture. This architecture was 
adopted to model the relationship between input and 
output values. It represents a framework to 
investigate the ability of neural network to forecast 
ETo, due to the flexibility of using different 
processing elements, containing feedback and delay 
line taps to express dynamic behaviour. TLRNN has 
short-term memory structures to store the data input, 
one hidden layer with nonlinear processing elements 
connected directly to the current input taps and the 
feedback loops of the output memory structures. A 
standard threshold processing element is also 
included to adjust the output. One hidden layer is 
sufficient for the majority of problems. It should be 
noted that the number of neurons in the hidden layer 
is a parameter which influences the network 
performance. If a large number of neurons are used 
in the hidden layer, then the network training time is 
increased. On the other hand, if a small number of 
neurons applied, it can also lead to an accuracy 
problem. The number of nodes in the hidden layer 
was determined by trial and error procedure. 
Finally, output layer contains another short-term 
memory structures with delay feedback loops to the 
hidden layer processing elements. This architecture 
shows increased flexibility by the design of the 
processing elements, containing feedback and delay 
line taps to express dynamic behaviour. TLRNN is 
an advanced network, the purpose of which is to 
forecast or classify time-varying problems using 
recurrency as a way to provide memory of the past 
time periods. 

 
Fig.3. Architecture of the developed TLRNN model. 
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There are three main memory structures to 
choose such as Tapped Delay Line (TDL), Gamma 
and Laguerre. Memories can be included to any 
layer in the network, producing very sophisticated 
neural topologies very useful for time series 
forecast. In this study, the Gamma and Laguerre 
memories are selected. They are used in the network 
to remember past signals. The Gamma memory 
allows a trade-off between memory resolution (R) 
and memory depth (D) via the parameter μ. Memory 
depth refers to how far into the past the memory 
stores information relative to the memory size and it 
is given by: D=K/μ. This means that the neural 
network can control the depth of the memory by 
changing the value of the feedback parameter, 
instead of changing the number of inputs. Memory 
resolution refers to the degree to which information 
concerning the elements of the input sequence is 
preserved and it is approximated by: R=μ. The kth 
order of Gamma memory is characterized by the 
relation: K=DxR [25]. The Gamma memory 
structure is defined by the transfer function G(z) 
shown below in equation (2). 
 

𝐺(𝑧) =
𝑧−1 − (1 − 𝜇)

1 − (1 − 𝜇)𝑧−1
                                          (2) 

 
where μ is an adaptive parameter (for the short-term 
memory to be stable 0<μ<2). 

The Laguerre memory is a more general 
structure as it includes the Gamma memory. The 
Laguerre memory is composed of a low-pass filter 
and a cascade of i-1 similar all-pass filter. The tap 
signals are obtained by the convolution of the low-
pass filtered input with an orthogonal set of the all-
pass functions. Thus, it is less correlated to a 
Gamma memory and the adaptation speed becomes 
faster [26]. In the z-domain, the ith Laguerre 
function is computed by equation (3). 

 

𝐿𝑖(𝑧, 𝜇) = √1 − (1 − 𝜇)2  
(𝑧−1 − (1 − 𝜇))𝑖−1

(1 − (1 − 𝜇)𝑧−1)𝑖
  (3) 

 
There are four main ways to train a TLRNN 

model, all of which based on different methods. In 
this study, TLRNN uses a learning algorithm that is 
known as backpropagation through time (BPTT). 
The general form of BPTT contains the following 
steps: a) forward calculation, b) calculation of result 
(error, utility), c) calculation direct derivatives of 
error with respect to outputs of forwards 
calculations, d) backpropagate through forwards 
calculation (calculating running totals where 
appropriate). The outputs of the TLRNN at each 

time have two ways of changing the total error: a) 
direct way when the current predictions are different 
from the current targets, b) indirect way based on 
the impact of outputs on errors in later time periods. 
BPTT can adapt the depth of the memory using 
different types of learning rules, instead of changing 
the number of inputs. The best learning rule for each 
layer for the studied data was backpropagation. 
Training of the TLRNN was done with BPTT with 
trajectory learning and the parameters were learned 
via examples. The network has to be run forward in 
time until the end of the trajectory and the activation 
of each processing element must be stored locally in 
a memory structure for each time step. Then the 
output error is computed, and the error is 
backpropagated across the network. An analytical 
discussion of BPTT is available in Werbos [27], 
Jothiprakash and Kote [28]. 

The input-training data procedure was based on a 
series of parameters such as the month number (in 
sequence), the day number (in sequence), the total 
daily rainfall in mm, the maximum and minimum 
air temperature in oC, the maximum and minimum 
relative air humidity in %, the maximum wind speed 
during the 24 h of a day in m/sec, the total solar 
radiation on horizontal surface in W/m2. The data 
for a period of six years from 2014 to 2018 was 
used for training the models, whereas the remaining 
data for a period of two years from 2017 to 2018 
was used for validation purpose. ETo data was 
separated into three parts, with 60% for training, 
20% as cross validation for evaluating the TLRNN 
model performance and 20% for testing the model 
on data not seen before. TLRNN model was 
designed and tested rigorously for various number 
of lag, number of neuron at hidden layer and with 
different values of memory adaptive parameter.  

The stopping criteria for the training of the 
developed TLRNN in the present study is either a 
maximum of 150 epochs or training is set to 
terminate when the error sum of squares of the cross 
validation testing data set begins to increase. The 
stopping of the training process is used to keep the 
system from over-fitting the training data. 

  
2.4 Model performance evaluation 
Four statistical indicators, the coefficient of 
determination (R2), the root mean square error 
(RMSE), the index of agreement (IA) and the mean 
bias error (MBE), were also used to evaluate the 
performance of the TLRNN model [29]. 

Mean Bias Error (MBE) is used to describe how 
much the TLRNN model underestimates or 
overestimates the situation [30]. This is calculated 
according to equation (4). 
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𝑀𝐵𝐸 =
1

𝑛
∙ (∑ (𝑃𝑖

𝑛

𝑖=1
− 𝑂𝑖)                                 (4) 

 
where n is the number of data points, Pi the 
predicted data point, Oi the observed data point. 

Root Mean Square Error (RMSE) is one of the 
most commonly-used statistics which measures the 
difference between observed and model-predicted 
values [31]. A RMSE value closer to zero indicates 
better model performance. This is calculated 
according to equation (5). 
 

𝑅𝑀𝑆𝐸 =
1

𝑛
∙ (∑ (𝑃𝑖 − 𝑂𝑖)2

𝑛

𝑖=1
)

1

2

                          (5) 

 
where n is the number of data points, Pi the 
predicted data point, Oi the observed data point. 

Coefficient of Determination (R2) is used to 
explain how much of the observed variability is 
accounted by the predicted model [30]. R2 will have 
a value between 0 and 1 (0≤ R2 ≤1). A value of R2 
near 0 indicates that the model explains none of the 
variability of the response data around its mean, 
whereas a value of R2 near 1 indicates that the 
model explains all the variability of the response 
data around its mean. R2 is calculated according to 
equation (6). 
 

𝑅2 =
∑ (𝑃𝑖 − 𝑂𝑖 𝑎𝑣𝑒)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂𝑖 𝑎𝑣𝑒)2𝑛
𝑖=1

                                         (6) 

 
where n is the number of data points, Pi the 
predicted data point, Oi the observed data point, 
Oiave is the average of observed data. 

Index of Agreement (IA) is used as a 
standardized measure of the degree of model 
prediction error which varies between 0 and 1 [32]. 
The agreement value of 1 indicates a perfect match, 
and 0 indicates no agreement at all. IA calculated 
according to equation (7). 
 

𝐼𝐴 = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖 −𝑂𝑖 𝑎𝑣𝑒| + |𝑂𝑖 − 𝑂𝑖 𝑎𝑣𝑒|)2𝑛
𝑖=1

   (7) 

 
where n is the number of data points, Pi the 
predicted data point, Oi the observed data point, 
Oiave is the average of observed data. 
 
3 Results and Discussions 
Fig.4, Fig.5 and Fig.6 show the comparison between 
estimated ETo values (blue line) by the FAO-56 PM 
method and the forecasted ETo values (red line) by 

the developed TLRNN model for one, two and three 
days ahead, respectively. The TLRNN forecasted 
ETo values agreed with the FAO-56 PM estimated 
ETo values and followed the same trend. A visual 
inspection of the FAO-56 PM estimated ETo and 
TLRNN forecasted ETo clearly demonstrates the 
potential of TLRNN modelling. The results obtained 
in the present study partially verify Ferreira and da 
Cunha [33], and Yin et al. [34] who reported better 
performances for a Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM) and a Bi-
directional Long Short-Term Memory model (Bi-
LSTM), respectively. For TLRNN higher values 
were not found to be trained more correctly. It is 
obvious by the Figs. 4, 5 and 6. This can be due to 
the availability of a lower number of training 
patterns for higher values and lesser number of input 
parameters to the TLRNN to fully capture the 
nonlinearity in the interacting climatic factors 
particularly during the peak values [35].  

Fig.7, Fig.8 and Fig.9 show the scatter plots 
between ETo estimated using the FAO-56 PM 
method and forecasted by TLRNN model for one, 
two and three days ahead, respectively. Figures 
shown that in the first day the forecast of the 
TLRNN model was better fit than the other two 
days. The R2 value indicates that 80.0% of the total 
variation in forecasted ETo is explained by the 
observed ETo values. This result is in agreement 
with Abrahart and See [36], and Le et al. [37], 
where the authors argued that the neural network 
models are efficient in capturing complex, dynamic 
and non-linear relationships of the physical process 
being modeled. 

Table 1 shows the performance evaluation of the 
TLRNN model with corresponding MBE, RMSE, 
and IA values. Lower value of RMSE (0.9 mm/day) 
indicates superior model efficiency. The MBE 
values, shows that the model makes a small 
overestimation of the ETo on an average basis of 0.1 
mm/day. The IA indicator is very close to the unit, 
indicating that the predicted values of the model for 
the next three days are close enough to the observed 
ETo. Therefore, the developed TLRNN model for 
the next three days shows a satisfactory prognostic 
ability. Similarly, Mulualem and Liou [38] applied 
seven ANN models incorporating hydro-
meteorological, climate, sea surface temperatures, 
and topographic data for crop ET estimate in in the 
Upper Blue Nile basin of Ethiopia. They reported 
that coefficient of determination and the root-mean-
square error of the best architecture ranged from 
0.820 to 0.949 and 0.263 to 0.428, respectively. 
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Fig.4. Comparison between observed and forecasted 
ETo for one day ahead. 
 

 
 
Fig.5. Comparison between observed and forecasted 
ETo for two days ahead. 
 

 
 
Fig.6. Comparison between observed and forecasted 
ETo for three days ahead. 
 

 
 
Fig.7. Scatter plot of the observed versus the 
forecasted ETo for one day ahead. 

 
 
Fig.8. Scatter plot of the observed versus the 
forecasted ETo for two days ahead. 
 

 
 
Fig.9. Scatter plot of the observed versus the 
forecasted ETo for three days ahead.  
 

Accurate forecasts of ETo are necessary in 
efficient irrigation water management. When taking 
into account meteorological data such as the total 
daily rainfall, maximum and minimum air 
temperature, maximum and minimum relative air 
humidity, maximum wind speed, and total solar 
radiation on horizontal surface, it is possible to 
estimate ETo. Additional, tests were carried out to 
investigate the sensitivity of model with respect to 
variation of parameters. Results showed that in the 
TLRNN, ETo was more sensitive to radiation and 
less sensitive to wind speed. Also, when the 
radiation decrease by more than 7%, the ETo was 
more sensitive to relative humidity. 

In this section, the precision to forecast ETo is 
examined using a TLRNN model. The procedure to 
forecast ETo using TLRNN model involved the 
calibration known as training, as well as validation 
stages processed versus the observed FAO-56 PM 
reference values. Selecting the most suitable inputs 
to the TLRNN is an important first step in model 
build up. For TLRN, a dynamic learning algorithm 
like backpropagation through time (BPTT) was 
adopted which is appropriate for temporal problems 
and more advanced than standard backpropagation. 
Meteorological data should be highly reliable and 
taken carefully in order to minimize possible errors. 
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Forecast skill depends on which meteorological 
variables are utilized to forecast ETo. Yang et al. 
[39] shown significant improvement in ETo forecast 
performance when wind speed is included into 
weather inputs rather using only the temperature. 
Yin et al. [40] using a hybrid bi-directional long 
short-term memory model, concluded that the use 
limited meteorological variables (maximum 
temperature, minimum temperature and sunshine 
duration) provides better performance in 
comparison to the corresponding other input 
combinations. 

The results showed that the TLRNN model has a 
satisfying performance for one to three days ahead. 
The statistical analysis of the results showed that the 
developed TLRNN model has a remarkably 
satisfying ability to predict the ETo values of the 
following one to three days. The accuracy prediction 
by TLRNN model is found to be 80.7%, 77% and 
75.85% for the first, second and third day, 
respectively. It is obvious that results estimating by 
TLRNN show that improvement are needed. 
Therefore, TLRNN model after minor improvement 
may give access to a new chance for rapid forecast 
of ETo. The availability of accurate ETo forecasts 
that range up to 3 days ahead, can be helpful to 
individual farmers for irrigation water management 
and scheduling.  
 
Table 1. Performance evaluation of the TLRNN 
model based on the following statistical indicators. 
 

TLRNN 
Models 

MBE RMSE IA 

 (mm/day) (mm/day)  
1st day ahead +0.1 0.9 0.946 
2nd day ahead +0.1 1.0 0.934 
3rd day ahead +0.1 1.0 0.929 

 

4. Conclusions 
Neural networks have become an important tool for 
time series forecasting, such as reference 
evapotranspiration (ETo) values. ETo prediction 
definitely plays an important role in irrigation 
planning. However, it must be fine-tuned for crops 
requirements. In this study, the reference 
evapotranspiration (ETo) evolution of one to three 
days, was successfully forecasted by the 
implementation of a Time Lagged Recurrent Neural 
Network (TLRNN) model. TLRNN is a Multilayer 
Perceptron Neural Network (MLPNN) with locally 
recurrent connections and short-term memory 
structures (Gamma and Laguerre) that can learn 

temporal variations from the dataset. Meteorological 
data were available from the meteorological station 
located in Velestino (Magnesia regional unit, central 
Greece). The data was based on a series of 
parameters such as the month number, the day 
number, the total daily rainfall, the maximum and 
minimum air temperature, the maximum and 
minimum relative air humidity, the maximum wind 
speed, the total solar radiation on horizontal surface. 
A good accordance between experimental and 
forecasted values was observed, confirming that the 
developed TLRNN is able to predict ETo with a 
tolerant error. The results of this study along with 
the statistical estimation, suggest that the proposed 
TLRNN model could be used to forecast in an 
acceptable extend, the ETo values of the following 
one to three days. Therefore, TLRNN could be 
successfully used to estimate ETo, and demonstrates 
the utility of the model to provides insights into 
variability in crop water needs, information which 
can be used directly in irrigation decisions. 

The next step is to repeat the project after 
eliminating the extreme or non-real values of the 
data. In addition this TLRNN model can be 
improved in relation to the computation speed and 
memory usage. From this point of view new results 
are expected to fit even more perfectly or at least to 
be very close to the results of the FAO-56 PM 
method. However, it must be noticed necessity of 
further research for safer and scientifically 
substantiated conclusions for ETo forecasting under 
different environmental conditions and input data 
availability. Thus, in future study, it is proposed to 
utilize meteorological data from more weather 
stations and a wide range of climatic conditions to 
validate the proposed methodology. 
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