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Abstract: - WRF model have been tuned and tested over Georgia’s territory for years. First time in Georgia the 
process of data assimilation in Numerical weather prediction is developing. This work presents how forecast error 
statistics appear in the data assimilation problem through the background error covariance matrix – B,  where the 
variances and correlations associated with model forecasts are estimated. Results of modeling of background error 
covariance matrix for control variables using WRF model over Georgia with desired domain configuration are 
discussed and presented. The modeling was implemented in two different 3DVAR systems (WRFDA and GSI) 
and results were checked by pseudo observation benchmark cases using also default global and regional BE 
matrixes. The mathematical and physical properties of the covariances are also reviewed.  
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1 Introduction 
In numerical weather prediction (NWP), it is 
impossible to know the full state of the system at each 
grid point. There are different noisy sources of 
information available. One is short-term prediction, 
valid at the analysis time (also known as first guess 
or background information), which may not be 
accurate. Another is observations, where neither 
every model variable is measured nor observations 
are available at every grid point, considering 
measurement errors.  
Data assimilation (DA) methods are widely used for 
the objective of state-estimation, based on the 
weighted combination of different sources of 
information. During the process of data assimilation 
a correction to the forecast is applied based on a set 
of atmospheric observations and estimated errors that 
are present in both the observations and the forecast 
itself [1, 2].  
Estimating background errors is essential to the 
success of data assimilation, as they are giving proper 
weight to the background and, therefore, implicitly 
also to the observations. They also are correlated in 
space, which provides a means to propagate the 
information of the observations in three dimensions. 
The background errors of various meteorological 
variables are also correlated, allowing multivariate 
adjustments to be made to the analysis, representing  
the dynamic and physical balance of the atmosphere 
[3,4]. 
Development of data assimilation process, began 
with simple horizontal interpolation methods, which 

gradually became three-dimensional, including also 
multivariate relationships – 3D variational DA. Later, 
dynamical processes have been utilized into DA 
process and the 4D variational DA was developed 
and applied operationally. To consider the flow 
dependence of forecast errors in the DA process, 
various forms of ensemble Kalman filters and 
variational techniques have been tested. More 
recently, hybrids between variational and ensemble 
DA methods have been proposed and are 
mainstreamed into Global centers [5,6]. The 
background error statistics are measured, described 
and used by each of the centers in different ways 
[7,8].  
Traditionally, two distinct techniques are used to 
specify forecast-error covariances: the NMC 
(National Meteorological Center) and ensemble 
methods which are often combined with algebraic 
operations such as matrix factorization or covariance 
localization [9, 10, 11]. Matrices with homogeneous 
and isotropic characteristics such as diagonal are 
often favored. Other approaches are based on 
numerical techniques involving convolution 
operations or resolution of diffusion equations 
[12,13]. 
Recent works have also investigated model error 
covariance modelling (often noted as matrix Q), 
which can be seen as the main contributor of the 
background matrix in a dynamical system [14].  
Georgia has recently started the data assimilation. We 
use a three-dimensional variational data assimilation 
method at this stage. In this paper, we present 
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background covariance matrix’ properties for WRF-
ARW model configured and tuned over South 
Caucasus domain generated with GEN_BE code and 
tested results within the two assimilation systems 
GSI and WRFDA [15].  
The first section of this document describes the role 
of the background error covariance matrix in the data 
assimilation framework; the second describes 
methods for formulation of the B matrix, with 
difficulties and opportunities of its estimation. The 
third one presents functional steps of the B matrix 
generation by GEN_BE v2.0 with some technical 
details in our application and provides results of 
pseudo observation case in two different systems of 
data assimilation (WRFDA and GSI) using different 
B matrix involving the same set of five control 
variables (CV5).  
 
 
2 METHODS AND MATERIALS 
2.1. Background error covariance matrix and 

initial state of atmosphere 
The objective of VAR is a cost function J(δx, xg)  
minimization. This objective function (or penalty) is 
a combination of forecast and observation deviations 
from the desired analysis, weighted by forecast and 
observation-error covariance matrices. 
J(δx,xg)=1/2(δxb−δx)TB(δxb−δx)+ 
1/2[yo−H(xg+δx)]TR−1[yo−H(xg+δx)]    (1)   
Where x is the state vector composed of the model 
variables (e.g. winds, pressure, temperature, 
humidity, etc.) to analyse, at every grid point of the 
3-dimensional (3-D) model computational grid [6].  
δx is difference between  the analysis xa and reference 
state  or the ‘first guess’ xg, i.e.   
           xa= xg+ δx                                               (2) 
yo is the vector of observations and H called the 
observation operator, is a mapper from the gridded 
model variables to the irregularly distributed 
observation locations. R is the observational error 
covariance matrix. B is the background error 
covariance matrix. The background error covariance 
matrix describes the probability distribution function 
(PDF) of forecast errors. Theoretically, exact 
knowledge of R and B would require the knowledge 
of the true state of the atmosphere at all times and 
everywhere on the model computational grid, what is 
not possible. Therefore, both matrices have to be 
estimated in practice. Dimension of the B matrix is 
the square of the 3-D model grid multiplied by the 
number of analyzed variables. For typical 
geophysical applications as in meteorology, the size 
of the B matrix, comprised of nearly 107×107 entries, 
is too large to be calculate explicitly nor be stored in 

present computer memories. As a result, the B matrix 
needs to be parameterized [16, 17]. 
2.2. Background errors covariance matrix 

modeling 
The dimensions of the background error covariance 
matrix (B) are usually too large to be explicitly 
determined and B needs to be modeled.  
Statistics of the background error covariance matrix 
B are usually determined for a limited set of 
variables, called control variables that minimize the 
error covariance between variables. Then, several 
parameters need to be diagnosed to drive the series of 
operators that model B.  
The cost function as defined in (1) is usually 
minimized after applying the change of a variable: 

 δx= B1/2u                (3) 
B1/2 is the square root of the background error 
covariance matrix. The variable u is called the control 
variable and the cost function becomes: 
J(u)=1/2uTu+1/2(d −HB1/2u)TR−1(d −HB1/2u)    (4) 
Where d is the innovation vector defined as d = 
(yo−H(xb)) and it represents the difference between 
observations and their modeled values using a non-
linear observation operator.  
The square root of the B matrix as defined in 
Equation (3) is decomposed to a series of sub-
matrices, each corresponding to an elemental 
transform that can be individually modeled:  

U= SUpUvUh  (5) 
Where, S is composed of the standard deviations of 
the background errors and is a diagonal matrix. Up 
matrix (Physical Transformation) defines the cross-
correlations between different analysis variables via 
statistical balance (linear). 
Uh - Horizontal Transform - defines the horizontal 
auto-correlations for the control variables. It is 
modeled through successive applications of recursive 
filters [18],  
The matrix Uv defines the vertical auto-correlations 
for each of the control variables [19]. 
The modeled matrix B can be understood in terms of 
its horizontal and vertical structure functions. These 
structural functions determine the propagation of 
information from observations by background 
corrections for nearby horizontal and vertical grid 
points in accordance with the correlation (between 
gridpoints and variables) captured by the 
“offdiagonals” of B matrix. 
3 Calculation and results  
3.1. Variational Data assimilation  
The theoretical framework for variational data 
assimilation is supported by Bayes’ theorem: the best 
estimate of the state can be found from the 
conditional probability of the state given the 
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observations (posterior). This is mathematically a 
function of the probability of the state (prior) and 
conditional probability of the observations occurring 
given the state (likelihood). The best estimate of the 
state is known as the analysis. The variational 
approach involves finding the analysis that minimises 
a cost function J (see eq.1). Let J write as the sum of 
two members - the penalty contribution by the model 
(𝐽b) and observations (𝐽o) 
𝐽(𝐱) = 𝐽b (𝐱, 𝐱𝐛, 𝐁) + 𝐽o (𝐱, 𝐲, 𝐑) (6) 
Assuming that the prior and likelihood follow a 
Gaussian probability distribution, we apply Bayes’ 
theorem to determine the posterior. 𝐽b is larger if 𝐱 
deviates more from 𝐱𝐛 with smaller background 
errors. 𝐽o is larger if 𝐱 deviates more from its 
corresponding observations with smaller observation 
errors.  
The analysis (𝐱=𝐱𝐚) that minimizes this cost function 
has the maximum a posteriori probability; it is the 
mode of the posterior. 
The solution 𝐱𝐚  
𝐱𝐚 = 𝐱𝐛 + 𝐊(𝐁, 𝐑)𝐝(𝐱𝐛, 𝐲) (7) 
Where, 𝐊 is commonly referred to as the gain matrix, 
as a function of 𝐁 and 𝐑 and 𝐝 is the innovation - 
difference between observations and the equivalent 
observations constructed from the background. (𝐊𝐝) 
quantitatively estimates  increment - the corrections 
to add to the background. This is the mathematically 
optimal approach for finding the best estimate of the 
state in variational data assimilation. 
3.2. Calculation of the B matrix 
For this study, we calculate Background error 
covariance matrix B using GEN_BE code version 2.0 
(compiled with Intel compilers) in WRFDA for 
WRF-ARW model over the 9.2 km domain (Fig.1) 
with 151 x 100 x 36 grid cells.  

 
Fig.1, Extension of the WRF-ARW computational 
domain 
The run comprises from 5 stages, having separate 
input output infrastructure and managed via namelist 
file, where control variables and all parameters to 
model B are defined by user.  

Since the background error covariance matrix is a 
statistical entity, samples of model forecasts are 
required to estimate the associated variances and 
correlations of desired variables. The input data for 
gen_be are WRF forecasts, which are used to 
generate model perturbations, used as a proxy for 
estimates of forecast error. 
NMC (named for the National Meteorological 
Center) method [20] was used to represent a sample 
of model background errors, where differences 
between two forecasts valid at the same time but 
initiated at different dates (time lagged forecast, e.g. 
24-minus 12 h forecasts) was taken. This is done for 
many different dates to build up a large sample size 
for calculating statistics. Climatological estimates of 
background error may then be obtained by averaging 
these forecast differences over a period (e.g. one 
month). 
For this run, spring 2020 12 and 24-hour WRF-ARW 
forecasts, initialized both at 00 and at 12 UTC was 
used. Thus in all 180 pairs of perturbations are 
utilized to generate WRF-ARW Background Error.  
On the initial stage analyses control variables stream 
function (ψ) and unbalanced velocity potential (χu) 
are calculated from u and v wind, then differences for 
following 5 control variables: stream function (ψ), 
unbalanced velocity potential (χu), Temperature (T), 
Relative Humidity (q), Surface Pressure (ps) have 
been crated.  On the next stage statistics are 
calculated, such as mean from differences, created on 
the initial stage, then performs perturbation for each 
control variable and computes covariance of the 
respective fields [21].  
On the stage, 3 regression coefficients and balanced 
part of χ, T and ps variables are computed. The 
simplest way to model correlation between them is 
to use linear regression. Firstly, the regression 
coefficients between variables are calculated, and 
then linear regressions are performed to derive 
uncorrelated control variables and then remove the 
balanced part for each other variable. This part is 
achieved by the physical transformation (Up). It 
models correlations between variables and allows 
transforming to the diagonal matrix in the control 
variables (uncorrelated) space and computes 
unbalanced parts for the same variables:  
χu  ́= χ´- χb;  Tu  ́= T´- Tb; ps_u  ́= ps  ́- ps_b is the 
preliminary step before estimating the vertical and 
horizontal auto-correlation parameters for each 
control variable.  
Stage 4 Removes mean for χu ,́ Tu  ́ & ps_u  ́ and 
computes eigenvectors and eigen values for vertical 
error covariance matrix of ψ , Tu ,́ χu  ́and q fields, 
variance of ps_u  ́and eigen decomposition of ψ ,́ χu ,́ 
Tu  ́and q fields. 
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On the last stage “lengthscale (s)” calculated for each 
variable and each eigen mode. 
Bellow on the fig. 2 some properties of B matrix 
displayed. 
Namely Fig.2 represents the first five eigenvectors of 
psi – Stream function, chi_u, - unbalanced part of 
velocity potential, t_u, - unbalanced part temperature 
and rh-relative humidity variables. The eigenvectors 
are the results of EOF decomposition of the vertical 
auto covariance matrix and define vertical transform. 
On the Fig.3, horizontal length scales are shown for 
the same variables. 
The stream function and the potential velocity have 
the largest length scale value reaching 160 km and 
120 km correspondingly. While, the unbalanced 
temperature length scale has a strong variation for the 
three first EOF passing approximately from 5 to 15 
vertical modes and from there decreases from 40km 
to reach 10 km for the last EOF mode.  
3.3. A single pseudo observation test 
For diagnose and visualize B matrix properties is a 
good chose to run a single observation test, where 
only one (pseudo) observation is assimilated from a 
specific time and location within the analysis domain. 
In this case in the analysis equation:  
xa = xb + BHT(HBHT + R)-1[yo-H(xb)]         (8) 
It’s assumed that for any control variable [yo-H(xb)] 
= 1.0; R = I. Thus, xa - xb = B* constant delta vector 
and only B matrix is corresponding on spread of 
increments in the point across the domain 
horizontally and vertically. In addition, how it affects 
the other variables also estimated.   
We design our single observation experiment in this 
way: wind U component was increased with 1 m/s in 
the center of the domain on the 500-hpa height.  
The benchmark case was carried out into two 
variational data assimilation systems WRFDA and 
GSI, with similar background forecast files and 
namelist settings and 3 different B matrices: our 
domain specific B, Bnam and default Global 
B.dat_cv3. We performed several runs with Bnam 
and B.dat_cv3 matrices, with and without tuning 
(lengthscale and variance options).  
 

 
Fig.2, Five eigenvectors of psi – Stream function, 
chi_u, - unbalanced part of velocity potential, t_u, - 
unbalanced part temperature and rh-relative humidity 
variables 

 
Fig. 3, length scale factor for the Stream function, 
unbalanced part of velocity potential, unbalanced 
part temperature and relative humidity variables 
 
Information spreading areas horizontally and 
vertically, for U-wind were compared from all cases; 
also, its impact on V wind and Temperature 
increment propagation was studied. 
Results of how the increment of U_wind in WRFDA 
with our B in the domain center, affects temperature 
and V_wind horizontally are presented on the fig. 4.  
From all simulation is clear that Bnam and B.dat_cv3 
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matrices are producing very large spread area, with 
distorted shapes. It’s undesirable to use them without 
tuning, which was expected.  
The Perturbation area produced from GSI recursive 
filter, with Bnam is larger than from WRFDA 
produced one with EOF mode, but due to tuning 
length scale and variance parameters affected area 
became more concentrated in the center and reduced. 
Even after tuning, the advantage of our B matrix in 
both systems is obvious. Only the U_wind’s 
innovation has a larger impact on the vertical cross-
sections XZ, using our B than Bnam. Direct 
comparison of these statistics is difficult, as they are 
performed with different models, configurations, and 
physical options, but it’s also worth to mention, that 
properties of B defends on data sample and its size, 
for which it was modeled. Bnma modeled from NMC 
method applied to 60 perturbations taken over a year, 
while our B was constructed from 2-months data set. 
Our domain specific B matrix was validated within 
both assimilation systems via the single observation 
tests’ successfully. The results have sound physical 
meaning and are well expected. 

 

Fig.4, Analyses innovation for T and V variables in 
WRFDA with our B matrix. 

4 Conclusion 

To estimate model forecast error in variational 
assimilation system, background error covariance 

matrix B, was successfully modeled and validated for 
Georgia’s territory. To model B matrix GEN_BE 
v2.0 code has been used where model univariate or 
multivariate covariance errors from five control 
variables were taken as an input. This code gathers 
some methods and options that can be easily applied 
to different model inputs and used on different data 
assimilation platforms. Different stages and 
transforms that lead to the modeling of the 
background error covariance matrix B and testing 
results by performing single observation tests was 
described and shown in this paper.  B matrix modeled 
for our domain was tested on WRFDA platform using 
the EOF decomposition and was compared with the 
similarly designed test results on GSI platform using 
the recursive filters to model the vertical transform. 
Successful modeling of the B matrix is a prerequisite 
for further development of NWP system in the 
region, where the orography is quite complex and 
peculiarities of locally developed weather 
phenomena at any time a year are often characterized 
with diversity and extremity. It should also be taken 
into account that the quantity and quality of 
observational data for assimilation process really is 
not sufficient in the region, which underlines the 
demand for the reliability of this matrix. 
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