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Abstract: - Drought phenomenon is one kind of a disaster that can significantly affect the density of vegetation 
in any area, especially dry regions. In rangelands of Morocco, it is essential to understand sensitivity of 
vegetation to soil moisture stress on different classes of land cover and corresponding temporal response to 
improve prediction of drought and yield anomaly. This study tries to express drought effect on vegetation cover 
in Moroccan pastoral areas. At first, annual average of soil water index (SWI) derived from MetOp-A /ASCAT 
data (11 km spatial resolution) and Normalized Difference Vegetation Index (NDVI) derived from Moderate 
Resolution Spectro-Radiometer eMODIS-TERRA (250 m spatial resolution) was calculated from 2007 to 2017. 
Afterward, rangelands were classified into three groups including no vegetation (degraded areas), poor 
vegetation (sparse), and dense vegetation (shrub). Results showed a high correlation between SWI and NDVI 
of all rangelands. This relationship is strong for shrub rangeland, there were strong positive correlation 
coefficients for NDVI and SWI (R² = 0.96). Moderate correlations were explain for degraded and sparse 
rangeland (R² = 0.54 and 0.52) respectively. Drought monitoring using disaggregating SWI anomaly time series 
in these rangelands in Morocco offers possibility of operational use of soil moisture data at high resolution. The 
results of anomalies shows a range high than 90 %, this explains that our method is important for characterizing 
dryness related to soil moisture stress for all Moroccan rangelands. Remote sensing is important to rangeland 
drought monitor, from the security of water resources to the mitigation of water hazards in the context of 
climate change. This dryland ecosystem should be managed in a way that enables them to provide ecosystem 
services that meet human demands for social development. Prediction drought should provide sufficient 
motivation to reach a consensus on unified water and vegetation management throughout the region. 
 

Key-Words: - Drought, Normalized Difference Vegetation Index (NDVI), Soil moisture Index (SWI), Different 
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1 Introduction 
Drought is one of the costliest natural disasters 

that can lead to a reduction in water supply, 
deteriorate water quality and finally forage 
disappointment (Riebsame et al., 1991[1]). Drought 
is especially a concern for rangeland management. 
In the rangeland, drought effects on vegetation lead 
to significant consequences concerning livelihood 
and socio-economic development. In fact, water 
deficiency during droughts has led to a reduction in 
forage and livestock production (Dutta et al., 2015 
[2], Knutson and Fuchs, 2016 [3], Derner and 
Angustine, 2016 [4]). In rangelands of northern 
Africa in particular, drought is the most important 
natural phenomenon linked to climate change, 
which continuously affects large areas of rangeland 
and therefore has serious repercussions forage 
production, population life expectancy and the 
economic performance.  

A monitoring system that is able to deliver 
timely warnings of droughts can contribute toward 
the making of appropriate and timely decisions in 
response to drought in rangeland areas. Rainfall is 
one of the most important parameters that provide 
information on water availability and potential 
occurrence of drought (Velpuri et al., 2016 [5]). 
Generally, drought monitoring has been based on 
weather station observations, which we do not have 
continuous spatial coverage needed to characterize 
and monitor detailed spatial pattern of drought 
conditions. 

However, several recent studies have indicated 
the occurrence of the opposite pattern, namely "dry 
becomes wet, wet becomes dry" (Greve et al., 2014 
[6]). The average precipitation in the arid regions 
has increased in both measured data and climate 
models over the past 30 years (Donat et al., 2016 
[7]). The temperature change and alternation of 
precipitation may have both positive and negative 
impacts on the fragile ecosystem of arid and semi-
arid regions (Yang et al., 2019 [8]). 

In recent decades, several studies have used 
remote sensing data to monitor a variety of dynamic 
land surface processes (Anderson et al., 2007[9], 
Reed et al., 1994 [10], Yang et al., 1998 [11], Peters 
et al., 2002 [12]). Satellite remote sensing provides 
a synoptic view of earth and a spatial context for 
measuring the impacts of drought. The spatially and 
temporally continuous coverage offered by satellite 
data enhances the value of these drought monitoring 
products. Currently, the normalized difference 
vegetation index (NDVI) data play an important role 
in ecosystem monitoring (Kogan, 1995 [13], Gu et 
al., 2007 [14], Brown et al., 2008 [15]). NDVI 
which is the normalized reflectance difference 

between the near infrared and visible red bands 
(Rouse et al., 1974 [16], Tucker, 1979 [17]) is used 
extensively in monitoring of vegetation drought. 
Using NDVI in drought monitoring and assessment 
has been described several times during the last 
(Kogan, 1991 [18], Kogan, 1995 [13], Yang et al., 
1998 [11], McVicar and Bierwirth, 2001 [19], 
Heim, 2002 [20], Ji and Peters, 2003 [21], Ntale and 
Gan, 2003 [22], Wan et al., 2004 [23], Dai et al., 
2004 [24]). Farrar et al. (1994) [25] are examined 
variability of NDVI over semiarid for different soil 
types. Richard and Poccard, (1998) [26] are 
demonstrated sensitivity of NDVI to seasonal and 
interannual rainfall variations in southern Africa.   

Similarly, soil moisture is widely recognized as 
essential for drought risk assessments as well as 
vegetative stress predictions (Robinson et al., 2008 
[27], Dobriyal et al., 2012 [28]). Soil moisture is 
depleted; gradients in soil water potential gradually 
degrade, negatively affecting vegetation. Soil 
moisture droughts can be defined as a lack of soil 
moisture causing vegetation disappointment 
(Cammalleri et al., 2016 [29]). Soil moisture can be 
measured locally at the desired temporal resolution 
and depth using in situ techniques. However, in situ 
soil moisture observations are lacking over large 
spatial scales scales (Ochsner et al., 2013 [30]). 
Exploiting remote sensing for soil moisture 
monitoring has attracted great interest. In fact, a 
number of techniques to derive spatiotemporal 
estimates of soil moisture from satellite retrievals 
are now available. However, there are currently 
various reliable and feasible methods available to 
measure soil moisture content from point scale to 
global scale. The development of highly accurate 
measurement techniques, efficient data loggers and 
data transmission systems allow continuous 
monitoring. As an alternative, remote sensing data 
can be employed to obtain continuous and large-
scale measurements of soil moisture (Njoku and 
Entekhabi, 1996 [31], Fernández-Prieto et al., 2012 
[32], Kornelsen and Coulibaly, 2013 [33], Xu et al., 
2014 [34]).  

The Copernicus Global Land Service (CGLS) 
provides a series of bio-geophysical products on 
state and evolution of Earth's surface on a global 
scale. Soil Moisture Index (SWI) is estimated in a 
timely manner and supplemented by long-term time 
series. In regional analyses for East Africa, soil 
moisture index anomalies for the year 2017 were in 
good agreement with vegetation health index and 
rainfall data provided by (FAO, 1987 [35]) 
illustrating SWI product's ability to reflect large-
scale hydrological patterns and their impact on 
vegetation health. In particular, SWI seems to be 
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very sensitive to hydrological droughts. Finally, 
strong dynamics of soil moisture on a large scale is 
evident in SWI dataset, giving us confidence in the 
quality of the product (Bauer-Marschallinger et al., 
2018 [36]). Analysis of SWI and NDVI showed a 
subsequent increase in soil moisture and vegetation 
moisture content. On contrary, NDVI was stable or 
decreased in some cases due to low vegetation cover 
and moist soil background (Hunt et al., 2009 [37]).  

In Morocco, density and quality of climatic 
observations are better than in most other parts of 
northern Africa, but still relatively rare compared to 
Europe (Born et al., 2008 [38]). The analysis of 
climate and climate variability always starts with 
acquisition of observational information in a region 
of interest. Also, soil moisture can be measured by 
various methods in the field or by spatial remote 
sensing unfortunately in Morocco; networks that can 
provide us with information on the state of flawless 
soil moisture are non-existent. However, in the 
study of rangeland drought, hydrological indices 
should also be used with vegetation indices to 
provide a clear picture of rangeland drought. 

The objective of this study is to propose a simple 
and accurate method for drought assessment using 
remote sensing time series in particular for the case 
of rangeland in arid region of North Africa. It is 
based on two satellite products having different 
spatial resolutions, namely eMODIS NDVI and 
Copernicus Global Land Service Soil Water index. 
 

2 Materials and Methods 
 
2.1 Study area  
The study area is Moroccan rangelands representing 
a total area about 53 million hectares (Figure 1). 
Theses rangelands are ecosystems with natural or 
semi-natural vegetation contributing to the 

livelihood of thousands of low-income rural people 
(Mahyou et al., 2010 [39]). They are found in 
regions where isohyets are less than 600 mm/year 
(Le Houérou, 2006 [40]).  

According to Global Land Cover classification we 
considered three types of rangelands. For simplicity, 
the “rangelands” in this study represents a 
combination of degraded rangeland sparse 
vegetation, and shrub rangeland covering 
respectively (68 %, 25 %, and 7 %) of the total 
rangelands areas. Based on the ecosystem 
characterized by heterogeneous vegetation. Shrub 
rangelands are dominated by Rosmarinus officinalis, 
Pistacia lentiscus, Acacia raddiana... ect. Sparse 
rangelands are dominated by Artemisia herba-alba, 
Stipa tenacissima, Lygeum spartum and degraded 
rangelands by Noaea mucronata, Atractylis 
serratuloides, Anabasis aphylla, Peganum harmala. 
We also find Asphodelus microcarpus and Urginea 
maritima (Le Houérou, 2006 [40], MARA, 1992 
[41], Mayaux et al., 2004 [42]). Soils are generally 
poor in organic matter and largely dominated by 
lithosols. Some rangelands are located on a sandy or 
loamy-clay substrate (Etienne, 1996 [43]). The most 
part of Moroccan rangelands has a collective status, 
and   are the main source of feed for livestock, 
which covered a third of the total food needs. The 
livestock sector covers about 1 100 000 rural 
households (Narjisse, 2006 [44]). Rangelands of 
Morocco are suffering from human-induced 
degradation, mainly due to overgrazing and 
cultivation combined to drought. As a result, erosion 
caused by wind and/or water, soil degradation and 
the long-term loss of vegetation cover (UNCCD, 
1994 [45], Berkat et al., 2004 [46], Aïdoud et al., 
2006 [47]). 
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Fig 1. Location of the study area in Moroccan rangelands, illustration of three groups including no vegetation 
(degraded areas), poor vegetation (sparse), and dense vegetation (shrub) (Mayaux et al., 2004 [42]).

2.2 Remote sensing data acquisition and 
preparation 
 
2.2.1 Soil Moisture Index (SWI) 
The time series of 360 decadal SWI images, starting 
from September 2007 to August 2017 are used. 
These data are derived from the Copernicus Global 
Land Service Soil Water index (CGLSSWI) version 
3 with a spatial resolution of 11 km. The pixel 
values of these experimental sites are extracted with 
a land cover mask Global Land Cover 2000 (GLC 
2000) according to three classes of shrub, sparse and 
degraded areas (Mayaux et al., 2004 [42]).  

The soil moisture index (SWI) is physically 
defined as soil moisture content at the first meter of 
soil relative units between the wilting level and the 
field capacity. The unit is the percentage (%) and 
physical range of parameter values from 0 to 100. 

The SWI algorithm, initially developed at the 
Technical University of Vienna and later improved 
by other research groups, uses an infiltration model 
that describes relationship between surface soil 
moisture and soil moisture over time. The algorithm 

is based on a two-layer water balance model to 
estimate soil moisture (ms) profile extracted from 
the MetOp-A / ASCAT data (Wagner et al., 1999 
[48]).  

In this model, water content of reservoir layer is 
described in terms of index, which is only controlled 
by previous soil moisture conditions in surface 
layer, so that the influence of the measurements 
decreases with increasing time as shown in Equation 
(1):  

 
SWI (tn) =∑ni ms (ti)etn-ti/T/∑nietn-ti/T   (1). 

 
Were tn is the observation time of the current 
measurement and ti are the observations times of the 
previous measurements.  
 

 
2.2.2 eMODIS NDVI data  
Ten- year’s average-value composite NDVI images 
at 250 m spatial resolution were exploited to 
drought monitoring. Images used in this study 
belonged to the eMODIS collection developed by 
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the United States Geological Survey’s (USGS) and 
Earth Resources Observation and Science Center 
(EROS). The data acquired by the MODIS on board 
NASA’s Moderate-Resolution Imaging 
Spectroradiometer Terra and Aqua satellites 
(Jenkerson et al. 2010 [49]).  

The sensor provides high temporal resolution 
images, which are very useful for monitoring 
significant environmental changes (2). The NDVI 
averages were obtained by the final processing of 
the eMODIS-based inputs which consisted of the 
spatial segmentation of the imageries using a mask 
surrounding Moroccan rangeland and Global Land 
Cover 2000 (Mayaux et al., 2004 [42]).  
 

NDVI = (NIR-R)/(NIR+R) (2). 
 

Were NIR is the Near infrared and R is the Red. 
 
2.3 Anomaly indices  
Anomaly indices for the NDVI and SWI which 
provides a quantitative illustration of vegetation and 
soil moisture stress and the influence of drought on 
the vegetation. These indices are based on statistics 
derived from the NDVI and SWI time series and 
were referred to as the vegetation and moisture 
anomaly indices written as shown in Equation (3) 
and (4):  
 

NDVIanomaly = (NDVIi - (NDVIi)mean/std 
(NDVIi) (3). 

And 
SWIanomaly = (SWIj – (SWIj)mean/std (SWIj) (4). 
 
Were NDVIi is the NDVI estimate for a given 
period i (from February to April), (NDVIi)mean is 
the mean value of the NDVI during period i, derived 
from the previously described 10 years of NDVI 
time series and std (NDVIi) corresponds to the 
standard deviation of the NDVI values estimated for 
period i over the same 10-year period. 
Were SWIj is the SWI estimate for a given period j 
(from November to February), (SWIj)mean is the 
mean value of the SWI during period j, derived from 
the previously described 10 years of SWI time 
series; and std (SWIj) corresponds to the standard 
deviation of the SWI values estimated for period j 
over the same 10-year period.  

The parameters these are for calculating this 
anomaly are required (First year, Last year) and it is 
important to include the year of the output IMG date 
in the calculation. 

The processing of Soil water index and eMODIS 
vegetation index data was done by Software for the 
Processing and Interpretation of Remotely Sensed 

Image Time Series (SPIRITS). This software is 
based in java, aiming at the analysis of remotely 
sensed earth observation data. Although it includes a 
wide range of general purpose functionalities, the 
focus lies on the processing of time series of images. 
It can be used to perform and to automatize many 
spatial and temporal processing steps on time series. 
Statistics can be plotted in seasonal graphs to be 
shared with analysts and decision makers (Eerens et 
al., 2013 [50]). 
 
2.4 Statistical Analysis  
The global analysis of SWI and NDVI data were 
performing by one-way analysis of variance and 
comparison of means using the Least Significant 
Difference (LSD) method (p < 0.05). Minimum, 
maximum, mean and coefficient of variation values 
were derived for the complete data set for SWI and 
NDVI. The monthly SWI and NDVI were compared 
by using Variance Analysis method (ANOVA). 

  Polynomial regression models, linking SWI and 
NDVI were developed. The average SWI from 
November to February of shrub rangeland, sparse 
vegetation and degraded rangeland are correlated to 
average of NDVI from February to April. NDVI and 
SWI are established for all Moroccan rangelands 
and for each rangelands categories (shrub, sparse 
and degraded rangelands).   
 
2.5 Spatial Analysis  
The primary datasets of SWI employed in this study 
are acquired from MetOp-A / ASCAT at a spatial 
resolution of 11 km. Using statistical regression 
between NDVI and SWI we estimate SWI1 with 
250 m as shown in Equation (5): 
 
SWI1= a * (NDVI) ² - b * (NDVI) + c (5). 
 

Keeping us the residual image and we adding 
back original image values. DisPATCh stands for 
Disaggregation based on Physical and Theoretical 
Scale Change (Merlin et al., 2012 [51]). It is also 
described as theoretical because the change of scale 
relies on mathematical tools with ArcGIS raster 
calculator. 

According to the studies of Carlson et al. (1986) 
[52], (1994) [53], (1995) [54] there is a relationship 
among soil moisture, NDVI, and LST, which can be 
expressed through a regression formula. It is 
possible to change of soil moisture scale from 11 
km to 250 m based on this relationship (Bindhu, 
2014 [55], He et al., 2015 [56]). 
 

3 Results 
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3.1 Tendency of NDVI and SWI  
The temporal evolution of monthly values of NDVI 
and SWI, spatially averaged over all Moroccan 
rangelands between 2007 and 2017 is presented in 
Figure 2. Time series of monthly NDVI and SWI 
from September to August are also shown for three 
different types of rangeland (shrub, sparse and 
degraded rangeland). It may be noted that 
information about the rangeland type was obtained 
from the Global Land Cover 2000 database 
(Mayaux et al., 2004 [42]).  

Nevertheless, NDVI and SWI values have 
varied between years. For all rangelands categories, 
NDVI values was relatively high in 2008-09, 2009-
10, 2010-11, 2012-13, and low in 2007-08, 2013-14 
and 2015-16, and coincided with peaks and troughs 
in growing season NDVI. For shrub rangeland, low 
SWI values appeared in 2007-08, 2011-12, 2013-14, 
2014-15 and 2015-16, and peak values appeared in 
2008-09, 2009-10, 2010-11, 2012-13 and 2016-17. 
For sparse rangelands, all low SWI values appeared 
in 2007-08, 2010-11, 2014-15, 2015-16, and peak 
values appeared in 2008-09, 2009-10, 2011-12, 
2012-13 and 2016-17. For the degraded rangeland, 
high SWI values occurred in 2008-09, 2009-10, 
2011-12, 2012-13 and 2016-17 and low values 
occurred in 2007-08, 2013-14, 2014-15 and 2015-
16.  

In different time series there was a significant 
difference between the rangeland categories. The 
degraded areas had the lowest average NDVI 
values, which differed little between peak and low 
growth season because of the very low vegetation 
cover. These results suggest that the occurrence of 

contrasting temporal trends in the overall area 
depends on the nature of the land cover, with well-
vegetated areas undergoing an increase in vegetation 
activity and degraded areas suffering a process of 
further degradation.  

However, the time variability of the NDVI may 
also be explained by the evolution of climatic 
conditions, as discussed below. The shrub rangeland 
had higher NDVI values with an average equal to 
0.32 (CV = 19 %). The degraded rangelands had the 
lowest average NDVI values (mean = 0.17 and CV 
= 10 %), which differed little between months and 
years caused by a low vegetation cover. The sparse 
rangelands had an average NDVI of 0.20 (CV = 26 
%). The important average NDVI values occurred 
between February to April in all categories. The 
NDVI values showed positive temporal trends for 
all categories, particularly for shrub and sparse 
rangeland where the trends were almost significant. 
The lower NDVI values are observed during August 
for different categories of rangelands.  

These results suggest an increase in vegetation 
activity during spring, when the conditions for 
growth are best. In all cases, a very high significant 
difference can be observed in the NDVI series, 
between the 10 years for the months of February, 
March and April (Table 1). However, for the other 
months the difference is non-significant. The shrub 
rangeland had higher SWI values with an average of 
24 % (CV = 50 %). The degraded rangelands had 
the lowest average SWI values (mean = 15 % (CV = 
23 %)) and the sparse rangelands had an average 
SWI corresponding to 18 % (CV = 24 %). The 
shrub rangeland had higher SWI values, and the 
important average SWI values occurred between 

November to February in all categories. The 
lower SWI values are observed during June in all 
categories of rangelands. A significant difference 
was observed in the SWI series, between the 10 
years for November to February (Table 1). 

However, for the other months the difference is 
non-significant between years. The correlations 

were moderate for degraded and sparse rangeland 
(R² = 0.54 and 0.52) respectively. However, for 
shrub rangeland, there were strong positive 
correlation coefficients for NDVI and SWI (R² = 
0.96). 

 

 

 All Shrub rangeland 

 

Sparse rangeland Degraded rangeland 

 NDVI SWI NDVI SWI NDVI SWI NDVI SWI 

Mean 0.23 19 0.32 24 0.2 18 0.17 15 

Minimum 0.16 10 0.22 9 0.13 10 0.14 9 

Maximum 0.32 36 0.44 56 0.34 31 0.22 25 

Std Dev 0.04 6 0.06 12 0.05 4 0.02 3 

CV 19 33 19 50 26 24 10 23 
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R2  0.92 0.91 0.96 0.75 0.52     0.53 0.54 0.59 

p-value <,0001* <,0001* <,0001*  0.0078*  0.0765   0.0705   0.0660  0.0432* 

Table 1. NDVI and SWI statistic for each rangeland category; R2 and p-value for year’s comparison. 

 

 
Fig 2. Monthly time-series between 2007 and 2017 of SWI and NDVI averaged over all Moroccan rangelands; 

and for three types (degraded areas), (sparse), and (shrub) of Moroccan rangeland. 

 
3.2 Anomaly detection  
Figure 3 shows SWI and NDVI anomalies 
calculated for ten years from 2007 to 2017 in 
pastoral areas of Morocco. The negative anomalies 
of SWI and NDVI are visible during 2007-08, 2011-
12 and 2013-14. These negative anomalies actually 
represent a complete failure of the all seasons. 
However, the number of failures observed for 2014-
15 exceeds all previously observed records. Severe 
negative anomalies of NDVI were observed during 
2015-16, with very poor growth conditions observed 
for all rangelands of Morocco. Normal vegetation 
conditions are observed during 2014-15. 

The anomalies of rangeland vegetation during 
early spring (February to April) mainly reflect the 
anomalies of soil moisture for the winter period 
(November to February). During dry years, 
negatives anomalies can be observed for both types 

of values NDVI and SWI. The years characterized 
by fairly good vegetation are characterized by 
higher water conditions during the winter. With the 
exception of the year 2014-15, where the bad water 
conditions are observed during the period with 
normal vegetation.  

Discrepancies between the NDVI and SWI 
anomalies are also present during 2014-15; we 
observed negatives anomalies of SWI and absence 
of NDVI anomalies. The reason for this 
disagreement can be explained by the good temporal 
distribution of rainfall. In fact, the temporal 
distribution of rainfall can be important as the total 
amount to determine the development of vegetation. 
Therefore, even if the accumulated soil moisture 
was low, this delay anomaly eventually led to a 
normal development of vegetation. 
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Fig 3. NDVI and SWI anomalies of all Moroccan rangelands from 2007 to 2017. 

3.3 Relationship between NDVI and SWI 
It can be seen from the above analysis that SWI can 
affect NDVI, and the effect of SWI seems more 
significant than the effect of rainfall. The effects of 
SWI and NDVI varied for different rangeland types; 
therefore, we conducted correlation analyses for all 
Moroccan rangeland and separate correlation 
analyses for each rangeland type to compare the 
differences between them. 

In the first, the correlation is explain between 
realy SWI at 11 km and NDVI at 250 m. Figures 4, 
5 shows that the polynomials correlations 
coefficients for NDVI and SWI were all much 
higher. For all, average NDVI (from February to 
April) correlated strongly with average SWI (from 
November to February) (R² = 0.93; R² = 0.92). 
Liners correlations were estimated between actual 
and predicted NDVI and SWI (R² = 0.92; R² = 
0.93). 

The vegetation indices are known to correlate 
with moisture index values (Carlson et al., (1986) 
[52], (1994) [53], (1995) [54], Kramer and Boyer, 
1995 [57], Rodriguez-Iturbe, 2000 [58]) and this 
trend can be clearly observed during the rainy 
seasons. In dry years, there is an exceptionally large 
decrease in the humidity index, associated with 
stabilization or even a decrease in the NDVI. The 
tendency of soil moisture and vegetation index of 
the three types of rangeland is very similar.  

The regression models generally fitted the 
observed NDVI values well, although for all 
rangeland areas in November to February. A better 
fit was obtained in November to February for well 
vegetated areas (shrub, and sparse rangeland) than 
for less vegetated regions (degraded rangeland), as 
shown by the lower R2 values.  However, there 
were differences between land cover classes. The 
effect of the soil moisture was positive in all cases, 
with high moisture yielding elevated NDVI values. 
This reflects the importance of moisture at the 
winter, at the start of the growing period. The high 
correlation between SWI and NDVI shows that the 
model based on the soil moisture index is excellent 
compared to rainfall in Morocco pastoral areas.  

This result demonstrates the feasibility of using a 
polynomial regression to estimate the NDVI, which 
can be particularly useful for making rapid 
diagnostics in drought periods, using just two types 
of satellite data, without the need for physical 
models. Preliminary regional estimations of the 
expected vegetation growth could thus be proposed, 
without the need to analyze satellite images. With 
such an approach, it is also possible to make 
preliminary estimations of vegetation growth as a 
function of different scenarios (Zribi et al., 2011 
[59]). We also supposed that disaggregate SWI data 
to 250 m can increase correlation factor. 
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Fig 4. Correlation between SWI and NDVI of all Moroccan rangelands. 
  

Fig 5. Correlation between realy and predicted SWI and NDVI of all Moroccan rangelands.

3.4 Spatial drought distribution 
Figure 6 shows moderate SWI anomalies for shrub, 
sparse and degraded rangelands but no NDVI 
anomalies was observed for degraded area in 2007-
08. In 2011-12, severe NDVI abnormalities were 
observed for all types of vegetations when moderate 
SWI anomaly is estimated for sparse area. During 
2013-14, no SWI anomalies were observed for 

shrub and sparse but NDVI anomalies it was severe. 
During 2014-15, drought related to SWI was severe 
for sparse and degraded vegetation and an absence 
of NDVI abnormalities. 4 years show us a 
difference in anomalies distribution. For the rest of 
years, similarity of SWI and NDVI anomalies is 
good in these rangelands of Morocco. 
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Fig 6. Drought matrix for three types of Moroccan rangelands. 
 

The spatial and temporal evolution of soil 
moisture is a key parameter for detecting water 
stress related to a decrease in NDVI. The anomaly 
was calculated by its formula as shown in Equation 
(3 and 4). Physical range of NDVI anomaly and 
SWI anomaly values is from – 1 to 1.55. Figure 7 
shows that during the period of study the spatial 
distribution of soil moisture index anomalies is 
related to anomalies of vegetation index.  However, 
a little difference for the southern zones where soil 
moisture show high humidity in these desert areas 
devoid of vegetation. Discrepancies between the 
NDVI and SWI anomalies are also present in north 
and south rangelands. Analysis of SWI and NDVI 
anomalies shows a subsequent increase in soil 
moisture and vegetation moisture content. On 

contrary, NDVI was stable or decreased in some 
cases due to low vegetation cover in deserted 
rangeland and moist soil background (Hunt et al., 
2009 [37]). 

The SWI anomaly images disaggregated to 250 
m with polynomial regression as shown in Equation 
(5) are perfectly correlated with the state of NDVI 
emodis canopy during the years 2007 to 2016. The 
anomalies of disaggregate SWI and NDVI dataset 
show the high homogeneities of pixels values. The 
results show perfect similarity to anomalies 
estimated for each rangeland (shrub, sparse and 
degraded areas). 
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Fig 7. SWI and NDVI anomalies of all Moroccan rangelands between 2007 and 2017. 
 
 
4 Discussion  
Many studies have focused on the detection and 
mapping of soil moisture (Hunt et al., 2009 [37],   
Zribi et al., 2010 [59], Guerfi et al., 2015 [60], 
Merlin, 2016 [61]). Others have tried to demonstrate 

soil water index as an indicator of appropriate 
agricultural drought (Boyer, 1982 [62], Panu and 
Sharma, 2002 [63], Narasimhan et Srinivasan, 2005 
[64], Ceppi et al., 2013 [65], Fernández et al., 2015 
[66], West et al., 2018 [67]). According to the 
literature, the availability of soil moisture is a 
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function of soil structure, vegetation type and 
climatic conditions. Based on this classification we 
propose magnitudes of soil moisture stress 
thresholds compared to the different types of 
Moroccan rangelands. But most of research 
describes soil moisture index according only to soil 
texture by comparing data in situ and measured by 
satellite. For example, Velpuri et al. (2016) [5] 
carried out a direct and qualitative comparison of 
measured and in situ soil moisture to describe the 
severity of drought for grassland. So far no study 
has demonstrated the link between soil moisture and 
NDVI of different types of rangeland vegetation. 
This index of the hydrological state of the soil is not 
yet fully recognized and therefore used 
scientifically. Due to its linking-processes condition, 
soil moisture is placed squarely in the center of the 
spectrum of drought classifications and drought 
indicators (Ochsner et al., 2013 [30]). However, as 
Torres et al. (2013) [68] mentioned, most of the 
drought assessment methods are based on long-term 
atmospheric data, such as rainfall and temperature, 
but they typically do not consider site-specific soil 
properties. This is the case of most of the 
agricultural drought indices proposed so far. The 
Crop Moisture Index, CMI is based on a subset of 
the calculations required for the Palmer Drought 
Severity Index (PDSI) (Palmer, 1965 [69], 1968 
[70]), which is primarily a meteorological drought 
index. The CMI originated as a way to calculate the 
water balance using historic records of precipitation 
and temperature. 

The Climatic Moisture Index, while it was first 
used for forestry applications (Hogg, 1994 [71], 
1997 [72]). According to Albergel et al. (2008) [73] 
the relationship between SWI and NDVI must be 
analyzed at local scale. Vegetation types particularly 
dependent of water existing in soil profile, 
heterogeneity of soil texture. It could be used for 
making appropriate and timely decisions in response 
to drought. This approach could be implemented 
operationally, to improve early warning systems, 
and would be complementary to other forecast 
methodologies based on climate analysis (Funk and 
Brown, 2006 [74]).   

Several studies in the past have focused on 
disaggregating the coarse resolution soil moisture 
data based on the fine resolution visible and the NIR 
data. Most of these studies use the correlation 
between NDVI and SWI or Land Surface 
Temperature (LST). In general, these methods do a 
statistical regression between NDVI or its 
derivatives (aggregated to the resolution of LST), 
and the actual LST, and use the developed 
regressive relationship to disaggregate the coarse 

resolution LST into a resolution LST (Agam et al., 
2007 [75], Kustas et al., 2003 [76], Yang et al., 2010 
[77]). 

The residuals which are generated at coarse 
resolution are added back to the simulated 
temperatures based on the assumption that across 
the set of fine resolution pixels which constitute the 
original coarser pixel, the residual remain constant 
and is equal to the value generated at the coarser 
level. But adding back constant residuals fails to 
account for the spatial variability that occurs at the 
finer level and this in turn results in creating a “boxy 
artifact” in the disaggregated temperature under 
situations when the residual associated with a given 
pixel is exceptionally different from the neighboring 
pixels (Agam et al., 2007 [75]). Hence, a method 
that would disaggregate the residuals to a finer scale 
would be desirable in the context of heterogeneous 
terrain (Bindhu, 2014 [55]). Disaggregation 
algorithm today called DisPATCh is based on 
Physical and Theoretical Scale Change. It is also 
described as theoretical because the change of scale 
relies on mathematical tools (Merlin et al., 2005 
[78], 2008 [80], 2012 [51], 2013 [81]).   

In our study, the primary datasets of SWI 
employed are acquired from MetOp-A / ASCAT at 
a spatial resolution of 11 km. We are also using 
statistical regression between NDVI and SWI we 
estimate SWI1 with 250 m as shown in Equation 
(5). Keeping us the residual image and we adding 
back original image values. DisPATCh stands for 
Disaggregation based on Physical and Theoretical 
Scale Change. It is also described as theoretical 
because the change of scale relies on mathematical 
tools with ArcGIS raster calculator.   

The monthly soil moisture index reflects the 
reality of the soil moisture status directly related to 
the vegetation growth process in the rangelands. 
Information on the beginning of the growing season 
allows the estimation of phenological types, as well 
as the water requirements of vegetation. Hence it is 
imperative to know the amount of soil moisture due 
to the appearance of precipitation that initiates the 
plant growth process (Chandrasekar et al., 2011 
[82]).  

From the SWI index studied, it can be seen that 
the soils of the rangelands in Morocco have a high 
retention capacity, and allow natural vegetation to 
develop even in the event of insufficient rainfall, 
which explains the increase in the NDVI and its 
resistance even during the dry season. For example, 
Chen et al. (2005) [83] studied the prediction of 
water flow in arid areas of China. Many spatio-
temporal studies have been published using 
geographical information system (GIS) and remote 
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sensing (RS) to monitoring relationship between 
change of grassland areas and groundwater (Chen et 
al., 2006 [84], 2009 [85], 2012 [86]). 

Ecological and environmental problems are the 
main concerns of the governments of Africa 
countries. The ecosystem is fragile in the arid and 
semi-arid regions. Climate change and human 
disturbance could easily cause significant ecosystem 
changes or even ecological disasters (Levintanus, 
199 2[87], Erdinger et al., 2011 [88]). Studies of 
natural resources and environmental problems are 
important for ecosystem protection and socio-
economic development. Rangeland drought 
monitoring and natural resource exploitation should 
be managed in a sustainable way that will benefit 
future generations. Given that water is the key factor 
affecting grazing in Morocco, water use efficiency 
and productivity should be emphasized in the future 
(Hojyaz et al., 2013 [89], Devkota et al., 2015 [90]). 
 

5 Conclusion 
The objective of this study is to propose an analysis 
of the relationship between soil moisture and 
vegetation development, using satellite databases 
only, for the evaluation of moisture and vegetation 
conditions. The spatial and temporal study of these 
variables allows the characterization of magnitudes 
of soil moisture stress thresholds compared to the 
different types of Moroccan rangelands. The 
relationship between SWI and NDVI is strong for 
shrub rangeland, there were high positive 
correlation coefficients for NDVI and SWI (R² = 
0.96). The correlations were moderate for degraded 
and sparse rangeland (R² = 0.54 and 0.52) 
respectively. This also proves that the Moroccan 
steppe ecosystem dominated by the heterogeneity of 
these species. The degraded parts take a lot of space 
with the success scenarios of drought. Drought 
monitoring using SWI and NDVI anomalies time 
series in these rangelands in Morocco offers the 
possibility of operational use of soil moisture data at 
250 m. The results shows a range high than 90 %, 
this explains that our method is important for 
characterizing dryness related to soil moisture stress 
for all Moroccan rangelands. The next step is to 
forecast the vegetation index from the SWI soil 
moisture index. Future work will include an analysis 
of this approach at more local scales using soil 
moisture and other climatic and phenological data. 
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