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Abstract: Recently, the functionally graded (FG) concept used in different mechanical engineering applications 
has become an important solution for delamination problems due to the brutal transition of material 
composition. The specific goal of this study is the determination of theoretical solution of the critical buckling 
temperature for rectangular FG plates with a ceramic coating, subjected to the sinusoidal and power law 
temperature rises. By applying the Galerkin method, the critical buckling load model is obtained. Based on 
obtained results, the effect of coated functionally graded parameters, namely the coating thickness, the power 
law index, the initial imperfections and the temperature rise type on the thermal buckling is discussed. This 
study is useful for the design engineers to choose the coating thickness, the geometrical parameters and the 
optimum composition as desired to assure the stability of structures subjected to a non-uniform temperature 
distribution. 
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1 Introduction 
The functionally graded materials (FGMs) where 
developed to be able to withstand a surface 
temperature of 2100 K and a temperature gradient of 
1600 K across a thickness less than 10 mm [1]. 
Different from classical composite materials, FGMs 
has a gradual change from one material to the other. 
This concept was used as thermal barriers in fusion 
reactors and aerospace structural applications, and 
later in structural parts at very high operation 
temperatures. In the field of aeronautics and marine, 
coated FGM plates have shown their reliability, in 
terms of thermal insulation and corrosion resistance 
more than metal material in high temperature 
environment. So, when FGMs are exposed to high 
temperature fields, their structural integrity will be 
lost and becomes geometrically unstable and it is 
essential to consider this problem in the design 
process of these structures. More researchers show a 
vital role in mathematical modeling to predicting the 
accurate behavior of the coated or sandwich FGM 
plate and shell. 

Based on the classical plate theory, Javaheri and 
Eslami [2] derived the expression of the critical 
temperature difference corresponding to the 
buckling of geometrically perfect FGM plates, Kiani 
Y.and al. [3] studied the thermal buckling of 
rectangular plates resting on elastic foundations and 
several types of thermal loading were considered in 
their works.     Lanhe W.[4] used the classical plate 
(CPT) and first order shear deformation (FSDT) 
theories to study the thermal buckling of FGM 
plates. Shariat and Eslami [5–7] presented the 
thermal buckling analysis of functional gradient 
rectangular plates with geometric imperfections 
using the classical plate theory (CPT). The work 
was extended to study the same problematic by 
using the first order shear deformation (FSDT) and 
the third order shear deformation (TSDT) theories. 
Three types of temperature field across the thickness 
are studied. Investigations in the effect of 
geometrical imperfections on buckling and post 
buckling behaviors by using high order shear 
deformation theory (HSDT) are been carried out by 
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Yang and al. [8]. Tung and Duc [9] studied the 
buckling response of FGM plates with geometric 
imperfections based on CPT. Fiorenzo A. and 
Fazzolari [10] used the advanced hierarchical 
trigonometric Ritz formulation (HTRF) to analyze 
the free vibration and thermal stability of FGM 
sandwich plates under the effect of uniform and 
non-uniform temperature rises. Reddy [11] analyzed 
the behavior of the rectangular FG plates based on 
the theory of the third order shear deformation plate. 
Shi-Rong and al. [12] used Shooting Method to 
study the nonlinear thermo-mechanical post 
buckling for an imperfect FGM circular plate, 
subjected to both mechanical load and transversely 
uniform and power law temperature rises. Zenkour 
and Sobhy [13] studied different types of symmetric 
FGM sandwich plates with sinusoidal shear 
deformation plate theory assuming the thermal loads 
uniform, linear and non-linear through-the-
thickness. Hui-Shen [14] includes the temperature-
dependence properties to study the thermal post 
buckling behavior of shear deformable FGM plates. 
Recently, Galerkin method was successfully used by 
many researchers in the resolution of buckling 
problems with geometrical imperfections. Hoang 
[15,16] studied the post buckling behavior of FGM 
sandwich plates, and FGM shallow spherical shells 
resting on elastic fondations and subjected to 
uniform external pressure, thermal loading and 
uniaxial compression in thermal environment taking 
acount  also the degree of tangential restraint. Zewu 
and al. [17] also employed the Galerkin method to 
study the buckling behavior of coated imperfect 
cylindrical shells. In their work, the problem was 
solved in the case of uniform and linear thermal 
loads. Sofiyev [18] proposed investigating the 
buckling of FGM conical shells, under uniform and 
linear temperature rises, by applying the shear 
deformation theory (SDT). Based on the same 
theory, Sofiyev and al. [19] continued the previous 
work by studying the case of a nonlinear thermal 
load. 
The role of coating allows providing FG structures 
against failure mechanisms caused by molten salt 
such as corrosion and CMAS (CaO-MgO-Al2O3-
SiO2) effect especially in aircraft and marine. The 
thermal buckling study of coated FG plates 
subjected to nonlinear temperature rise has not 
studied before. Therefore, the actual paper develops 
this problem. Two types of nonlinear temperature 
field are investigated such the power law and 
sinusoidal. The composition is supposed to be 
graded through the thickness direction. Governing 
equations are established taking into account 
geometrical imperfections and introducing Von 

Karman nonlinearity due to large deformations. The 
plates are assumed to be simply supported on edges 
that are radically immovable. Approximate solutions 
are assumed to satisfy boundary conditions and the 
Galerkin method is adopted to obtain explicit 
expressions of the buckling load and temperature-
deflection relations. The pre-buckling critical 
buckling temperature diagrams were constructed 
and an analysis of the effect of coating-thickness 
ratio, the geometrical imperfection and the power 
law index on the thermal buckling behavior is 
carried out. The obtained results are validated with 
those of earlier work [9]. 
 

2 Fundamental equations of FGM 
plate with coating 

2.1 Material properties 
Based on the Cartesian coordinates (ݔ, ,ݕ  we ,(ݖ
consider an imperfect thin rectangular FGM plate 
with coating. In the Fig. 1, the parameters a, b and h 
represent the length, width and thickness of the plate 
respectively, and ݄	is the ceramic coating 
thickness. The material components are changed 
from a metal surface (ݖ ൌ െ݄/2) in the bottom face 
to a ceramic surface (ݖ ൌ ݄/2 െ ݄) in the 
intermediate face; meanwhile, a ceramic coating 
with a thickness	݄, was subsequently deposed on 
the FGM plate. 

 
Fig. 1. Configuration and coordinate system for 
FGM plate with coating. 
 
The material properties such as the Young's 
modulus, the thermal conductivity and the 
coefficient of thermal expansion, are defined by the 
law of mixture. The Poisson’s ratio is considered to 
be constant through the thickness direction because 
the effect of this ratio on the buckling phenomenon 
is much less than others material properties [20]. 
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The material property P is given by the following 
equation: 
Pሺzሻ ൌ P୫  ሺPୡ െ P୫ሻ	Vሺzሻ                                 (1) 
where subscribes c and m indicate the ceramic and 
metal constituents respectively.	Vሺzሻ is the volume 
fraction of the ceramic phase and according to the 
power law, it is defined by: 

Vሺzሻ ൌ ቐ
ቀ ଶା୦

ଶሺ୦ିሻ
ቁ
୩
						; 						 െ



ଶ
 ݖ 



ଶ
െ ݄

			1																					; 							  	


ଶ
െ ݄  ݖ 



ଶ

  (2) 

where k is the volume fraction indexሺk  0ሻ, and 
also denotes the non-homogeneous parameter 
characterizing the degree of the material gradient in 
the ݖ-direction. 
 
2.2 Theoretical formulations 
2.2.1 Kinematics 
To establish the governing equations and determine 
the buckling loads of the imperfect FGM plates, the 
classical plate theory (CPT) is used. 
The displacements of a generic material point, 
located at (ݔ, ,ݕ  in the plate, may be written as (ݖ
follows: 

Uሺx, y, zሻ ൌ uሺx, yሻ െ z
ப୵

ப୶	
                                     (3) 

Vሺx, y, zሻ ൌ vሺx, yሻ െ z
ப୵

ப୷
  ,                                  (4) 

Wሺx, y, zሻ ൌ wሺx, yሻ                                               (5) 
where uሺx, yሻ,	vሺx, yሻ,	and wሺx, yሻ, denote 
displacement components of point on the mid-plane 
ݖ) ൌ 0) along the ݔ,  .directions respectively ݖ and ݕ
When the plate deflections are not small compared 
with the plate thickness, there is a coupling between 
the membrane and bending actions of the plate 
which evinces itself in two important respects. The 
strains in the plane of the plate are found to be 
dependent on non-linear terms in the deflection w; 
and the equation of equilibrium for forces in the z 
direction contains significant terms derived from the 
components of the force resultants N in the distorted 
median plane [21] (see the third term of Eqs. (24)). 
Therefore, the strains across the plate thickness at a 
distance z from the middle surface are [9,13,15]: 

ε୶ ൌ ε୶ െ z	
பమ୵

ப୶మ
                                                   (6) 

ε୷ ൌ ε୷ െ z
பమ୵

ப୷మ
                                                    (7) 

γ୶୷ ൌ γ୶୷ െ 2z
பమ୵

ப୶ப୷
                                             (8) 

where ε୶, ε୷, and		γ୶୷ represent the strains of 
point on the mid-plane (z=0) and are given by: 

ε୶ ൌ
ப୳

ப୶


ଵ

ଶ
ቀப୵
ப୶
ቁ
ଶ
                                                (9) 

ε୷ ൌ
ப୴

ப௬


ଵ

ଶ
ቀப୵
ப୷
ቁ
ଶ
                                              (10) 

γ୶୷ ൌ
ப୳

ப୷


ப୴

ப୶


ப୵

ப୶

ப୵

ப୷
                                       (11) 

 
2.2.2 Constitutive relations and equilibrium 

equations 
Assuming the material of the plate obeying Hooke's 
law, and by considering the thermal effects, the 
constitutive relations are given by: 

σ୶ ൌ
ሺሻ

ଵିమ
ൣε୶  νε୷ െ ሺ1  νሻαT൧                      (12) 

σ୷ ൌ
ሺሻ

ଵିమ
ൣε୷  νε୶ െ ሺ1  νሻαT൧                      (13) 

where σ୶, σ୷	are the normal stresses. The shear τ୶୷ 
is given by: 
τ୶୷ ൌ Gሺzሻ	γ୶୷                                                     (14) 
where the term G(z) is the shear modulus and 
related to young’s modulus E(z) by:   

Gሺzሻ ൌ
ሺሻ

ଶ൫ଵା ൯
                                               (14 bis) 

By using the constitutive equations, and the 
resultant forces and moments are found to be [9]: 

൫ ܰ, ൯ܯ ൌ න σ୧୨


మ

ି

మ

ሺݖ,  												;									ݖଶሻ݀ݖ

	݅ ൌ ሺݔ, ;		ሻݕ 				݆ ൌ ሺݔ,  ሻ                                     (15)ݕ

௫ܰ௫ ൌ
ாబ

ଵିమ
൫ε୶  νε୷൯ െ

ாభ
ଵିమ

ቀப
మ୵

ப୶మ
 ν

பమ୵

ப୷మ
ቁ െ

ఃభ
ଵି

                                                                      (16) 

௬ܰ௬ ൌ
ாబ

ଵିమ
൫ε୷  νε୶൯ െ

ாభ
ଵିమ

ቀப
మ୵

ப୷మ
 ν

பమ୵

ப୶మ
ቁ െ

ఃభ
ଵି

                                                                      (17) 

௫ܰ௬ ൌ
ாభ

ଶ൫ଵା ൯
γ୶୷ െ

ாమ
൫ଵା ൯

பమ୵

ப୶ப୷
                       (18) 

௫௫ܯ ൌ
ாభ

ଵିమ
൫ε୶  νε୷൯ െ

ாమ
ଵିమ

ቀப
మ୵

ப୶మ
 ν

பమ୵

ப୷మ
ቁ െ

ఃమ
ଵି

                                                                      (19) 

௬௬ܯ ൌ
ாభ

ଵିమ
൫ε୷  νε୶൯ െ

ாమ
ଵିమ

ቀப
మ୵

ப୷మ
 ν

பమ୵

ப୶మ
ቁ െ

ఃమ
ଵି

                                                                      (20) 

௫௬ܯ ൌ
ாమ

ଶ൫ଵା ൯
γ୶୷ െ

ாయ
൫ଵା ൯

பమ୵

ப୶ப୷
                      (21) 

where Ei, 1, and 2 are given by the following 
equations:  

ܧ ൌ න ݖ݀ݖሻݖሺܧ


మ

ି

మ

	 ; 		݅ ൌ ሺ0; 1; 2; 3ሻ	 

ଵߔ	 ൌ න ݖሻαሺzሻTሺzሻ݀ݖሺܧ


మ

ି

మ

				 

and 

ଶߔ		 ൌ න ݖ݀	z	ሻαሺzሻTሺzሻݖሺܧ


మ

ି

మ
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Based on classical plate theory, the non-linear 
equilibrium equations of a perfect plate are given 
by: 
డ౮
డ୶

	  	
డ౮౯
డ௬

ൌ 0                                                  (22) 
డ౯
డ୷

	  	
డ౮౯
డ௫

ൌ 0                                                 (23) 

డమ౮	

డ୶మ


డమ౯	

డ୷మ
 2

డమ౮౯	

డ୶డ୷
 N୶

డమ୵	

డ୶మ
 N୷

డమ୵	

డ୷మ


2N୶୷
డమ୵	

డ୶డ୷
ൌ 0                                                      (24) 

The last equations may be rewritten into one 
equation in term of w by Substituting Eqs. (16)-(21) 
into Eqs. (22)-(24). 

Dߘସw	 െ ൬N୶
డమ୵	

డ୶మ
 N୷

డమ୵	

డ୷మ
 2N୶୷

డమ୵	

డ୶డ୷
൰ ൌ 0	  

                                                                             (25) 
Where D is given by: 

D ൌ
మబିభ

మ

ሺଵିమሻబ
                                                  (25 bis) 

Note that for a uniform temperature variation, the 
derivatives of thermal force ߔଵand moment ߔଶ with 
respect to x and y are zero, and consequently are 
omitted in the governing equations. 
 
2.2.3 Compatibility Equation 
To satisfy the first two equations of motion (Eqs. 
(22) and (23)), the Airy stress function fሺx, yሻ will 
be utilized and which allows the in-plane stress 
resultants to be expressed by letting [5], [8], [15]: 

N୶୶ ൌ
డమሺ୶,୷ሻ	
డ୷మ

                                                       (26) 

N୷୷ ൌ
డమሺ୶,୷ሻ	
డ୶మ

                                                       (27) 

N୶୷ ൌ െ
డమሺ୶,୷ሻ	
డ୶డ୷

                                                   (28) 

For an imperfect FGM plate, Eq. (25) can be 
rewritten as: 

Dߘସw	 െ 
డమ	
డ୷మ

൬
డమ୵	

డ୶మ


డమ୵∗
	

డ୶మ
൰ 

డమ	
డ୶మ

൬
డమ୵	

డ୷మ


డమ୵∗
	

డ୷మ
൰ െ

2
డమ	
డ୶డ୷

൬
డమ୵	

డ୶డ୷


డమ୵∗
	

డ୶డ୷
൰൨ 	 ൌ 0                                 (29) 

where ݓ∗ሺݔ,  ሻ represents a known small initialݕ
imperfection of the plate. 
Note that the term ߘସw	is unchanged, because it is 
obtained from the expression of bending moment 
Mij and these internal moments don’t rely on the 
value of the curvature but only on the amount of 
change of the curvature [6]. 
This gives one governing equation with two 
unknowns, ݓ and	f. To solve the problem, one more 
equation is needed in terms of the same unknowns. 
For this reason, the compatibility equation will be 
necessary and it’s given by: 
డమக౯బ	
డ୶మ


డమக౮బ	
డ୷మ

െ
డమஓ౮౯బ	
డ୶డ୷

ൌ 0                     (30) 

From Eqs. (26)-(28) and Eqs. (16)-(18), the 
compatibility equation can be rewriting as: 

E ቈ൬
డమ୵	

డ୶డ୷
൰
ଶ

െ
డమ୵	

డ୶మ

డమ୵	

డ୷మ
 2

డమ୵	

డ୶డ୷

డమ୵∗
	

డ୶డ୷
െ

డమ୵	

డ୶మ

డమ୵∗
	

డ୷మ
െ

డమ୵	

డ୷మ

డమ୵∗
	

డ୶మ
 െ 

డర	
డ୶ర

 2
డర	

డ୶మడ୷మ


డర	
డ୷ర

൨ ൌ 0                                      

(31) 
Eqs. (29) and (31) are the general governing 
equations of thermal buckling of imperfect FG plate, 
which will be used in the next sections. 
 
2.3 Boundary conditions and solution of 

the problem 
To obtain the thermal load, the pre-buckling thermal 
stresses should be found. Consider that the FG plate 
is simply supported with immovable edges, the 
boundary conditions are: 
w ൌ u ൌ M୶ ൌ 0 , N୶ ൌ N୶  on x ൌ 0, a	          (32) 
w ൌ v ൌ M୷ ൌ 0		, 	N୷ ൌ N୷ on	y ൌ 0, b          (33) 
where N୶ and N୷ are pre-buckling force resultants 
in directions ݔ	and ݕ, respectively. With considering 
the boundary conditions, the approximate solutions 
are assumed [8,15]: 
w ൌ Wsinሺλxሻ sinሺݕߚሻ                                       (34) 
w∗ ൌ μh sinሺλxሻ sinሺݕߚሻ                                    (35) 
λ ൌ

గ


 ; β ൌ

గ


  and		m, n ൌ 1; 2; 3…,               (36) 

f ൌ f1 cosሺ2λxሻ  	f2 cosሺ2βyሻ
	 f3 sinሺ2λxሻ sinሺ2βyሻ  

f4 cosሺ2λxሻ cosሺ2βyሻ 
ଵ

ଶ
N୶xଶ 

ଵ

ଶ
N୷yଶ                                

                                                                             (37) 
Where n and m denote half waves numbers in x and 
y directions, respectively. Also f1, f2, f3 and f4 are 
determined by substituting Eqs. (34)-(37) into Eq. 
(31): 

f1 ൌ E
ஒమ

ଷଶమ
WሾW  2μhሿ                                   (38) 

f2 ൌ E
మ

ଷଶஒమ	
WሾW  2μhሿ                                  (39) 

f3 ൌ f4 ൌ 0                                                          (40) 
Substituting Eqs. (34)-(37) into the stability 
equation; Eq. (29) and applying the Galerkin 
method [14–18] for the resulting equation, on can 
obtain: 
Dሺλଶ  βଶሻW  ൣ2λଶβଶሺf1  f2ሻ  λଶN୶ 
βଶN୷൧ሺW  μhሻ ൌ 0                                          (41) 
To determine the compressive stresses making all 
edges immovable: u=0 (on x=0, a) and v=0 (on y=0, 
b), the following condition must be verified [9,18]: 

∬
డ	௨

డ୶	
ݕ݀	ݔ݀	

	
	 ൌ 0	                                            (42) 

∬
ப	௩

ப୷	
ݔ݀	ݕ݀	

	
	 ൌ 0                                              (43) 
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The expressions of 
డ	௨

డ୶	
 and 

ப	௩

ப୷	
 can be obtained by 

combining Eqs. (9)-(11), (15)-(18), (26)-(28) and 
(34)-(37). The imperfections are also accounted. 
Then, the expressions of compressive stresses are 
given by: 

N୶ ൌ
ாభ

଼ሺଵିఔమሻ
ሺߣଶ  βଶሻሺܹߥ  2μhሻܹ 

ସாమ
ሺଵିఔమሻ

൬ఒ
మାఔஒ	మ

ఒஒ
൰ܹ െ

ఃభ
ଵିఔ	

                                 (44) 

N୷ ൌ
ாభ

଼ሺଵିఔమሻ
ሺβଶ  ଶሻሺܹߣߥ  2μhሻܹ 

ସாమ
ሺଵିఔమሻ

ቀஒ
మାఔఒమ

ఒஒ
ቁܹ െ

ఃభ
ଵିఔ	

                                  (45) 

Introducing the above Eqs. (44) and (45) into Eq. 
(41), we obtain the expression of the thermal load: 

ଵߔ ൌ  Eሺzሻαሺzሻ∆ܶሺݖሻdz

మ

ି

మ

ൌ

 ݖሻ݀ݖሻ∆ܶሺݖሺߙሻݖሺܧ 

మ
ି

ି

మ

 ݖሻ݀ݖሻ∆ܶሺݖሺߙሻݖሺܧ

మ

మ
ି

ൌ

మ	ഥ	൬మቀ
್
ೌ
ቁ
మ
ାమ൰ሺଵିఔሻ

ቀ
್

ቁ
మ

ௐ

ௐାஜ


ଵതതതܧ
	మ൫ଷିఔమ൯൬రቀ

್
ೌ
ቁ
ర
ାర൰ାସఔቀ

್
ೌ
ቁ
మ
మమ൨

ଵሺଵାఔሻቀ
್

ቁ
మ
൬మቀ

್
ೌ
ቁ
మ
ାమ൰

ܹሺ ܹ 

2μሻ  ଶതതതܧ4	
൬రቀ

್
ೌ
ቁ
ర
ାరାଶఔమమቀ

್
ೌ
ቁ
మ
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where: 
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The final expression of the critical temperature of 
buckling depends in particular of the temperature 
distribution form and the plate initial temperature. In 
fact, the temperature is assumed to vary only 
through the thickness direction and is uniformly 
raised from the initial temperature ܶ ൌ ܶ to a final 
temperature ܶ in which the plate buckles. 
Therefore, the temperature change is: 
∆ܶሺݖሻ	 ൌ ܶ െ ܶ ൌ ܶ െ ܶ                               (48) 
In the next subsection, two types of temperature 
distribution will be considered. 
 
2.4 Power law Temperature form 
 

 
Fig. 2. Sinusoidal and power law temperature 
changes across the thickness for coated FG plate. 
 
Assume a temperature variation through the 
thickness direction as (see Fig. 2): 
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where: 

∆ܶ ൌ ܶ െ ܶ ൌ ܶ ቀ
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ଶ
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When the expression of temperature Eq. (49) is 
substituted into Eq. (46), the closed expression of 
the critical buckling temperature ൫∆ ܶ൯ of the 
coated FGM plate is obtained: 

∆ ܶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ మ	ഥ	൬మቀ

್
ೌ
ቁ
మ
ାమ൰ሺଵିఔሻ

ቀ
್

ቁ
మ

ௐ

ௐାஜ


ଵതതതܧ
మ൫ଷିఔమ൯൬రቀ

್
ೌ
ቁ
ర
ାర൰ାସఔቀ

್
ೌ
ቁ
మ
మమ൨

ଵሺଵାఔሻቀ
್

ቁ
మ
൬మቀ

್
ೌ
ቁ
మ
ାమ൰

ܹሺ ܹ  2μሻ 

ଶതതതܧ4
൬రቀ

್
ೌ
ቁ
ర
ାరାଶఔమమቀ

್
ೌ
ቁ
మ
൰

ቀ
್

ቁ
మ
ሺଵାఔሻ	൬మቀ

್
ೌ
ቁ
మ
ାమ൰

ܹ
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

∗

ௌ

ሺ୦ି୦ౙሻሺ୕ାୖሻ
                                                           (51) 
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and 
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2.5 Sinusoidal Temperature form 
Assume a temperature variation through the 
thickness direction as (see Fig. 2) [10]: 
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Similar to the preceding case, the critical buckling 
temperature (∆ ܶ௦	ሻ	is obtained by substituting Eq. 
(55) into Eq. (46): 
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where: 
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	; 

	݅ ൌ ሺ0; 1; 2ሻ                                                        (59) 
 
 

3 Results and discussion 
1.  
3.1 Verification 
To further illustrate the accuracy of the results 
obtained, a comparison study is carried out for 
critical temperature buckling with the given results 
in the literature. The obtained results are compared 
with those predicted by [9]. As the ݄ →0 from Eq. 
(51), the critical buckling non-uniform temperature 
rise (Power law form) of uncoated FGM plate is 
obtained. The plate is made from a mixture of metal 

(Aluminum) and ceramic (Alumina), and the 
material properties are taken to be: 

ܧ ൌ ,	ܽܲܩ	70 ߙ ൌ 23	. 10ି°ିܥଵ		,
ܭ ൌ 204	W/mK	 

ܧ ൌ ,		ܽܲܩ	380 ߙ ൌ 7,4	. 10ି°ିܥଵ		, 
ܭ		 ൌ 10,4	W/m	K  and  ߥ ൌ ߥ ൌ 0.3 
The data were taken from study [9,18,19]. The same 
properties are used in the rest of this work. 
Fig. 3 represents a comparison of the obtained 
results with those predicted by [9].This figure 
clearly indicates that the results are in good 
agreement. 
 

 
Fig. 3. Comparison of temperature-central 
deflection curves for perfect and imperfect FGM 
plates without coating. 
 
In the following section, we will discuss the effect 
of the different parameters and the thickness of 
coating on the thermal buckling behavior of a FGM 
plate, subjected to two types of temperature rise 
(power law and sinusoidal). 
 
3.2 Effect of coating thickness 
Fig. 4 represents the effect of coating thickness on 
the critical buckling temperature for perfect and 
imperfect FG plate. Four values of ݄ are considered 
݄= (0; h/5; h/4; h/3). Fig. 4a concerns the plate 
subjected to the power law temperature form, and 
the Fig. 4b represents the sinusoidal temperature 
form. For the both cases, the critical buckling 
temperature increases by increasing ceramic coating 
thickness ݄and the difference becomes larger by 
increasing the deflection. In these figures, it is seen 
that the increase of the coating thickness for the case 
of sinusoidal temperature rise has a large stability 
effect on the plate than for the case of power law 
temperature rise. 
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(a) 

 
(b) 

 
Fig. 4. Effect of coating thickness on the critical 
buckling temperature change: (a) power law 
temperature rise, (b) sinusoidal temperature rise. 
 
3.3 Effect of imperfection size 
Fig.5 represents the effect of imperfection size μ on 
the critical buckling temperature. Figs.5a and 5b 
concern the coated FGM plates subjected to the 
power law and sinusoidal temperature forms 
respectively. For the both cases, as the 
dimensionless deflection is small, the critical 
buckling temperature decreases by increasing 
imperfection size. In other words, the plate loses the 
buckling resistance. However, an opposite response 
is noticed when the deflection becomes large 
enough. Besides, the increase of imperfection size 
for the case of sinusoidal temperature rise has a 
large stability effect on the plate than for the case of 
power law temperature rise. 

 
(a) 

 
(b) 

 
Fig. 5. Effect of imperfection size on the critical 
buckling temperature change: (a) power law 
temperature rise, (b) sinusoidal temperature rise. 
 
3.4 Effect of power law index 
When the coated functionally graded plate is 
subjected to the power law temperature form (see 
Fig. 6), the temperature-deflection curves reveal the 
existence of a critical power law index range 
corresponding to a high critical buckling 
temperature. 
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Fig. 6. Effect of power law index on the critical 
buckling temperature change for coated FGM 
plates, subjected to power law temperature rise. 
 
As it can be seen in Fig. 7, for fixed values of the 
deflection, the optimum power law index increases 
slightly for 0 to 0.8 by increasing coating thickness 
between 0 and h/2. The optimum power law index 
stays at this interval even if the deflection is large. 
The obtained results are due to the fact that the 
nonlinearity of temperature distribution across the 
coating thickness depends of the power law index. 
 

 
Fig. 7. Critical buckling temperature-power law 
index curves for imperfect FGM plates, subjected to 
a power law temperature rise. 
 
As it relates to the sinusoidal temperature form, 
Figs.8 and 9 show another response. The critical 
buckling temperature decreases by increasing the 
power law index. In fact, the nonlinearity of the 
temperature form does not depend on the power law 
index. Thus, the influence of this index only reflects 

the direct effect of the material composition on the 
plate response. In other words, the plate becomes 
more stable when the volume fraction of the ceramic 
increases (k decreases). 
 

 
Fig. 8. Effect of power law index on the critical 
buckling temperature change coated FGM plates, 
subjected to a sinusoidal temperature rise. 
 

 
Fig. 9. Critical buckling temperature-power law 
index curves for imperfect FGM plates, subjected to 
a sinusoidal temperature rise. 
 
3.5 Effect of geometrical parameters: 
Figs. 10a and 10b represent the effects of the 
thickness ratio (b/h) on the critical temperature of 
buckling under the power law and sinusoidal 
temperature forms respectively. Figs. 11a and 11b 
represent the effect aspect ratio (b/a) on the critical 
temperature of buckling under the power law and 
sinusoidal temperature forms respectively. 
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The temperature-deflection curves are plotted with 
two values of thickness ratio b/h= (40; 60) and 
aspect ratio b/a= (1; 2). 
From Figs. 10 and 11, the thermal buckling 
behaviors are the same for the two cases of 
temperature form. It can be seen that by increasing 
the thickness ratio (b/h) or the aspect ratio (b/a), the 
critical buckling temperature increases, because the 
plate stiffness increases by increasing these 
parameters. Also, it is observed that the increase of 
the thickness and aspect ratios for the case of 
sinusoidal temperature rise has a greater stability 
effect on the plate, than for the case of power law 
temperature rise. 
 
 (a) 

 
(b) 

 
Fig. 10.  Effect of thickness ratio on the critical 
buckling temperature change: (a) power law 
temperature rise. (b) sinusoidal temperature rise. 
 
(a) 

 
 (b) 

 
Fig. 11. Effect of aspect ratio on the critical 
buckling temperature change: (a) power law 
temperature rise. (b) sinusoidal temperature rise. 
 
 

4 Conclusions: 
In this study, an analytical solution has been 
presented for the buckling analysis of simply 
supported FGM plates with ceramic coating. Firstly, 
the plate’s governing equations for the structural 
analysis were derived by CPT assumption, then, the 
closed expression of critical buckling temperature 
was obtained by applying Galerkin Method. Finally, 
influences played by different thermal fields, 
material composition and geometrical parameters 
were discussed in detail. It can be concluded that: 
-The thermal post-buckling behaviors are different 
for the plates under sinusoidal and power law 
temperature rises. 
-The critical temperatures calculated from power 
law temperature distribution are smaller than those 
from sinusoidal law.  
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-The increase of coating thickness plays an 
important role in the structure protection counter the 
failure. 
-Increasing the size of imperfections for the case of 
large deflections makes the plate more stable. 
-The stability was also improved by limiting the 
power law index between 0 and 0.8 in the case of 
power law temperature rise or by decreasing this 
index in the case of the sinusoidal temperature rise. 
-The increase of thickness or aspect ratios increases 
the plate stiffness and gives more buckling 
resistance. 
-The increase of the imperfection size, the aspect or 
the thickness ratios for the case of sinusoidal 
temperature rise has a greater stability effect on the 
plate, than for the case of power law temperature 
rise. 
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List of Symbols 
݄														         Ceramic coating thickness. 
ܽ, ܾ					           Plate length and width. 
݄											          Plate thickness. 
P												         Material property 
V												         Volume fraction of the ceramic phase 
݇												         Power law index 
,ሻݖሺܭ ,ܭ      ,Thermal conductivity at z coordinate	ܭ
                      Ceramic and Metal. 
ሺݔ, ,ݕ  .ሻ         Cartesian coordinatesݖ
ሺU, V,Wሻ       Displacement components along the x, 
																								 y and z directions respectively. 
ሺu, v, wሻ	        Displacement components of point on  
                       the mid-plane (z=0) along the x, y, z  
                       directions respectively. 
w∗

 		                Initial geometrical imperfection. 

ቀε୶	, ε୷	, γ୶୷	ቁ  Normal and shear strains. 

ቀε୶	, ε୷	, γ୶୷ቁ	Normal and shear strains of point  

                           on the mid-plane (z=0). 
൫σ୶	, σ୷	, τ୶୷൯		 Normal and shear stresses. 

൫σ୶	, σ୷	, τ୶୷൯Normal and shear stresses of point 
                          on the mid-plane (z=0). 
Eሺzሻ, ,	ܧ      Young Modulus of the plate, Ceramicܧ
                        and Metal. 
G                      Shear modulus. 
,ሻݖሺߙ ,ߙ	     Thermal expansion coefficient at zߙ
																												coordinate, Ceramic and Metal. 
νሺݖሻ, ,ߥ         Poisson ratioat z coordinate, Ceramicߥ
                         and Metal. 
ܰ        Normal and shearing force intensities. 

 .        Bending and twisting moment intensitiesܯ

൫N୶	, N୷൯ Pre-buckling force intensities in  
                   directions x and y. 
 .ଵ         Normal force due to the thermal effectsߔ
 .ଶ         Bending moment due to the thermal effectsߔ
F               Airy stress function. 
μ               Imperfection size. 
݉, ݊          Half waves numbers in x and y directions 
Tሺzሻ, ܶ	, ܶ      Temperature at z coordinate, bottom  
                          and top faces. 
∆ ܶ௦, ∆ ܶ	        Critical buckling temperature  
											                 difference corresponding to  
                           Sinusoidal and power law  
                           temperature form. 
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