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Abstract: - Physical and chemical pollutions are a key problem in populated urban areas. The long term 

monitoring of air pollutants concentrations is a very helpful aid for policy maker, to control the exposure and to 

keep track of the slope of the data. When and where measurements are not possible, predictive models can help 

in these issues. Among the several possible techniques, “AutoRegressive Integrated Moving Average” (ARIMA) 

models are a good choice when a sufficiently large database of measurements is available. In this paper, the 

authors use the CO concentrations measured in San Nicolas de Garza, in the Metropolitan Area of Monterrey, 

Mexico, to calibrate and implement two different models. Both the models will provide reliable predictions on a 

short time range, since they use in input the data measured in close past periods. For this reason, the ARIMA 

models presented here can provide predictions to maximum 24 hours forward the last measured data. 24, in fact, 

is the lag that maximizes the autocorrelation of the data and thus it is the seasonality implemented in the models. 

Finally, the authors will present a validation (comparison with data not used in the calibration) of the models in 

four different days along the year, showing that the models are not affected by overfitting effects and the results 

are good also on data not used during the model parameters tuning. 
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1 Introduction 
The need to monitor, control and possibly predict the 

slope of pollutants in proximity of human settlements 

is essential nowadays. Both chemical and physical 

agents affect the health of people living and working 

in areas with high concentrations of these pollutants.  

One of the most important atmospheric oxidants 

in urban areas is tropospheric ozone ([1], [2]), that is 

recognized to be the primary source of OH radicals 

and the third most important greenhouse gas behind 

CO2 and CH4. Beside the positive effect of blocking 

high ultraviolet irradiation in the stratosphere, ozone 

is considered responsible of several adverse effects 

on human health, vegetation and materials ([3-9]). 

Among its precursors, CO is very important in urban 

areas, since it is related to vehicle exhaust emissions 

and to several human activities, such as power station 

burning coal, combustion of fossil fuels, etc.. In 

addition, CO is toxic and can be the reason of many 

health affections. In United States, it has been 

estimated that more than 40000 people per year seek 

medical attention for carbon monoxide poisoning 

[10]. Carbon monoxide (CO), is an odorless and 

colorless gas that is produced by the incomplete 

combustion of carbon compounds, so it can be 

considered as a tracer of mobile sources (automotive) 

and industrial sources of combustion on a smaller 

scale. Some natural sources of carbon monoxide 

emission include forest fires or their emission from 

the natural processes that take place in the oceans. 

From the point of view of health, intramural sources 

due to their accumulation in homes due to domestic 

processes and tobacco smoke deserve special 

attention. The main potential harmful effect of this 

contaminant is its affinity to combine with 

hemoglobin, resulting in a high level of 

carboxyhemoglobin formation and, as a 

consequence, the amount of oxyhemoglobin 

decreases and, therefore, the entry of oxygen into the 

human body. The risk of exposure to CO varies 

depending on the concentrations and is higher in 

individuals suffering from circulatory deficiencies 

(being particularly susceptible patients with angina 

pectoris, as well as those with arteriosclerosis), and 

acute poisoning can occur by inhalation of this 

pollutant at high concentrations in intramural 
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environments. For these reasons, measurement 

campaigns and predictive models development are 

very important issues to understand the behaviour 

and trends of CO concentrations, in order to provide 

suggestions and alerts to policy makers. 

In this paper, the “Time Series Analysis” (TSA) 

models based on “AutoRegressive Integrated 

Moving Average” techniques, both Seasonal 

(SARIMA) or not (ARIMA), are considered to 

predict the slope of CO concentrations in the 

Metropolitan Area of Monterrey (Mexico). These 

techniques [11-14] have been developed and 

implemented in several domains, such as Economics, 

Management, Physics, etc. (see for instance [15-20]). 

In [21-25], the TSA deterministic decomposition and 

ARIMA models have been applied to acoustical 

noise in urban areas and in proximity of an airport, 

also in combination with non-homogeneous Poisson 

distribution [26]. In [27], some of the authors applied 

the TSA techniques to electric consumption by public 

transportation in Sofia, Bulgaria. As for air pollution, 

in [28] the authors applied the TSA deterministic 

decomposition model to the same CO dataset used in 

this paper, that has been collected in Nuevo Leon, 

Monterrey, Mexico. The deterministic model showed 

to be able to capture the average slope of the CO 

concentration (with a very low mean error) but failed 

to predict the local variations and oscillations of the 

pollutant. The main advantage of that technique is the 

possibility to extend the prediction to any time in the 

future, since it provides the deterministic forecasting 

function, with constant coefficients and parameters. 

On the contrary, the Seasonal ARIMA (SARIMA) 

models presented in this paper will give very precise 

results but with the limitation that the prediction is 

one step ahead in the calibration and can be extended 

maximum to 24 periods forward in the validation. 

 

 

2 Model Description 
The ARIMA models implemented in this paper have 

been chosen according to the calibration dataset 

features, in order to optimize several variables and 

aspects, such as number of parameters, AIC and BIC, 

easiness of implementation, etc.. The two models 

presented in this section are seasonal, with a lag of 24 

hours. The estimation of the coefficients is done in 

“R” software, in which also the validation can be run. 

 

2.1 SARIMA(0,1,1)x(0,1,1)24 model 
The first model (Model 1) that we present and 

implement in this application is a Seasonal ARIMA 

model, without Auto Regressive coefficients, with 

seasonal lag equal to 24 hours (s = 24). According to 

the most used notation the model belongs to the 

SARIMA(0,1,1)x(0,1,1)24 type. The model can be 

analytically formulated as follows: 

  
𝑌𝑡 = 𝑌𝑡−1 + 𝑌𝑡−24 − 𝑌𝑡−25 + 

+𝜃1𝑒𝑡−1 + Θ1𝑒𝑡−24 + 𝜃1Θ1𝑒𝑡−25 + 𝑒𝑡 
  

�̂�𝑡+1 = 𝑌𝑡 + 𝑌𝑡−23 − 𝑌𝑡−24 + 

+𝜃1�̂�𝑡 + Θ1�̂�𝑡−23 + 𝜃1Θ1�̂�𝑡−24 
 

where 𝑌𝑡 is the time series under study, �̂�𝑡+1 is the 

prediction, θ and Θ are the coefficients related to the 

moving average, respectively with and without 

seasonality. 

 

2.2 SARIMA(1,0,1)x(2,0,1)24 model 
The second model (Model 2) is again a Seasonal 

ARIMA model, with both Auto Regressive and 

Moving Average coefficients, with seasonal lag 

equal to 24 hours (s = 24). According to the standard 

notation, the model belongs to the 

SARIMA(1,0,1)x(2,0,1)24 type. The model can be 

analytically formulated as follows: 

 

𝑌𝑡 = 𝜙1(𝑌𝑡−1 − 𝜇) + 𝛷1(𝑌𝑡−24 − 𝜇) + 

−𝜙1𝛷1(𝑌𝑡−25 − 𝜇) + 𝛷2(𝑌𝑡−48 − 𝜇) +     (1) 

−𝜙1𝛷2(𝑌𝑡−49 − 𝜇) + 𝜇 + 𝜃1𝑒𝑡−1 + Θ1𝑒𝑡−24 + 

+𝜃1Θ1𝑒𝑡−25 + 𝑒𝑡 
   

�̂�𝑡+1 = 𝜙1(𝑌𝑡 − 𝜇) + 𝛷1(𝑌𝑡−23 − 𝜇) + 

−𝜙1𝛷1(𝑌𝑡−24 − 𝜇) + 𝛷2(𝑌𝑡−47 − 𝜇) +    (2) 

−𝜙1𝛷2(𝑌𝑡−48 − 𝜇) + 𝜇 + 𝜃1𝑒𝑡 + Θ1𝑒𝑡−23 + 

+𝜃1Θ1𝑒𝑡−24 
 

where 𝑌𝑡 , �̂�𝑡+1, θ and Θ have the same meaning of 

above, ϕ and Φ are the coefficients related to the auto 

regression, respectively with and without seasonality, 

and µ is the intercept of the model (somehow related 

to the mean of the series). 

 

2.3 Error metrics 
In order to evaluate the performances of the models, 

both in the calibration and in the validation phase, 

error metrics can be calculated. In this paper, “Mean 

Percentage Error” (MPE) and “Coefficient of 

Variation of the Error” (CVE) are implemented and 

calculated, as well as the “Mean Absolute Scaled 

Error” (MASE) and the “Akaike's Information 

Criterion” (AIC). 

The first quantitative metric gives a measurement 

of the error distortion, i.e. MPE is able to describe if 

the model overestimates or underestimates the actual 

data: 
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𝑀𝑃𝐸 =
∑ (

𝑌𝑡−�̂�𝑡
𝑌𝑡

)100𝑛
𝑡=1

𝑛
    . (3) 

 

CVE considers the variation from the reality in 

absolute value. In other words, it provides the error 

dispersion: 

𝐶𝑉𝐸 =
√

∑ (𝑒𝑡)2𝑛
𝑡=1

𝑛−1

�̅�
 , (4) 

 

where �̅� is the mean value of the actual data in the 

considered time range. 

An effective measurement of forecast accuracy is 

also the “Mean Absolute Scaled Error” (MASE) [29]. 

The MASE for seasonal time series is computed 

according to the following formula: 

 

 𝑀𝐴𝑆𝐸 =  
1

𝑛
∑

|𝑒𝑡|
1

𝑛−𝑘
∑ |𝑌𝑖−𝑌𝑖−𝑘|𝑛

𝑖=𝑘+1

𝑛
𝑡=1   . (8) 

 

It is computed using a “naïve” model [30] in the 

denominator. In this application, the denominator is 

related to the difference between data observed at the 

period t and data observed k periods before, assuming 

that the period t can replicate the observed value at 

time t-k. 

Considering that parameters of the models are 

estimated using the method of the likelihood 

maximization, also the Akaike's Information 

Criterion (AIC) is proposed to evaluate models 

performances. 

 

 

3 Application and Results 
In this section, we present first the area under study, 

in which the field measurements have been 

performed, and the dataset used for the calibration. 

Then, the model implementation and parameters 

estimation are reported, together with the residuals 

evaluation. Finally, a validation on data not used in 

the calibration is performed.  

 

3.1 Case study area and measurement 

description 
The case study area is located in San Nicolas de 

Garza, one of the twelve municipalities of the 

Metropolitan Area of Monterrey (MAM), which 

constitutes the third largest urban area in Mexico 

(Figure 1). This city is located at 25°40’N and 

100°18’ W at 537 masl and it covers an area of 580.5 

km2. MAM has a population of about 4000000 

habitants and it is an important area for several 

human activities. It is characterized by the presence 

of important education and research centers, business 

activities and industrial development. Road 

transportation and air sources (evaporative emissions 

from solvents, storage tanks, coatings, fuel marketing 

and other miscellaneous sources) are the dominant 

sources of O3 precursors in MAM [31]. The specific 

sampling site was located within the facilities of 

Northeast Station of the SIMA, located in the Laboral 

Unity District in San Nicolas de los Garza, N.L. at 

25° 43’ 30 “N and 100° 18’ 48” W at 500 m above 

sea level, within an area with high density of 

population. 

More details on the area under study are reported 

in [28], in which meteorological features are 

resumed, together with the description of the field 

measurement campaign and instrumentation. The 

complete dataset, in fact, includes several pollutants 

such as O3, NO2, SO2, PM10, and meteorological 

conditions such as wind speed and direction, 

temperature, solar radiation and barometric pressure. 

In this paper, such as in [28], the authors focus on the 

time series of 8784 hourly CO concentrations 

observed in 2012, measured in ppm, that appeared to 

be the more interesting and the more suitable dataset 

for these applications. 

 

 
(a) 

 
(b) 

Figure 1: (a) Area under study and (b) sampling site 

location in San Nicolas de Garza, Monterrey (Mexico) 

[28]. 
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3.2 Models implementation and results 
The models are calibrated on the complete dataset 

and, using the “R” software framework, the 

estimation of the parameters is performed. The 

estimated values of the models coefficients are 

reported in Table 1 and 2.  

 

 
Table 2. Estimated values of the coefficients adopted 

by the SARIMA (1,0,1)x(2,0,1)24 model (Model 2).  

Coefficients Estimated Value 
Standard 

Error 

AR1 (ϕ1)  0.8151 0.0073 

MA1 (θ1) 0.2901 0.0114 

SAR1 (Φ1)  1.0381 0.0123 

SAR2 (Φ2)  -0.0426 0.0121 

SMA1 (Θ1)  -0.9415 0.0043 

Intercept (μ)  0.6599 0.2017 

Log likelihood = -1068.57; AIC = 2151.14 

 

Once the parameters are estimated, the analytical 

functions of the models can be implemented in any 

worksheet, to provide the results of the model in each 

period of the dataset. Let us underline that, since the 

models use in input some past data (see formulas 

above), the “predictions” can be obtained starting 

from a certain point of the dataset (period 26 for 

Model 1 and period 50 for Model 2) and can be 

extended in the future only if the inputs are available. 

For this reason, the “R” software extend the 

prediction outside the calibration dataset, for a 

maximum of 24 periods (i.e. the range fixed by the 

lag choice). These 24 data can be used for the 

“validation” of the model on data not used in the 

calibration process. 

 

3.3 Calibration results 
The main statistics of the observed data and of the 

models result in the calibration dataset are resumed 

in Table 3. It can be noticed that both the models 

achieve an excellent estimation of the mean, median 

and standard deviation of the dataset. Also skewness 

and kurtosis are very similar to the values of the 

calibration dataset, confirming that the predicted 

series well approximate the observed one. 

These good results are confirmed calculating the 

residuals of the models, which are the difference 

between observed value and model predictions. The 

statistics of the residuals are reported in Table 4. 

Figures 2 and 3 report the autocorrelation plot, the 

histogram and the Quantile-Quantile plot (Q-Q plot) 

for residuals calculated respectively with Model 1 

and Model 2. Even if the two histograms are quite 

narrow and centred around zero residual, the two 

distributions differ significantly from the normal 

distribution, especially in the tails, as showed by the 

Q-Q plots. In addition, the autocorrelation plots show 

that Model 1 leaves a significant autocorrelation for 

a lag equal to 24 (and its multiples). 

Let us underline that since the models have some 

negative terms, it can happen that a prediction is 

negative (see for instance Figure 4(a) below). If this 

is reasonable in cases in which the physical quantity 

under study can have negative values, in our case, for 

CO concentrations, this cannot be accepted. Anyway, 

Model 1 produced 98 negative forecasts (1.12% of 

the total calibration dataset), while Model 2 just 7 

(0.08% of the total calibration dataset). The effect of 

these negative values on the residuals statistics is 

negligible. If we calculate mean and standard 

deviation removing negative values, the results are 

quite unchanged with respect to values reported in 

Table 4.  

Table 5 reports the results of the error metrics 

defined in subsection 2.3. It can be noticed that 

Model 2 performs better than Model 1, except for the 

MPE.  

 
Table 3. Summary statistics of the observed and predicted 

series. 

 
Mean  

[ppm] 

Std dev  

[ppm] 

Median      

[ppm] 

Skew Kurt 

Observed 0.65 0.65 0.47 5.01 37.83 

Model 1  0.64 0.68 0.47 4.08 34.17 

Model 2  0.65 0.59 0.48 4.73 35.32 

 
Table 4. Summary statistics of the residuals distribution 

evaluated on the calibration dataset for the two models. 

 
Mean  

[ppm] 

Std dev  

[ppm] 

Median 

[ppm] 

Min 

[ppm] 

Max 

[ppm] 

Model 1  0.01 0.36 0.00 -3.86 5.47 

Model 2  0.00 0.26 0.00 -3.15 4.47 

 

 

 

 

 

 

 

Table 1. Estimated value of the coefficients adopted by 

the SARIMA (0,1,1)x(0,1,1)24 model (Model 1).  

Coefficients Estimated Value 
Standard 

Error 

MA1 (θ1)  0.2104 0.0114 

SMA1 (Θ1) -0.9453 0.0036 

Log likelihood = -1449.45; AIC = 2904.91 

Table 5. MPE, CVE, MASE (error metrics) and AIC 

values calculated in the calibration phase, for the two 

proposed models.  

 MPE CVE MASE AIC 

Model 1   0.388 0.545 1.078 2904.91 

Model 2  -4.283 0.402 0.880 2151.14 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2: Residuals of the (0,1,1)x(0,1,1)24 model applied 

to the calibration data: (a) correlogram plot; (b) histogram; 

(c) normal probability plot that describes the residuals 

behaviour compared to a normal distribution. 

 

The superimposition of observed values and 

models results is reported in Fig. 4, for 24 hours in 4 

different days of the calibration dataset (February 9, 

May 9, August 9 and November 9 2012). The good 

agreement between forecasts and observed values is 

evident. It can be observed that in some time ranges 

there is a kind of “one period delay”, that is common 

when dealing with ARIMA models (see for instance  

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 3: Residuals of the (1,0,1)x(2,0,1)24 model applied 

to the calibration data: (a) correlogram plot; (b) histogram; 

(c) normal probability plot that describes the residuals 

behaviour compared to a normal distribution. 

 

[32]). This is due to the structure of the model, which 

takes one time step to adapt to changes in the series 

and, thus, can sometimes miss the sudden peaks of 

the physical quantity under study.  

The choice to do not present the comparison in the 

entire calibration dataset was due to the difficulties in 

highlighting small variations in a so large dataset. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Comparison between observed values (black 

line and squares), Model 1 (red line and circles) and Model 

2 (blue line and triangles) performed on (a) February 9 

2012, (b) May 9 2012, (c) August 9 2012 and (d) 

November 9 2012. 

3.4 Validation results 
The validation of the models on a single day, i.e. a 24 

hours measurement range not used in the calibration, 

is presented in this section, together with a validation 

on a larger period, i.e. one month, in two different 

parts of the year. 

Since the previous calibration dataset ends on the 

31st of December 2012, the validation should be done 

on January 1, 2013. Anyway, this procedure should 

be barely general, since the first day of the year is a 

special day, with celebration, fireworks, etc., that 

could affect the CO concentration.  

For this reason, in order to perform a validation on 

an unbiased day, a new calibration has been 

performed on the first 5112 periods (up to the end of 

July 2012) for both the models. The models built with 

the new parameters have been tested on the 24 hours 

of August 1, 2012, that was a Wednesday. Results of 

the comparison are reported in Figure 5 and in Table 

6. 

It can be noticed that the average slope is well 

depicted by both the models. Again, as in [28], the 

single peaks are barely reproduced, since the 

parameters of the models are fixed at the last 

calibration period and cannot follow the very short 

term variations. In the calibration phase, this 

phenomenon was reduced because each period 

prediction uses the previous data, allowing to follow 

the possible high variability of the dataset. 

The statistics of the errors (difference between 

measured and predicted values in the validation 

phase) reported in Table 6 and the error metrics, 

reported in Table 7, suggest that in this validation 

dataset, made of 24 periods, Model 1 performs 

slightly better than Model 2.  

 

 
Figure 5: Comparison between observed values (black 

line and squares), Model 1 (red line and circles) and Model 

2 (blue line and triangles) performed on August 1, 2012, 

after the new calibration on the first 5112 periods. 
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Table 6. Summary statistics of the errors evaluated on 

the 24 hourly data of the 1st of August for the two models. 

 
Mean  

[ppm] 

Std dev  

[ppm] 

Median 

[ppm] 

Min 

[ppm] 

Max 

[ppm] 

Model 1  -0,004 0.119 -0.03 -0.16 0.34 

Model 2  -0.021 0.117 -0.05 -0.17 0.32 

 

 

 

A similar validation but on a larger dataset can be 

performed, in order to avoid local fluctuations of the 

measurement. In Table 8, the mean and the standard 

deviation of the errors evaluated in the entire months 

of August and December 2012 are reported. Of 

course, the model parameters are frozen at the end of 

July, i.e. at the end of the calibration dataset.  

The results are very interesting, showing that the 

performances of the models decrease when moving 

from August to December, due to the distance 

between the calibration dataset and the validation 

range. Anyway, the distributions of the errors are still 

centred close to zero, even if with a standard 

deviation that is about 5 times the standard deviation 

observed in the validation performed on the August 

dataset. 

 
Table 8. Mean and standard deviations of the errors 

evaluated on two validation datasets of 744 periods (one 

month) for both the models. 

 August 2012  

(data from 5113 to 

5856) 

December 2012  

(data from 8041 to 

8784) 

 
Mean  

[ppm] 

Std dev  

[ppm] 

Mean  

[ppm] 

Std dev  

[ppm] 

Model 1  0.000 0.104 0.005 0.581 

Model 2  0.000 0.097 0.037 0.561 

 

 

4 Conclusions 
In this paper, the authors present the application of 

two Seasonal AutoRegressive Integrated Moving 

Average (SARIMA) models are to CO 

concentrations in Metropolitan Area of Monterray, 

Mexico. The two models have been chosen according 

to the minimization of the AIC index. Both of them 

have been calibrated on a large dataset, made of 8784 

hourly CO concentrations observed in 2012, in one 

of the monitoring stations of the site.  

Once the parameters have been evaluated, the 

residuals (difference between observed value and 

models results, i.e. a simple predictive error metric) 

have been calculated and analysed. The results are 

very good for the selected models, both in terms of 

residuals mean and standard deviation. Also the 

graphical comparison showed very good predictive 

performances by both the models, suggesting the 

suitability of this predictive technique for CO 

concentration forecasts. 

Then, in order to perform a validation, i.e. 

comparison of models results with data not used in 

the parameters tuning, a new calibration has been 

performed using the data from January to July 2012. 

This has been done to avoid a validation on a special 

day, such as the 1st of January 2013. Thus, the 

comparison between models predictions and 

observed CO concentrations in the 24 hours of the 1st 

of August 2012, has been performed. The results, in 

terms of mean error and standard deviation, are even 

better than in the calibration phase.  

Anyway, the single day validation can be affected 

by local variabilities. For this reason, a validation on 

one-month data has been performed in the last part of 

the paper. The results showed a better average results 

of the mean error and standard deviation, but an 

expected worsening of the performances of the 

models moving from August to December, i.e. 

moving away from the calibration dataset. 
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