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Abstract: - In this work, a multi-agent system implementing a new incentive-based demand response model 

(MAS-IBDR) is designed to help the Grid Manager (GM) to find a balance between energy produced and 

demand during peak hours. The proposed approach adopts the negotiation model of the game theory, where a 

stackelberg game with two interaction loops is formulated to capture interactions between the actors of this 

hierarchical market (Generator, Grid Manager (GM), Charge Aggregators (CA) and end Users (Us)) having an 

oligopolistic structure in order to reduce costs required to compensate the resource deficiency. The Grid 

Manager launches an incentive offer to sell a demand reduction from the Charge Aggregators, which trigger a 

trading routine with their registered Users to encourage them to reduce their consumption and receive in return 

an award. From this negotiation process based on game theory, an optimal solution of stackelberg equilibrium 

is obtained. The simulation results confirm that the proposed approach is effective in offsetting the deficiency 

of system resources at minimum cost during peak hours. 

 

 

Key-Words: - Multi Agent System; Game theory; Stackelberg duopoly; Oligopolistic Market; Demand 

Response; Incentive-Based Demand Response. 

 

1 Introduction 
The growing demand for electricity has put a heavy 

load on the power grids. Conventionally, power 

generation is usually forced to follow varying loads 

in its systems [1]. To compensate for capacity 

shortage during peak times, grid manager (GMs) 

needs to build more backup in generation capacity. 

However, this conventional approach has faced 

criticism for a range of reasons, including heavy 

investment, due to the use of generators during rush 

hours, and carbon emission issues [2]. 

With the appearance of the smart grid [3], demand 

response (DR) is now playing a more active role in 

improving the efficiency and reliability of the 

network [4], to respond positively to inadequate 

demand. 

There are two possible DR models: the incentive-

based demand response (IBDR) model and the 

price-based demand response (PBDR) model [5]. In 

the IBDR model, also known as the reward-based 

model, customers receive financial incentives in 

return for reducing energy consumption. In the 

PBDR model, the price is controlled to induce 

customers to decrease demands when necessary.   

    In this paper, we are interested in the 

incentive-based model, because it is more common 

and wide spread in the real system. IBDR is based 

on contractual arrangements designed by decision-

makers (GMs or utilities) to achieve reductions in 

customer demand during the '' events '' program [3], 

which could be triggered in response to a price 

increase or a contingency system that threatens the 

reliability of the power system. IBDR provides 

registered users with incentives to reduce their 

charges [4]. 

Lot of work relies on incentive mechanisms. In [6], 

a decentralized framework has been developed in 

which the aggregator seeks to maximize profits 

while its users (consumers) aim to minimize their 

respective costs; the interaction between them is 

coordinated by monetary incentives. the work on [7] 

used the concept of price elasticity of demand and 

the function of customer profit to improve an 

economical model for two incentive DR programs 

that are interruptible / Curtailable service and 

capacity market program, the model proposed can 

help the GM to identify and use relevant DR 

program. The incentive mechanism between energy 
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suppliers and users for demand management uses 

auction theory studied in [6]. 

Most of the existing IBDR models [8–10] were 

designed from the viewpoint of a mediator (e.g., 

utility company, electricity retailer or service 

provider), to push end users to participate in the 

provided sub-programs.  

Recently, game theory has attracted a lot of 

attention in the modeling of hierarchical decision 

problems. The Stackelberg game model was 

proposed in [11], between the retailer of electricity 

and its users, where the retailer aims to maximize 

his profits by adjusting the retail price according to 

the users who have to manage their devices to 

minimize their electricity bill. Moreover, 

eventhough Stackelberg game theory has been 

widely acknowledged as a useful means to model 

smart grid related issues with hierarchical structure, 

the recent studies [11, 12], focused mainly on 

modeling the interactive process between 

mediator(s) and end users. In other words, the 

demand response resources were gathered and 

brought to the aggregation level only, causing the 

value of DR to be underestimated. 

This paper opens the way for the shift of DR 

resources from utility programs to programs 

controlled by the GM. Besides, GM sets up a 

threshold of minimum load reduction before a DR 

resource is allowed to have access to the wholesale 

market. One solution to this issue is to enroll small-

scale users in sub-programs of charge aggregators 

(CAs) who play spectacular role on behalf of their 

subscribed users and participate in the wholesale 

electricity market to sell aggregated load reduction 

[13], thus hedging small-load users from being 

exposed to the risks by competing with large-load 

users. Some work has been done to aggregate small 

loads of the demand side. [14] proposed a phased 

auction mechanism by proxy that can be used by an 

aggregator to plan small loads and calculate the final 

price via two phase’s auction. In [15], a bidding 

strategy was designed to permit small scale users to 

submit power offers and load balancing to the 

charge aggregators (demand response service 

provider), in return for a potential monetary 

compensation.  

By thoroughly analyzing and understanding past 

literature, authors typically focus on the aggregation 

level by employing small load users into sub-

programs or encouraging them to take part in retail 

markets, whereas the discussion about DR outside 

the aggregation level is absent. 

Following this work, this paper presents the idea 

of a new negotiating process of DR resources to 

help the GM to obtain the resources necessary at 

minimal cost and solve the problem of imbalance 

between supply and demand energy during peak 

hours. The proposed approach is divided into four 

steps: 

Firstly, design the architecture of the multi-agent 

system implementing the proposed IBDR model, 

determine the coordination mechanisms and the 

communication protocol between the actors of this 

hierarchical market: Generators, Grid Manager, 

Charge Aggregators and end-Users. 

Secondly, find out the objective of the control 

strategy and the agent model of each actor. 

Thirdly, formulate a stackelberg game with two 

interaction loops, which takes into account 

asymmetric behavior of the actors of this 

oligopolistic market, formulate a coordination 

control algorithm to calculate the optimal solutions 

from Stackelberg Equilibrium. 

Finally, check the benefit and the functioning of the 

economic stability of the different actors based on 

the case study. 

The paper is organized as follows: Section 2 

presents the structure of the MAS-IBDR market, 

objective of the control startegy and the agent model 

of actors. A stackelberg game with two interaction 

loops is formulated in section 3, to allow the 

negotiation of ressources between market actors and 

achieve a balance. The case study, simulation results 

and their interpretation are given in section 4, and 

finally the study is concluded in section 5. 

 

2 Structure of the proposed MAS-

IBDR market, objective of the control 

startegy and the agent model of actors. 

 
2.1 Structure of the proposed MAS-IBDR. 

The electricity market fig 1, has an oligopolistic 

structure, consisting essentially of three main actors: 

producers, Grid Manager and end-users 

(consumers); the role of GM actor is to anticipate 

the lack of operating resources and try to 

compensate it by exploiting flexible generators, or 

buying a reduction on the demand (encouraging 

users to participate in DR programs). For this, we 

introduced a fourth actor named Charge Aggregator 

(demand response service provider). 
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Fig 1. Structure of electrical market 

 
Fig 2. Structure of MAS-IBDR. 

 
In order to allow DR in this market, to better meet 

the specific objectives and to take into account the 

coordination between these actors (producers, grid 

managers, charge aggregators and end-users), a 

multi-agent system is designed in this paper, where 

each actor is modeled by an agent (Fig 2). Three 

agents are designed in this document, including the 

Grid Management Agent (GM), the Charge 

Aggregator Agent (CAK), and the User Agent 

(Uski).  

The time interval of valley, off-peak, and peak 

periods are determined using equation (1a) [16]. 
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2.2. Objective of the control startegy and the 

agent model of actors. 

2.2.1. GM Agent 

The objective of the control strategy of GM Agent 

is to maximize his profit while minimizing the cost 

of purchase. GM costs are composed of two parts: 

the production cost caused by the current 

generators and Incentive payments to CAk Agents. 

The profit function of GM Agent is formulated in 

(2a). 



   

 




GM GM

GM Gen GM k
k K

           P G Cost   

with  Cost C (G) I R  

 (2a) 

Under the following constraints: 
 

 min max

GM GM GM
I I I              

(2b) 
 



  rk
K

eq
k

DG R              

(2c) 
 

In (1a), G denotes amount of energy produced; P is 

the selling price of electricity in the market, 

GenC (G) is the cost of producing the quantity of 

energy G; GMI is the incentive offered by the GM 

Agent, which is limited by min

GMI and max

GMI  (2b). kR  is 

the corresponding load reduction submitted by the 

k
th
 Charge Aggregator Agents. In addition, the sum 

of the generating amount (G) and the load 

reduction submitted by all CAk Agents must be 

equal to reqD  (2c).    

Generational costs GenC (G) are strictly convex and 

assumed to be an increasing monotonic function 

[17], equation (3). 

2

GenC (G) a.(G) b.(G) c  
   

(3) 

Where a, b, and c are the generation coefficients 

that are available to the GM Agent in advance 

 

2.2.2. CAk Agent 

CAk Agent is located between the GM Agent and 

end-users (Figure 2). This leads a negotiation 

routine based on game theory with its users to 

encourage them to sell their load reduction in 

exchange for incentive payments. On the other 

hand, this agent also participates in the wholesale 

electricity market to sell the load reduction 

(aggregated with its subscribing users) to the GM 

Agent for the incentive
GMI provided. The objective 

of the control strategy of CAk Agent ( k K  ) is to 

maximize his profit from trading with the GM 

Agent on the wholesale market, while minimizing 

incentive payments to registered users. Therefore, 

his function profit is expressed in (4a). 

 

k k

k k

CA ki GM ki CA

i N i N

R .I R .I
 

   
          (4a) 

 

Under the following constraint: 
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  In (4a), kiR represents the reduction of the demand 

provided by the ith user (
ki kUs ;  i 1,  2,  ,  N  ) of 

the k
th
 aggregator agent (CAk), and kN  denotes all 

users who are subscribed to the CAk Agent. 
CAk

I is 

the incentive provided by the kth charge aggregator 

agent to encourage users to reduce their demand 

and 
CAk

minI  and 
CAk

maxI  are the lower and upper bounds 

respectively.  

 The demand reduction
kCAR , for the kth 

aggregator, is the given by: 

 

  
k

k

CA ki

i N

R R


 
   

(5) 

2.2.3. Uski Agent. 

All Uski Agents ( ki 1,  2,  ...,  N ) are assumed to 

have smart meters, incorporating a home energy 

management system (HEMS), to offer load 

reductions by controlling the charges. Each Uski 

Agent is expected to register in a CAk Agent sub-

program, as shown in Figure 2; When the Uski 

Agents are informed of the incentives offered by 

the CAk Agent, they try to maximize their income 

incentives while considering the cost of 

dissatisfaction and determine their optimal amounts 

of demand reductions. Here, when an Uski Agent 

reduces his load, he experiences discomfort which 

is often modeled as the cost of dissatisfaction [18]. 

After receiving the incentives, the goal of the 

control strategy of each Uski Agent is to maximize 

his function profit (6a):  

 

 ki kUs ki CA ki ki ki=R .I - . (R )  
         (6a) 
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Under the following constraint: 

  
tar min

ki ki ki0 R R R  
              

(6b) 

In (6a), the first term represents the incentive 

income of the Uski Agent, offered by the CAk 

Agent by providing a reduction in demand kiR ; the 

second term is the cost of dissatisfaction incurred

ki , where
ki 0  is defined as the weighting factor 

with respect to ki . The constraint (6b) regulates 

kiR so that it does not exceed the available quantity, 

i.e. the difference between the target demand tar

kiR

and the minimum demand min

kiR . The energy 

consumption level, named the user reference (CB), 

from which the reduction of demand is given by 

[19]. In practice, the CB should be determined by 

the CAK Agent using a specific method (for 

example, using historical data on energy 

consumption or signing contracts with users) [8]. 

In addition, min

kiR should be determined by each Uski 

Agent according to his own characteristic or 

requirement. The dissatisfaction cost function in 

(6a) models the degree of discomfort a user may 

experience in reducing demand, defined convex, 

i.e., dissatisfaction will increase significantly with a 

greater reduction in demand [20]: 

  
2ki

ki ki ki ki ki(R ) (R ) .R      
2


     (7) 

With 

  ki ki0   0     

In (7), ki and ki are user-dependent parameters, 

where ki reflects a user's attitude towards demand 

reduction: ki greater value implies that the Uski 

Agent has an attitude of more conservative towards 

demand reduction, and vice versa. 

2.2.4. Ways of communication between Agents. 

The objectives of the three agents mentioned above 

differ from each other. The coordination between 

them is reactive (stimulus-response) as shown in fig 

2, it is ensured by two types of incentives: the GM 

Agent incentive GMI and the CAk Agent incentive

kCAI . Once GM Agent announces the GMI incentive, 

each CAk Agent triggers a sub-program with the 

registered Uski Agents, to encourage them to reduce 

their charges kiR , and then respond with demand 

reduction kR , that’s why the negotiation based on 

the game theory is adopted to be the way of 

communication between agents. 

3 Game theory, demand response 

modeling and startegy of 

coordination. 

3.1 Motivation of using game theory in the 

proposed MAS-IBDR. 
The aim behind the use of negotiation based on 

game theory is the comprehension of 

communication between the actors of this 

electricity market with oligopolistic structure. By 

analyzing the profits functions of each agent (2a), 

(4a) and (6a), it can be seen that the optimization of 

each function will lead to a compromise between 

two terms, for example: maximizing (2a), comes 

from minimizing production costs that’s why the 

GM Agent must incentivize more CAk Agents that 

will lead to increased payments to CAk  Agents. 

Similarly, to maximize (4a), each CAk Agent must 

make a trade-off between the revenue from the 

wholesale market trading with the GM Agent and 

the Uski Agent payments. In addition, the 

maximizing of (6a) will translate also by a 

compromise between "incentive income" and "cost 

of dissatisfaction", since more demand reduction 

will increase "incentive income" but exacerbate 

dissatisfaction. In this regard, the incentive 

provided by the GM Agent will affect the amount 

of aggregated demand reductions ( kR )of a CAk 

Agent, and the incentive
kCAI provided by a CAk 

Agent will also affect how Uski Agents determine 

their demand reductions kiR . In contrast, user-

adjusted demand reductions will have an inverse 

impact on how a CAk Agent regulates a new 

incentive, and will also have an impact on the total 

purchase cost of the GM Agent since the aggregate 

load reduction of CAk Agents is changed. These 

factors naturally lead to interactions between these 

agents, which are coordinated through two types of 

incentives: the GM Agent incentive GMI and the CAk 

Agents incentive
kCAI . The Stackelberg duopoly is 

adapted to illustrate such a hierarchical decision 

framework. In this work, the Stackelberg duopoly 

with two interaction loops is proposed to capture 

the concept behind the presented model. 
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3.2 Formulation of two-loop Stackelberg 

Game. 
As shown in Fig 2, this electrical market consists of 

two duopoly: 

- First is formed by GM Agent and CAk  Agent. 

- Second is formed by CAk Agent and Uski  

Agent. 

Both duopoly are asymmetrical, one speaks of the 

concept of leader and follower, where the CAk 

Agents plays a dual role in this game, leader Uski 

agents side and follower GM Agent side. 

   For this two-loop Stackelberg duopoly with a 

hierarchical decision-making structure, the desired 

results take the form of a Stackelberg Equilibrium 

(SE), which is defined as follows: 

Definition: For the two-loop Stackelberg game 

above, a set of strategies * * *

CA GM(R ,I ,I ) constitutes a 

Stackelberg Equilibrium of this game, if and only if 

the following set of inequalities is satisfied: 

k k

* * *

ki k CA ki ki CA k(R , I ) (R , I )  i N   
    (8) 

k k k k

* * * * *

CA k CA GM CA k CA GM(R , I , I ) (R , I , I )  

k K

 

 
 (9) 

As well as: 

* * * * *

GM CA GM GM CA GMCost (R ,I ,I ) Cost (R ,I ,I )        

(10) 

Where
k

* * * *

ki k1 k2 kNR R ,R ,...,R     with (i=1, 2, …, 

Nk) denotes the strategies of all the Uski Agent 

registered under CAk Agent and 
* * * *

1 2 kR R ,R ,...,R    , represents the union of the 

strategies of the Uski Agent of all the CAk Agent 

(k=1, 2, …, K). In addition
1 2 k

* * * *

CA CA CA CAI I , I ,..., I   

, denotes the strategies of all CAk Agent. 

The inequalities in (8) - (10) mean that, when all 

agents (players) are at an SE, no Uski Agent can 

increase its profile by choosing a strategy other 

than  kiR , and no CAk Agent can improve its utility 

by deviating to other strategies; In addition, the GM 

Agent cannot further reduce costs by choosing 

other incentives. 

3.3 Calculates stackelberg equilibrium. 
There is a unique Stackelberg equilibrium of this 

game to find it; we must use the backward 

induction, as in any sequential game. That is, start 

analyzing the decision of the follower. On the basis 

of this equilibrium the optimal solutions for GM 

agent, CAk agents and respective Uski agents are 

determined; and those by following these steps: 
- The first step is to identify the "best response" 

of the users in response to the CAk Agent 

strategy (i.e., 
kCAI ) in the bottom loop of the 

game; given the "best response" of each user. 

- The second step is to find the best strategy for a 

CAk Agent. On the basis of the information 

revealed by all the CAk Agents. 

- The third step is to check for a better strategy 

for GM Agent. 

Demonstration: 
First step: Identify the "best answer" of Uski 

Agents in the response to the strategy 
kCAI , of the 

CAk Agent . 

Given the strategy
kCAI of the leader, the best 

response function kiR of Uski Agent under CAk 

Agent can be obtained by setting the derivative of 

the first order of 
kki k CA(R ,I )  in (6a) with respect 

to kiR , equal to zero :
kki k CA(R ,I ) : 

kCA ki kiki k CA,k

ki

ki ki ki

I(R , I )
0      R

R

 
  

  
 (11) 

In order to ensure that the strategy of the best 

response in terms of (11) is optimal and unique, the 

second order derivative of
kki k CA(R ,I ) in (11) is 

computed with respect to kiR : 

k

2

ki k CA

ki ki2

ki

(R , I )

R

 
  


             

(12) 

The value of (12) is negative which means that

kki k CA(R ,I ) is strictly concave. So the best answer 

obtained in (11) is optimal and unique. 

Second step: Found best strategy
kCAI to the CAk 

Agent, since the response of Uski Agents is 

anticipated. 

By replacing the best response (11), obtained by the 

follower (Uski Agent), in the equation of the 

objective function of the CAk Agent (4a), 
kCAI

becomes: 
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k k k

k

k

k k k

2

CA k CA GM CA

i N ki ki

ki ki
CA GM GM

i N i N i Nki ki ki ki

1
(R , I , I ) I

1
I I I



  

   
 

  
  

    



  

    

(13) 

By following the same method as that of the first 

step, putting the result obtained by the first-order 

derivative to zero, of (13) with respect to
kCAI , we 

obtain: 

k

k

k

K

k

CA k CA GM

CA

ki

i N
ki

CA GM

i N
ki ki

(R , I , I )
0      

I

1 1
 I I

12 2






 






 

 





             

(14) 

In order to ensure that the strategy of the best 

response in terms of (14) is optimal and unique, the 

second order derivative of
kCA k CA GM(R ,I , I ) in 

(13) is computed with respect to
kCAI : 

k k

k

k

2

CA k CA GM

2 i N
CA ki ki

(R , I , I ) 2
0

I 

 
  

  


 (15) 

The result of the second derivative (15) is negative, 

which means that
k kCA k CA GM(R ,I , I ) is strictly 

concave. So the best answer obtained in (14) is 

optimal and unique. 

Third step: Check for a better strategy for the GM 

Agent using the information revealed by all CAk 

Agents. 

Substituting (14) into the best answers of Uski 

Agent in (11), the optimum demand reduction 
kiR

of Uski Agent, register under the CAk Agent can be 

expressed as follows: 

k

k

ki

i N ki* GM ki
ki

ki ki ki ki ki

i N ki ki

I1 1 1
R .

12 2







 
  

    

 




      

(16) 

As a result, the aggregated reduction in demand for 

CAk Agents with kk N , can be achieved: 

k

k k k

* * GM ki
CA ki

i N i N i Nki ki ki

I 1 1
R R

2 2  


  

  
  

   
(17) 

Then, the total reduction of demand is: 

k

k

k k

* *

CA ki

k K k K i N

GM ki

k K i N k K i Nki ki ki

GM

R R   

I 1 1
                  

2 2

I 1
                

2 2

  

   




 

  

   

 

     

(18) 

With: 

k k

ki

K K i N K K i Nki ki ki

1 1
0,   0

2   


     

  
   

(19) 

  Substituting equations (2c), (3) and (18) in (2a), 

the objective function of GM Agent becomes as 

follows: 

 

2

GM

req

GM

GM CA GM req

GM

GM

I 1
a. D

2 2

I 1
Cost D, I , I b. D

2 2

I 1
c I .

2 2

   
      
   
 

             
 
  
         

 

(20) 

Then it is necessary to check the convexity of the 

costs of the GM Agent, the reformulated GMCost . 

By putting the first derivative of (20) with respect 

to GMI equal to zero, we can obtain the optimal 

value of GMI , as described below: 

 

 
 

GM CA GM

GM

req*

GM

Cost R, I , I
0 

I

                     

a 2D b
I

a 2








    


  

                          

(21) 
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   The second derivative of (20) with respect to GMI

is: 

 2 2
GM CA GM

2

GM

Cost D, I , I a
0

I 2

  
   

           
(22) 

  Since the outcome (22) is strictly positive if a 0 , 

then the objective function is convex GM Agent 

according to GMI . With and  are defined in (19). 

   Once the unique and optimal GMI , is determined 

for the GM Agent, the best strategies for all CAk 

Agents are also verified according to (14). 

Subsequently, all Uski Agents enrolled under 

different CAk Agents will determine their best

 * * * *

1 2 kR [R ,R ,...,R ] response strategies based on 

(11). Finally, the strategy profile  * * *

CA GMR ,I , I   is 

the unique Stackelberg Equilibrium (SE) of the 

proposed two-loop Stackelberg game. 

3.4. Algorithm and coordination control 

process. 

A distributed iterative algorithm is developed in 

order to obtain the unique stackelberg equilibrium; 

the procedures of this algorithm are defined as 

follows: 

 

Distributed iterative algorithm to achieve 

stackelberg equilibrium 

1. For t ranging from t=1h to 24 h. 

2. Hourly prediction of production and demand. 

3. Period determination equation (1) 

4. While (t ϵ {peak hour}) do 

4.1 GM Agent initializes 
* *

GM GM Gen reqI 0,Cost C D    

4.2. While ( max

GM GMI I ) do 

4.3. For each CAk Agents, launch sub-program 

with enrolled Uski Agent 

- By using (13) and (15) respectively:  

 CAk Agent calculates the optimal
k

*

CAI . 

 The aggregated demand reduction
k

*

CAR . 

4.4 End for 

- GM Agent calculate 

k k

* *

GM Gen req CA GM CA

k K k K

Cost C (D R ) I . R
 

   
  

4.5 If *

GM GM(Cost Cost )   

- The GM Agent records the optimal incentive 

and minimal cost: 

k k

* *

CA CA GM GM(I I ) and  (Cost Cost )  
  

4.6 Else ( min max

GM GM GM GMI I I I    ) 

4.7 End For 

4.8 End While 

- The stackelberg equilibrium k

* * *

GM CA(R ,  I ,  I )
has 

been obtained. 

5. End While 

6. End for. 

 

Remark 1: It should be noted that the cost function

GMCost of the GM Agent is essentially strictly 

convex with respect to GMI  (see section 2.2.1); 

thus, the GMI enumeration of the GM Agent varies 

from min

GMI to max

GMI , will naturally lead to the minimal 

cost for the GM Agent, which means that the 

proposed algorithm is always guaranteed to 

converge to the unique stackelberg equilibrium. 

The process of the coordination control mainly 

comprises the following steps: 

Step 1: Inform the GM Agent of the generation 

cost coefficients. 

Step 2: initialize the incentive GMI  of GM Agent 

and procurement cost. 

Step 3: send IGM to CAk Agent 

Step 4: CAk Agent launch of negotiation program 

with enrolled Uski Agent. 

Step 5: CAk Agent calculate the optimal incentive 

kCAI using (13) and load reduction using (15). 

Step 6: CAk Agent send respond aggregated 

reduction
kCAR to GM Agent 

Step 7: GM Agent calculates the total procurement 

cost using (20). 

Step 8: GM Agent record the current incentive GMI

if it results in lower cost. 

Step 9: Repeat the above process until the 

enumeration of GM Agent incentive GMI  can be 

ascertained. 

Step 10: GM Agent announce the optimal incentive 

GMI  and decide generation quantity. 

Step 11: CAk Agent announce the final 
kCAI

incentive. 

 

4 Case study. 
 

This paper designs MAS with Java Agent 

Development (JADE), which is a FIPA (The 
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Foundation for Intelligent Physical Agents) 

standard-based multi-Agent software development. 

4.1 Basic data 
The structure of MAS-IBDR studied in this paper is 

constituted of one GM Agent representing the Grid 

Manager, three CAk Agents ( k 1, ...,  3 ) 

representing Charge Aggregators (demand response 

service provider) and six Uski Agents ( i 1,  ...,  6 ) 

representing residential customers equipped with 

smart meters integrating home energy management 

system (HEMS).  

   The parameters of the Uski Agents, representing 

their individual attitudes 
i,k towards the reduction 

of the load and the weighting factor ki of the 

dissatisfaction cost are reported in table 1.   

   Renewable Energy production and demand 

profile studied are taken as shown in figure 3, for 

this demand profile the valleys time intervals, the 

off-peak and peak periods are calculated using (1a) 

and the results obtained are reported in table 2. 

The simulations are carried out according to two 

scenarios: 

- The first scenario (S1): does not apply the 

proposed IBDR model (in this scenario the 

resource deficiency is compensated only by 

running generators, in which case the cost was 

calculated using (3)). 

- The second scenario (S2): applies the 

proposed IBDR model where the GM Agent 

will try to compensate for the resource 

deficiency by applying this scenario. 

 

4.1 Results and analysis. 
2.1.1 Performance of the proposed algorithm. 
During each peak hour, the GM Agent predicts the 

resource deficiency that is equal to the gap between 

the demand and the supply that’s why he offers an 

incentive to CAk Agents, in return for the reduction 

of demand. 

For the first peak hours (Table 2) of the load profile 

studied (figure 3), the proposed algorithm 

converges to the stackelberg equilibrium at the 8th 

iteration as shown in fig 4a and 4b: in (4a) the total 

cost of the GM Agent cannot decrease under  2205 

$/MWH and the corresponding optimal incentive 

(3.5135 $ / MWH) is shown in fig (4b). By 

Comparing the optimal value of GM Agent 

incentive (3.514 $ / MWH), obtained by using 

equation (21), with the value obtained by the 

proposed algorithm (3.5135 $ / MWH), it is clear 

that these two values of incentives are very close 

which shows the effectiveness of this algorithm. 

 

Table 1. Uski Agent parameters. 

CA1 Agent 

Uski Agents Us11 Us12 Us13 Us14 Us15 Us16 

   3.2  3.6  3.8  3.6  3.8  4 

  0.6 0.8 1 0.6 0.8 1 

   5  5  5  5  5  5 

CA2 Agents 

Uski Agents Us21 Us22 Us23 Us24 Us25 Us26 

   3.3  3.6  3.9  3.7  3.8  4 

  0.6 0.8 1 0.6 0.8 1 

   5  5  5  5  5  5 

CA3 Agents 

Uski Agents Us31 Us32 Us33 Us34 Us35 Us36 

   4  4.2  4.3  3.6  4.8  5 

  0.6 0.8 1 0.6 0.8 1 

   5  5  5  5  5  5 

 

Table 2. Time intervals of different periods for 

demand profile studied. 

Time interval Valley Off-peak Peak 

Profile of demand  

figure 3 

Hours: 

1- 8, 24 

Hours: 

9- 16 

Hours:  

17- 21 

 

Fig 3. Demand profile and production curve 

studied. 
 

 
 

 

 

 

Fig 4a. Iteration of proposed algorithm to converge 

to the optimal cost of GM Agent.  
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Fig 4b. Iteration of proposed algorithm to converge 

to the optimal incentive of GM Agent.  

 

 

4.2.1 Comparison of costs against a 

benchmark. 
Figure 5 shows a real-time illustration of the 

evolution of the production system and the 

consumption with and without the application of 

the proposed IBDR model. This figure also shows 

that the consumption is adapted to the production: 

the consumption curve follows the production 

curve when the proposed IBDR model is applied 

(Scenario 2). This adaptation is due to the DR 

strategy adapted during peak times, where GM 

Agent encourages charge aggregators to reduce the 

demand of users in exchange for rewards.  
Figure 6 shows a real-time illustration of the 

optimal demand reductions during peak hours 

shown in scenario S2 obtained using the presented 

algorithm in section 3.4. 

Figure 7 shows the total costs of GM Agent for 

scenarios (S1 and S2) during each hour of the day. 

Comparing the total costs obtained for the two 

scenarios, we find that during peak hours, the costs 

of (S1) are very high compared to (S2). Concerning 

the other periods (Off-peak and valley), the costs 

are equal. This leads to the conclusion that the 

proposed IBDR model applied in scenario 2 has 

reduced the overall costs of the GM Agent.  

By comparing the total costs of one day for both 

scenarios represented in fig 8, we find that the total 

costs of S2 are down by 5% compared to those of 

S1. 

 

 Fig 5. Real time function of each scenario (S1 and 

S2). 

 

Fig 6. Real-time illustration of demand reductions 

during peak hours of scenario (S2).  

 

performance with and without application of the 

proposed IBDR model. More than 24 605, 10283$ 

is the total daily costs to meet users demand when 

the proposed IBDR model is not applied. Once 

MAS-IBDR is applied, the costs are reduced to less 

than 23 374, 13191 $. The application of the 

proposed MAS-IBDR has saved approximately 5 

155,485 $ in one day (24 hours). From the 

economic point of view, the proposed MAS-IBDR 

model applied to the load profile in Fig 3 has 

resulted in earnings greater than 5155,485 $ per 

day, or more than 188 175,025 $ per year. 
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Fig 7. Totals costs of the GM Agent for both  

scenarios (S1 and S2) for each hour of the day. 

 

 

Table 3 also presents a comparison of the system  

Fig 8. Total costs of both scenarios (S1 and S2) for 

one day. 

 

Table 4 successively provides the financial analysis 

of the GM Agent, namely the optimal incentives

GMI ,  CAkI (payments of GM Agent to CAk Agents 

and payments of CAk Agent to Uski Agents) the 

costs of the generation and the optimal demand 

reduction of each CAk Agent are also provided to 

help interpret the following analyses.      

 Tables 5, shows the benefit of each CAk Agent as 

speculator, which is actually the profit of the CAk 

Agent (equation 4a) acquired by differences in 

price negotiation with the GM Agents and Uski 

Agent. Table 5 also provides the optimal incentives
 CAkI offered by the CAk Agent to the Uski Agents 

and payments of each CAk Agent to the Uski 

Agents. For each respective Uski Agent, the optimal 

demand reduction and the corresponding income 

are also provided successively in Tables 6 and 7, 

where the income was calculated on the basis of the 

first term of (equation 6a). 

Note:  

- The payments of the GM Agent to CAk Agents 

were calculated according to the first term of 

(4a) and the generation costs were calculated 

using (equation 3). 

- CAk Agents payments to Uski Agents were 

calculated by multiplying the incentives  CAkI  by 

aggregate demand reduction. 

Table 3. Benefit of the application of proposed 

approach. 

Scenario 
Earnings of a 

day ($) 

Earnings of a 

Year ($) 

S2 5155,485 188.175,025 

Table 4.Financial analysis of the GM Agent. 

Tim

e 

(h) 

Optimal 

incentive 

of  GM 

Agent 

($/MWh) 

Demand 

reductio

n 

(MWh) 

Payments 

to CAk 

Agent ($) 

Generatio

n 

cost ($) 

1 0 0 0 43,095 

2 0 0 0 85,775 

3 0 0 0 102,4 

4 0 0 0 43,256 

5 0 0 0 55,1 

6 0 0 0 28,5 

7 0 0 0 46,375 

8 0 0 0 33,975 

9 0 0 0 79,1 

10 0 0 0 68,557 

11 0 0 0 171,84 

12 0 0 0 183,93 

13 0 0 0 190,3 

14 0 0 0 225,6 

15 0 0 0 244,375 

16 0 0 0 128,7 

17 3,549 -1,99 7,06251 158 

18 8,8992512 -4,99 44,407263 102,4 

19 9,6304522 -5,4 52,004442 128,7 

20 8,5604020 -4,8 41,089929 128,7 

21 4,4585427 -2,5 11,146356 115,17 

22 0 0 0 128,7 

23 0 0 0 128,7 

24 0 0 0 104,89 
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Table 5. Financial analysis of the CAk Agents. 
Time 

(h) 

Incentive of CAk Agent ($/MWh) 

CA1 CA2 CA3 

1-16 0 0 0 

17 3,475 3,4843 3,4657 

18 8,7137 8,737 8,6904 

19 9,4296 9,4549 9,4044 

20 8,3819 8,4043 8,3595 

21 4,3656 4,3773 4,3539 

22-24 0 0 0 

Time 

(h) 

 

Optimal demand reduction of  CAk 

Agent ($/MWh) 

CA1 CA2 CA3 

1-16 0 0 0 

17 -0,69 -0,59 -0,67 

18 -1,69 -1,59 -1,67 

19 -1,81 -1,71 -1,79 

20 -1,61 -1,51 -1,59 

21 -0,856 -0,756 -0,836 

22-24 0 0 0 

Time 

(h) 

Income of CAk Agent ($) 

CA1 CA2 CA3 

1-16 0 0 0 

17 2,44881 2,09391 2,37783 

18 15,0397346 14,1498095 14,8617496 

19 17,4311186 16,4680734 17,2385095 

20 13,7822472 12,926207 13,6110392 

21 3,81651256 3,37065829 3,72734171 

22-24 2,44881 2,09391 2,37783 

Time 

(h) 

CAk payment to Uski Agent ($) 

CA1 CA2 CA3 

1-16 0 0 0 

17 2,39775 2,055737 2,322019 

18 14,726153 13,89183 14,512968 

19 17,067576 16,167879 16,833876 

20 13,494859 12,690493 13,291605 

21 3,7369536 3,3092388 3,6398604 

22-24 0 0 0 

Time 

(h) 

Profit of CAk Agent ($) 

CA1 CA2 CA3 

1-16 0 0 0 

17 0,05106 0,038173 0,055811 

18 0,31358161 0,25797949 0,34878159 

19 0,36354259 0,30019436 0,40463355 

20 0,28738824 0,23571404 0,3194342 

21 0,07955896 0,06141949 0,08748131 

22-24 0 0 0 

Table 6. The optimal demand reduction, of each 

Uski Agent during peak hours. 

Time 

(h) 

Optimal demand reduction of each Uski Agent (MWh) 

CA1 Agent 

Us11 Us12 Us13 Us14 Us15 Us16 

1-16 0 0 0 0 0 0 

17 -0,114 -0,096 -0,2 -0,09 -0,073 -0,18 

18 -0,253 -0,2131 -0,4439 -0,2507 -0,2034 -0,5014 

19 -0,2697 -0,2271 -0,4732 -0,27 -0,219 -0,54 

20 -0,2419 -0,2037 -0,4244 -0,2379 -0,1929 -0,4757 

21 -0,1371 -0,1154 -0,2405 -0,1167 -0,0946 -0,2334 

22-24 0 0 0 0 0 0 

Time 

(h) 

CA2 Agent 

Us21 Us22 Us23 Us24 Us25 Us26 

1-16 0 0 0 0 0 0 

17 -0,084 -0,077 -0,185 -0,075 -0,073 -0,18 

18 -0,2007 -0,1839 -0,4419 -0,238 -0,2317 -0,5713 

19 -0,2147 -0,1968 -0,4728 -0,2576 -0,2507 -0,6183 

20 -0,1913 -0,1754 -0,4214 -0,225 -0,219 -0,54 

21 -0,1034 -0,0948 -0,2277 -0,1021 -0,0993 -0,245 

22-24 0 0 0 0 0 0 

Time 

(h) 

CA3 Agent 

Us31 Us32 Us33 Us34 Us35 Us36 

1-16 0 0 0 0 0 0 

17 -0,069 -0,066 -0,0168 -0,077 -0,058 -0,144 

18 -0,1768 -0,1691 -0,0431 -0,187 -0,1409 -0,3497 

19 -0,1898 -0,1815 -0,0462 -0,2002 -0,1508 -0,3744 

20 -0,1682 -0,1609 -0,041 -0,1782 -0,1342 -0,3333 

21 -0,0869 -0,0831 -0,0212 -0,0953 -0,0718 -0,1781 

22-24 0 0 0 0 0 0 

 

Table 7. Income of each Uski Agent. 

Time 

(h) 

Income of each Uski Agent ($) 

CA1 Agent 

Us11 Us12 Us13 Us14 Us15 Us16 

1-16 0 0 0 0 0 0 

17 0,396 0,333 0,695 0,3135 0,25435 0,62717 

18 2,204 1,856 3,8680 2,1904 1,77673 4,38098 

19 2,543 2,141 4,4618 2,5528 2,07062 5,10563 

20 2,0276 1,7075 3,557 1,9990 1,62143 3,99806 

21 0,5984 0,5039 1,049 0,5107 0,4142 1,0214 

22-24 0 0 0 0 0 0 

Time 

(h) 

CA2 Agent 

Us11 Us12 Us13 Us14 Us15 Us16 

1-16 0 0 0 0 0 0 

17 0,29111 0,26685 0,6411 0,2605 0,25360 0,64269 
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18 1,74386 1,59854 3,8406 2,0736 2,01834 3,84986 

19 2,01881 1,85057 4,446 2,4284 2,36370 4,45684 

20 1,59944 1,46615 3,522 1,8853 1,83511 3,53102 

21 0,45004 0,41254 0,9911 0,4454 0,43356 0,99355 

22-24 0 0 0 0 0 0 

Time 

(h) 

CA3 Agent 

Us11 Us12 Us13 Us14 Us15 Us16 

1-16 0 0 0 0 0 0 

17 0,24023 0,22978 0,058 0,267 0,20180 0,501 

18 1,54361 1,47650 0,375 1,631 1,2289 3,051 

19 1,79267 1,71473 0,436 1,890 1,4237 3,534 

20 1,41241 1,35100 0,343 1,495 1,1265 2,796 

21 0,380076 0,363551 0,0925 0,416 0,3136 0,778 

22-24 0 0 0 0 0 0 

5. Conclusion 

A multi-agent system, implementing a new 

incentive-based demand response model, was 

presented in this work to help the Grid Manager to 

find a balance between energy produced and 

demand during peak hours. The proposed approach 

adopts the negotiation model of the game theory, 

where a stackelberg game with two interaction 

loops is formulated to capture interactions between 

the actors of this hierarchical market (System 

Production, Grid Manager, Charge Aggregators and 

end Users) having an oligopolistic structure. In 

addition, we have proven the existence of a unique 

Stackelberg balance that provides optimal system 

solutions. In addition, we have proved the existence 

of a single Stackelberg balance that provides 

optimal system solutions. Finally, it was verified 

that the proposed incentive-based DR approach was 

able to compensate for system resource deficiencies 

at minimal cost. 
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