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Abstract: - In order to engage with user on more personal level, natural human-machine interaction is starting 
to virtual or even physical entities resembling human collocutors. Namely, through human-like entities the 
designed multimodal interaction models, try to adapt to user’s context and to facilitate context of the 
conversational situation. The designed multimodal processes tend to follow the ‘’rules’’ and ques as implanted 
during face-face interaction among humans. In this way, the integration and exploitation of embodied 
conversational agents (ECA) for human-like interaction seems only natural. The ECA’s artificial body and 
articulation capabilities are already close to those found on real humans. From skin, face, hands, and body 
posture, these virtual entities tend to look and behave as realistically as possible. Furthermore, ECAs tend to 
imitate as many features of human face-face dialogs as possible, and integrate them into interaction as 
synchronized as possible. One of the essential functions in face-to-face interaction is the ability to reproduce 
synchronized verbal and co-verbal signals coupled into conversational behavior. Other signals, such as: social 
cues, attitude (emotions), personality, eye-blinks, and spontaneous head movements are equally important, and 
have to be blended into multimodal expressions. However, designing a realistic entity that acts realistically like 
humans do, is a daunting task. Modern 3D environments and 3D modeling tools, such as: Maya, Daz3D, 
Blender, Panda3D and Unity, have opened up a completely new possibilities to design virtual entities, which 
appear almost (if not completely) like real-life persons. However, the modern 3D technology mostly covers the 
design and deployment part of such realism, while the realism of the behavior itself and its diversity and 
dynamic nature are generally not the focus of 3D modeling frameworks. Namely, most of the animation 
prepared in 3D frameworks is planned, designed in advance, and over well-written and well-designed 
situations. Therefore, it integrates limited diversity as well as limited capacity to adapt to a new set of 
parameters. As a result, 3D frameworks have a limited capacity to handle highly dynamic and interchangeable 
contexts present in human interaction. In this paper we, therefore, outline EVA U-Realizer, the second 
generation of proprietary behavior realization module. The goal of the realizer is to integrate the diversity, 
responsiveness, and adaptiveness that is required for the facilitation of conversational responses with animation 
capacities and realism provided by 3D modeling frameworks. As a result, the presented novel realizer is built 
over Unity 3D game engine’s core. The proposed realizer considerably improves the capabilities of the 
animation engine itself, by providing interpreter and executor for incorporating dynamic and real-time 
generated conversational artefacts, similar to those found in conversations among humans.  
 
 Key-Words: - embodied conversational agents, personalized interaction, co-verbal behavior, behavior realizer, 
animation, virtual reality, mixed reality, multimodal interaction 
 

1 Introduction 
 
In the last few years we can observe that 
conversation is becoming a key model in human 
machine interaction [1]. One of the key challenges 
in the modern human-machine interaction (HMI) is 
the generation of more natural output. Namely, the 
emergence of several new devices that are already 
capable to support multi-media conversational agent 
(CA) technology is gaining traction in user 
interfaces [24]. The CAs have, therefore, actually 

become an indispensable tool in everyday scenarios 
for advanced HMI. Namely, from Apple and 
Microsoft, to Amazon, Google and Facebook all 
have adapted their own variations of CAs. The CAs 
range from chat-bots and 2D  cartoon-like 
realizations of talking heads [2,3,4,5], which are 
used primary as the human-like representation for 
visual speech synthesis, to fully articulated 
embodied conversational agents (ECA’s) that are 
able to perform interaction in various concepts 
including sign language [6,25], storytelling [8], 
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companions and pedagogical agents [26,27], and as 
virtual hosts for various user interfaces [7,13,28]. In 
general, the embodied Conversational Agents 
(ECAs) are, nowadays, the best choice for 
development of natural and human-like machine 
interfaces. Recent studies in the field of face-to-face 
conversation show that the proper synchronization 
of verbal and co-verbal signals represents the key 
element for recreating truly natural interaction 
(gestures and expressions)[9]. Namely, the co-
verbal behavior represents a major source of 
discourse cohesion. It regulates communicative 
relationships and may support, or even replace the 
verbal counterparts [10]. Thus, the co-verbal 
behavior effectively retains semantics of the 
information and adds a certain degree of clarity in 
the discourse. Further, it clarifies collocutors 
communicative goal, and reflects psycho-social 
nature of given information, through social and 
psychological responses, attitudes, and personality. 
An ideal user interface would, therefore, integrate 
most (if not all) artefacts that humans use while 
talking to each other. Human interaction also 
implies that classical direction-based or task-
oriented functionality should be replaced with the 
conversation oriented tactics, in order to make the 
dialogue more natural and more personalized [30, 
31]. Overall, ECAs (human like virtual characters 
with embodiment) foster the capacity to resemble 
and to foster the natural way of reacting and 
interacting, and they can select and display 
appropriate non-verbal cues.  

However, natural multimodal interaction is much 
more than speech accompanied with the repetitive 
movements of limbs and face. Natural interaction 
entails multiple behavior variations that are 
correlated in a dynamic and highly unpredictable 
settings [11]. Furthermore, natural conversational 
behavior also incorporates various social and 
interpersonal signals, in order to ‘color’ the final 
outcome. Thus, the virtual entity must behave like 
human in any situation. Further, it must also have 
the capacity to dynamically adapt itself to the social 
and other situational contexts [1,12,27,32]. The 
design of ECAs, therefore, represents a complex and 
still a daunting task. Nowadays, game engines, such 
as: Unity 3D1, Panda 3D2, Irrlicht Engine3, 
Ogre3D4, are  also must-have tools for developing 
3D  Virtual Reality environments in the field of 

1 https://unity3d.com/ 
2 https://www.panda3d.org/ 
3 http://irrlicht.sourceforge.net/ 
4 http://www.ogre3d.org/ 

embodied conversational agents. Namely, in 
combination with various 3D modeling tools (e.g. 
Maya, Daz3D, Blender), the production of highly 
realistic humans is then much easier and affordable. 
Nevertheless, when a virtual character is to be 
represented as a viable and realistic imitation of a 
human, it must also facilitate human like behavior. 
Body motion, postures, and other artefacts of non-
verbal behavior must be aligned with various 
contexts and aspects of the conversation situation 
and everyday life. In the field of embodied 
conversational agents, in general the intent planner 
and behavior generator are responsible to produce 
human like behavior. The behavior is composed of 
speech acts, communicative intents, and non-verbal 
signals (gestures and expressions) that are 
synchronized into common expressive reaction. The 
task of the behaviour realizer is the proper 
realization of the behaviour regarding time, on the 
targeted virtual entity [13]. The game engines and 
3D modelling frameworks provide a perfect 
development environment for design and 
deployment of realistic virtual entities, and their 
highly realistic animation. However, they fail to 
satisfy several believability parameters of 
conversational behaviour, such as: diversity and 
multimodal planning, situational awareness, 
synthesis of verbal content, synchronization, etc. 
E.g. if the human eyes are exposed to the same (or 
quite similar) sequences of movement, then in time, 
they will start to appear less and less natural. Thus, 
the diversity and the ability to use several variations 
of visual cues in the same context, as well as a 
variation of a visual cue in various contexts, is one 
of the key things in order to achieve truly natural 
interaction. The coupling of behaviour planners and 
generators (e.g. behaviour specification tools) with 
the animation components is, therefore, only 
natural. Namely, the behaviour specification 
components on one hand, bring diversity and 
synchronization with advanced interaction models 
and vast repositories of non-verbal cues. The 
modern animation engines on the other hand, take 
care of the realism of the agents and the scenes, as 
well as the realism of the animated movement [34, 
35]. 

In this paper we represent a framework for rapid 
design and development of embodied conversational 
agents that are capable of realizing dynamic and 
complex conversational behaviour. We follow the 
modular concept of separating behaviour 
specification and realization into two independent 
processes. The EVAScript acts as interlink between 
the two [14]. And EVA behaviour generator 
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specifies the behaviour, while the EVA Realizer 
animates it [15].  

In this paper we represent our latest effort 
towards exploitation of 3D modelling framework for 
the deployment of more natural HMI.  Namely, we 
integrated Unity 3D game engine’s powerful 
functionalities into proprietary ECAs behaviour 
generation framework, by integrating them as an 
additional instance of the EVA Realizer. Already 
available EVA realizer ran over Panda 3D core. In 
contrast to Panda 3D technology, we can achieve far 
greater realism of the environment and virtual 
characters, when using Unity. This is mainly due to 
far more controllable and event oriented virtual 
environment that we are able to establish by using 
the Unity environment. However, in terms of 
procedural animation and integration with EVA 
concepts, the native mechanism of animation and 
control in Unity were less compatible with our 
concept of co-verbal events. Thus, this required 
additional research effort, in order to develop the 
animation engine within the EVA framework, and to 
exploit its features for behaviour realization. 

To sum up, this paper is structured as follows. In 
the next section we outline the motivation behind 
the research in the field of the conversational 
behaviour realization. Thus, the next section 
overviews relevant research efforts, and points out 
the key advantages and benefits of the Unity engine. 
We then continue with the outline of the overall 
architecture of the ECA framework, and how it is 
designed and used in our studies in HMI as a whole. 
Next, we focus on the development of behaviour 
realization engine in particular. We outline and 
describe its architecture, implementation, and the 
envisaged event-oriented animation model. The 
paper is concluded with achieved visualizations of 
co-verbal behaviour on female and male agents, 
followed by a discussion and final remarks.  
 
2 Related works 
 
Conversational characters are becoming 
increasingly more realistic and human like. 
However, human eyes see every detail and even a 
small discrepancy in outlook or movement may 
already appear highly unnatural and synthetic. 
Furthermore, if users are exposed to a similar visual 
stimulus for longer periods, the movement will over 
time, start to appear less and less natural. Thus, the 
diversity of the repository of non-verbal stimuli and 
the overall animation of conversational behaviour 
(including interrupts and changes) are equally 
important for the appearance and the actual 

synchronization. In the field of conversational 
agents, the animation part and handling of the 
virtual environment is usually left to a (rudimentary) 
realizer component. The most spread are those 
realizers, which handle behaviour events specified 
in BML. Among BML realizers, Unity 3D has been 
chosen as the preferred animation engine. 
Nevertheless, the Virtual Human Toolkit (VHTK) 
[16] uses SmartBody [17] as the underlying 
realization and animation engine. Further, E-VOX 
[33] is emotionally enhanced semantic ECA, which 
supports the realization of expressive facial gestures 
based on an emotional model inspired by ALMA. 
This allows the ECA to take into account features 
needed for social interaction. Greta [18] also 
supports the realization of expressive conversational 
behaviour based on MPEG4 BAP-FAP layers. In 
this case the platform facilitates Ogre5 game engine 
for the animation. There is also an ongoing effort to 
deploy Greta over Unity game engine6. Further, 
Elckerlyc [19] is a BML realizer for generating 
multimodal verbal and nonverbal behaviour for 
Virtual Humans (VHs). It is a model-based platform 
for the specification and animation of synchronised 
multimodal responsive animated agents. EMBR [20] 
is also a BML realizer that offers a high degree of 
animation control via the EMBRScript language that 
is used as interlink between the behaviour generator, 
and the animation engine. EMBR is based on Panda 
3D2 as the underlying animation engine. An ASAP 
Realizer-Unity3D Bridge [21] also represents BML 
realizer facilitating Unity game engine as the 
animation and rendering engine. This system 
combines the benefits of a modern game engine and 
a modern BML realizer. 

Similarly, as these systems, we tried to exploit 
capabilities of modern game engines in development 
of novel behaviour generation engines. The EVA 
realizer presented in [22], is already capable of 
animating high-quality conversational behaviour 
consisted of gestures, facial expressions, lip-sync, 
gaze and head movement, and posture. The realizer 
facilitates procedural animation delivered via 
EVAScript language, synthesis of subconscious 
behaviour in form of spontaneous and expressive 
eye and head movements, as well as targeted 
animation in form of LookAt, PointAt and Follow 
commands. This version of the realizer presented in 
[21], has been implemented based on Panda 3D 
environment2, while novel development 

5 Ogre3D: http://www.ogre3d.org/ 
6 Greta in Unity: https://trac.telecom-
paristech.fr/trac/project/greta/wiki/GretaUnity 
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achievements regarding EVA realizer are presented 
in this work, where new possibilities of Unity game 
engine are exploited.  

To sum up, modern behaviour realizers have the 
capacity to support several parameters of 
believability of conversational behaviour, such as: 
diversity and multimodal planning, situational 
awareness, synthesis of verbal content, 
synchronization, etc. They, however, lack in 
production capacities in terms of agent and 
environment, as well as the visual realism and 
integration into various interfaces. Game engines on 
the other hand are powerful tools for rapid and high 
quality design and rendering of virtual human-like 
entities including ECAs. They enable the design and 
delivery of beautiful and highly realistic graphics, 
and the efficient handling of hardware resources. 
The game engines, however, lack in the capacity to 
dynamically adapt movement artefacts to various 
conversational, social, and other situational 
contexts. Thus, game engines provide only limited 
(if any) mechanisms to generate and deliver the 
diverse set of co-verbal artefacts, which are 
synchronized over multiple channels and adapted 
with the context of situation.  

 EVA U-Realizer presented in the paper 
significantly improves proprietary behaviour 
realization module presented in [22].  
Architecturally, both realizers are quite similar in 
the design. Nevertheless, important advantages of 
the Unity-based implementation over the Panda 3D 
– based implementation are the following:  
• Integrated animation scheduling and frame by 

frame control, with the capacity to control the 
scheduled animation and even animation 
already being executed. In contrast, the Panda 
3D realizer implements stop and interrupt 
procedures to handle new events. Further, the 
scheduling is quite rudimentary, in form of 
FIFO ques that hold the pre-processed 
animation sequences to be realized. The 
scheduling in Unity-3D realizer incorporates 
associative arrays and allows for a) replacement 
of sequences, b) replacement of parts of 
sequences,   and c) changes made to the 
scheduled sequences and sequences already 
being played-out. 

• Direct support for inverse kinematics (IK) 
supporting targeted animation (e.g. 
LookAtObject and FollowObject behaviour). 
Panda 3D realizer only partially supports IK via 
external libs and implanted LookAt and Follow 
behaviours, via transformation of 3D position to 
the rotations of neck joint and arm joint chain 
(online estimation). 

• Specification of customized interpolation curves 
for more natural smoothing of the animation. 
The Panda 3D realizer supports Linear, EaseIn, 
EasOut, and EasInOut interpolation, where 
curves are static and cannot be managed. In 
Unity 3D realizer we support virtually any kind 
of mathematical function used to calculate the 
‘in-between’ configuration of movement 
controller in relation to the current time-frame. 

• Integrated scene and animation editor with the 
ability to visually set-up the environment 
parameters, as well as to design agents’ posture 
and gestures. Off course, 3D modelling tools, 
such as: Maya 3D and Daz 3D, are still 
supported and being used. The Unity 3D 
realizer actually supports direct import of 
Autodesk’s FBX. In turn, this significantly 
reduces the complexity of the integration of 3D 
scene designed in 3D modelling environment, 
and its facilitation in the interactive 
environment (e.g. ECA environment). 

• Deployment to various mobile and stationary 
platforms. Thus, richer support for various 
communicative contexts in various 
environments. Panda 3D realizer only partially 
supports this option via web clients. 
 

However, there are also some cons to the Unity 
3D realizer. For instance, Unity3D is proprietary 
and closed source game engine. In contrast, the 
Panda 3D game engine is free and open source. 
Unity3D is also quite self-centred engine. Thus, it 
uses very unique approach for doing ‘things’. Most 
of the knowledge and mechanisms are not directly 
transferable to other engines. Finally, for efficient 
memory handling, classes have to be implemented 
in order to manage objects in memory (e.g. object 
pooling).  
 
3 The EVA Framework Architecture  
 
The general concepts of the EVA framework 
architecture are in line with the related research 
achievements in the field. Thus, we follow the 
principle of the component modularization, similar 
to the one outlined in the SAIBA architecture [23]. 
Architecture of the EVA Framework and the EVA 
realizer in particular is outlined in Fig. 1, where we 
outline the overall framework that we have 
envisaged and deployed in order to facilitate more 
natural human machine interaction, as can be 
delivered by using ECA technology. It also specifies 
those particular components that have been designed 
and developed for the transformation of the co-
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verbal behavior into speech synchronized 
animations performed by an embodied 
conversational agent, named EVA. 
 

 
Figure 1: The framework for the delivery of natural 

human-machine interaction - EVA Framework 

The architecture of the EVA Framework, as 
outlined in Fig. 1,  is highly modular and includes 
an 3rdParty game engine, which is responsible for 
generating the conversational behavior in form of 
synchronized co-verbal (e.g. gestures and 
expressions) and verbal acts (e.g. speech). Within 
the EVA framework, the component is named EVA 
Behavior generator [15]. This is actually an omni-
comprehensive TTS engine, which generates the 
synchronized conversational behavior in form of 
conversational events. Each event consists of non-
verbal events described in EVA Script, and are 
aligned with the synthesized verbal counterparts.  

The second component is the EVA Behavior 
Realizer, which is also the focus of this paper. It 
realizes the generated synchronized behavior and 
represents it to the user. In order to do that, the EVA 
Behavior Realizer transforms conversational events 
into their physical representations. This is achieved 
by applying the various co-verbal features described 
in the co-verbal events to the 3D resources available 
in the renderer. In addition to scene artefacts and 
camera, the more important artefacts are the 
exposed controlled objects, which are used to 
manipulate the embodiment of the virtual character 
(e.g. its movement controllers). Upon completion of 
the animation sequence (and the whole co-verbal 
act), a feedback in form of a conversational context, 
is also sent back to the behavior generator, or any 

other component requiring it (e.g. dialog manager). 
As part of the EVA framework, so far we have 
designed and deployed two EVA realizers, one is 
based on Panda 3D game engine, and the other one, 
represented in this paper, is based on Unity 3D 
engine. The main components of both EVA 
realizers are: Event Handler, Animation Generator, 
Animation Scheduler and Animation Handler. The 
Event Handler intercepts and handles the 
conversational events. It parses event stream, and 
checks for the event type and the event priority. The 
Animation Generator then transforms the 
conversational behavior into animation sequences. 
As part of this process, the Animation Generator 
applies temporal and spatial constraints adjusted to 
agents’ articulated body. The Animation Scheduler 
then inserts the generated animation sequences into 
the execution plan. It handles the animation graph 
and feeds them to the rendering engines 
accordingly. Finally, after the realization of each 
animation sequence is completed, the Event Handler 
signals its status (conversational context) to the 
behavior generator, and possibly also to the dialog 
handlers. Similarly, after the full realization of the 
behavior que, a change in conversational context 
event is raised and the generation of inactive (rest) 
behavior is triggered.  
 
3.1 The EVA U-Realizer: Architecture and 
Implementation 

In order to integrate and fully facilitate all aspects of 
the conversational behavior supported by EVA 
framework, the design and development of the EVA 
U-Realizer follows the approach presented in [14]. 
The basic architecture and implementation of the 
EVA U-Realizer is outlined in Fig. 2.  

 
Figure 2: The EVA U-Realizer architecture 

The 3D resources outlined in Fig. 1, are 
represented by SCENE and ARTICULATED ECA 
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components, as outlined in Fig. 2. The 
ARTICULATED ECA component maintains all 3D 
resources designed for each separated virtual agent 
and the overall scenes. The 3D objects are either 
physical animation objects (3D resources in Fig.1), 
such as: lights, objects in environment, cameras, 
interpolation curves and the articulated virtual 
characters, meshes, skeletal structure; or C# 
algorithms (scripts) implementing targeted 
functionality encapsulated into C# classes (e.g. 
animation scripts and event system in Fig. 1). The 
C# classes extend the Unity’s native 
MonoBehaviour class.  

The physical 3D resources are actually those 
‘tools’, through which body-part based animation 
and co-verbal behavior are implemented. In addition 
to gestures, gaze, facial expressions and lip-sync, 
the agent can also engage with various artefacts in 
the environment. This implies that a proper 
implementation of an articulated agent and its 
embodiment in addition to interactive objects in the 
environment are exposed to the game engine. For 
the design and the implementation of the agent, the 
Unity directly supports most of the popular 3D 
formats from obj, collada, and fbx to even direct 
import of Maya scene files (.mb). Furthermore, the 
interaction between agent’s embodiment and objects 
in the environment can also be inherited from the 
imported 3D scene.  

As already mentioned, the EVA U-Realizer is 
implemented as a series of algorithms and scripts 
extending Unity’s MonoBehaviour class. 
MonoBehaviour class is the base class of all scripts 
that can be attached to the ‘game’ objects, and can 
manipulate objects in the scene. Furthermore, each 
class of type MonoBehaviour, automatically 
implements event functions. These functions are 
inserted into the programs lifecycle and executed in 
a predetermined order7. Among more important 
event functions are the following: 
a) Start, which handles all the initialization 

procedures, and is called just once for a given 
script. 

b) On (MouseXXX), which handles scene events 
natively supported by the engine. 

c) Update, which handles ‘game’ logic at each 
frame. Co-routine updates are run after the 
Update function returns. This function 
performs the key mechanism for the 
implementation of frame-by-frame operations 
of the EVA U-Realizer. 

d) OnDestroy, which handles the 
decommissioning of an object. It actually 

7https://docs.unity3d.com/Manual/ExecutionOrder.html 

specifies what happens, when an object is 
destroyed. This function is called after all 
frame updates for the last frame of the 
object’s existence (the object might be 
destroyed in response to Object.Destroy, or at 
the closure of a scene). 

 
 Animation Scheduler is the central component in 

the EVA U-Realizer. The Animation Scheduler is 
represented by the AnimationScheduler script, 
which manages all other resources and threads. It 
loads 3D resources, builds the scene, and initiates all 
other sub components, such as: animation 
generators represented by Animator scripts, and the 
Animation and Event handlers.  

The Event Handler is represented by EventSystem 
object, which extends Unity’s native event handling 
framework (and the event oriented lifecycle of the 
application) by incorporating EVA conversational 
events and publish-subscribe (unsubscribe) 
mechanism for handling of particular animation 
streams and contextual events beyond the scope of 
‘mouse’, ‘keyboard’, and similar input events 
supported internally by Unity. It is initiated by the 
Animation Scheduler in the beginning of the 
applications’ life cycle. It implements all event-
related function of the MonoBehavior class, through 
which it handles internal events. In addition to 
handling internal events, it also acts as a bridge 
between the EVA U-Realizer and the rest of the 
EVA Framework. For this functionality, the event 
handling framework is extended with publish-
subscribe mechanism based on the .NET event 
handling and delegates’ concepts8. In general, the 
Event Handler subscribes to listen to all events in 
the system. Thus, when a sub-component (e.g. 
animation handler, EVA event handler) raises an 
event, the Event System intercepts it. If it is relevant 
it processes it, and at the end posts a proper request 
to the Animation Scheduler. In addition to handling 
internal events (and the communication between all 
the components exposed in the virtual 3D space), 
the Event System also acts as a bridge between the 
EVA U-Realizer, and the rest of the EVA-
Framework. Thus, it exposes the EVA U-Realizer to 
the rest of the “world”. This is achieved via EVA 
Event handler sub-component that after some EVA 
event is received, triggers an internal event relevant 
for the Event Handler. 

Next, the EVA U-Realizer implements several 
animation generators for planning idle/sub-
conscious behavior, and three generators for 
interpreting the co-verbal behavior. The Eye Blink 

8https://docs.microsoft.com/en-us/dotnet/standard/events/ 
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Animator is a script used to generate sub-conscious 
eye-blinks. The Idle Animator is then a script that 
interprets and generates the behavior of the agent, 
when it is not performing any interactive function. 
Such behavior for instance, includes spontaneous 
head movement and facial gestures. The Event 
Handler treats all idle/subconscious generators as 
regular animators. This is archived by designing the 
idle/subconscious models, which are engaged on 
demand by the Animation scheduler, in order to 
trigger proper EVA co-verbal events, which are 
relevant to the Event Handler. When animation 
scheduler has no more co-verbal sequences to 
execute, it will start the idle/subconscious models 
and indirectly signal the Event Handler to deploy 
the idle/subconscious behavior. However, when an 
EVA event is received, the Event Handler will 
pause idle/subconscious models, remove the 
planned idle/subconscious behavior, and ensure for 
a smooth transition between the last frame of the 
idle/subconscious models sequence to the first frame 
of the co-verbal sequence.  

Finally, the Animation Scheduler supports three 
independent animation streams: one for speech, one 
for facial expressions, and one for gestures. Each of 
the streams is handled by one of the Animation 
Handler’s components (e.g. Animators). The 
Animation Handlers transform EVAScript 
descriptions into sequences of agent’s embodiment 
configurations, and into those time intervals as 
specified in the EVAScript language. Each of the 
Animators prioritizes over a separate segment of 
embodiment and co-verbal artefacts. Namely, it will 
have higher priority, when several Animators try to 
configure the same segment. For instance, Speech 
Handler targets primarily the visualization of 
phonemes (vizemes). Thus, it will have higher 
priority in comparison to the movement controllers 
in the lower facial region. However, it will share 
them with the FacialExpression Handler. In this 
way, both handlers are capable of controlling 
movement controllers in the lower facial region. 
However, when both try to configure them at the 
same time, the Speech Handler will provide the 
highest influence, what lies in line with the 
animation blending concept. Thus, e.g. in this way 
the agent can display a vizeme with a smile. 

In general, the Animator represents the link 
between the rendering engine and the objects in the 
scene, including the articulated embodiment. Speech 
is visualized via the Speech Animator. Further, 
facial expressions are animated via the Expression 
Animator and Gestures (including posture), while 
head movements (including gaze) are handled via 
the Gesture Animator. In order to properly interpret 

EVAScript language, and to deploy animation 
blending, each Animator deploys an Animation 
generator. The Animation Generator applies the 
sequences of agent’s embodiment configurations, as 
described within the particular co-verbal event, into 
an internal animation objects adapted to both the 
scene, and the targeted section of the agent’s 
embodiment. Thus, the generator is responsible for: 
a) applying EVAScript descriptions onto designated 
parts of embodiment, b) to apply configurations for 
subconscious/idle behavior, and c) interaction with 
various concepts in environment, such as: 
Follow/LookAt object, Grab object, etc. 

4 The Publish/Subscribe Model 
and Frame-by-Frame Operation 

 
Figure 3: The event diagram of the event model.  

As already mentioned, the communication 
between several processes within the realizer is 
implemented via event-oriented publish/subscribe 
model. Fig. 3 outlines the event diagram of the 
event model implanted for the EVA U-Realizer. In 
the architecture of the EVA U-Realizer, the model is 
managed by the Event Handler that is 
interconnected with the Animation Scheduler. 
Namely, the Animation Scheduler has to store the 
information about the virtual character (or 
characters) that is being controlled, and also the 
scene (including all controllable objects). Among 
more important data is the nature of agent’s 
embodiment, which includes the composition of the 
skeleton and the face, as well as the initial/rest 
configurations of the embodiment and possible 
temporal and spatial constraints of the articulated 
body. These are loaded into realizer’s environment 
upon initialization (e.g. configuration phase). Upon 
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initialization, the Animation Scheduler initiates the 
Event Handler sub-component, and registers itself 
into the event system as the master. It also exposes 
all available Animation Handlers it can manage, 
along with available idle/subconscious behavior 
generators. All further functionality of the Event 
Handler is implemented within the scope of the 
unity’s native Update() event-function.   

After the initialization and configuration stage, 
the Animation Scheduler contains an empty 
schedule. Thus, it will trigger the realization of the 
idle/subconscious behavior. As outlined in Fig. 3, 
the Animation Scheduler firstly initializes all the 
necessary animation generators as intendent 
instances, and then starts the realization loop.   

In the realization loop, the Animation Scheduler 
subscribes to each of the idle/subconscious behavior 
generators, and ‘asks’ them to generate an animation 
sequence. Each of the idle/subconscious behavior 
generators then implements its own algorithm over 
its own time-line, and controls a set of unique 
movement controllers. For instance, the Eye-blink 
generator controls facial controllers around eyes, 
including muscle movement implemented as blend 
shapes, and eye-lid movement implemented via 3D 
joints (bones). The Animation Scheduler starts the 
behavior generation by initiating the Eye-blink 
generator. When the eye-blink should occur, the 
Eye-blink generator raises an event and dispatches it 
to the Event Handler, and back to the scheduler, via 
Event System. And after the “eye-blink” event is 
completed, the Animation Scheduler asks for the 
next ”eye-blink” sequence. The same concept is 
introduced for all subconscious/idle behavior 
handlers, as well as, when handling those co-verbal 
acts generated by the external systems. The 
proposed system all processes are triggered via 
events and all processes are completed via events. 
Thus, the execution is completely asynchronous and 
such processes are actually co-routines. Furthermore 
the asynchronous operation of co-routines ensures 
that no co-routine may interrupt the execution of 
another parallel co-routine. However, any co-routine 
may interact with another co-routine via the Event 
System. For instance, when Animation Scheduler 
(e.g. co-routine 1) requests for an “eye-blink (e.g. 
co-routine 2), it will continue with its operation until 
an announcement regarding animated sequences 
being prepared is intercepted. When in the 
meantime a co-verbal event is received, the 
scheduler is able to process and execute it (e.g. co-
routine 3), and simply disregard or reschedule the 
animation of the idle/subconscious behavior. 
Namely, when some co-verbal event is marked as 

relevant, the Animation Scheduler inserts the 
complete sequence into its schedule.  

In case of subconscious “eye-blinks”, the 
Animation Scheduler will start appropriate 
Animation Handler and feed it with the behavior 
generated by the internal “eye-blink” generator. 
Similarly, the Animation Handler will also handle 
those co-verbal acts received as EVA events 
generated by external components. The difference is 
mostly in the structure of the animation sequence 
generated by the generator. Namely, the generators 
for idle/subconscious behavior will always generate 
a single sequence, while the next sequence will be 
generated only when the current sequence is 
completed and the algorithms behind the 
subconscious generator plan it. In case of co-verbal 
acts the co-verbal act already contains a complete 
behavior plan. Such a plan includes the 
manifestation of multiple embodiments, which are 
synchronized with speech. The temporal domain of 
the behavior must be retained. Thus, when the co-
verbal act has been transformed into animation 
sequences, the Animation Scheduler will contain a 
series of sequences to be realized, as opposed to a 
single sequence, when animating eye-blinks. 
Furthermore, in terms of animation blending, the co-
verbal acts always have the priority over 
subconscious behavior. The idle behavior (e.g. 
‘random’ poses) is never executed, if some co-
verbal acts exist.  

During the execution of the realization loop, the 
Animation Scheduler picks up the sequences from 
the schedule, and feeds the Animation Handlers 
with the next animation segments. After it receives a 
‘sequence complete’ message, the next sequence is 
picked up from the schedule, and again fed to the 
handlers etc. If the schedule is empty, the Animation 
Scheduler is responsible to signal that an animation 
stream has been completed and to destroy the 
animator objects (in order to release all reserved 
resources). When all animation segments are 
completed, the Animation Scheduler signals the end 
of the conversational event and starts processing 
IDLE behavior. During this time, also models of 
subconscious behavior generation may be adapted 
(e.g. eye-blinks during speech vs. no speech, etc.).  
As a result, the Event Handler (if no more co-verbal 
events arrive) triggers the manifestation of the idle 
behavior.   

In Panda 3D realizer, the frame by-frame 
operations are handled internally by the renderer. 
Thus, the Animation Scheduler feeds renderer with 
the targeted transformation (e.g. end pose), with the 
interpolation, and with the time interval for 
animation sequence as a whole. Frame-by-frame 
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calculations are implemented automatically and 
internally by the renderer. This means that each 
animation can be controlled only on the ‘sequence 
level’. Once the sequence had been fed to the 
renderer, an abrupt stop is the only possibility to 
immediately change/stop the animation. For a 
smooth continuation, therefore, the sequence fed to 
the realizer has to be played out completely. On the 
other hand as outlined in Fig. 3, in EVA U-Realizer 
realizer we are able to handle frame-by-frame 
operations outside the renderer. The Animation 
Handler actually handles frame-by-frame 
operations. It calculates the transformation for each 
frame separately, and then feeds the frame-to-frame 
transformations to the renderer. After all planed 
frames are carried out and the movement controllers 
reach their designated configuration, the Animation 
Handler triggers ‘animation sequence done’ event, 
and are destroyed afterwards. Thus, releasing all the 
reserved resources. This means that any animation 
can be modified at any stage, even during the 
execution of some step/sequence. Thus, for a 
smooth transition, the scheduler doesn’t have to wait 
and adjust its temporal scheduling. It just has to 
adjust its frame-by-frame schedule, and replace it 
with new configurations. It can actually instantiate 
changes instantly as they occur. It can also insert 
new behavior between configurations, etc. As a 
result, the virtual character becomes more 
responsive, and can react to changes of the 
conversational, environmental and other contexts 
instantly. The agent also ‘remembers’ what it was 
gesturing prior to the excited state. Additionally, it 
can continue with the realization of that behavior 
after excited state dissipates.  

 
4.1 Frame-by-Frame Operations and 
Interpolation 

As already mentioned, one of the key advantages 
of the EVA U-Realizer is its capacity to 
dynamically manage realization on the frame level. 
The structure of an animation object as a concept is 
outlined in Fig. 4. Let us assume that the co-verbal 
act is represented by a series of animation sequences 
that are arranged over some time interval, and where 
each sequence is represented by a series of 
animation steps. Finally, each animation step is 
represented as a set of movement controllers 
traversing towards a targeted configuration in 
parallel. The frame-by-frame operations then 
handle, how each of these controllers is ‘moved’ 
from configuration A (Pose 1) to configuration B 
(Pose 2). 

 
Figure 4: The representation of animation object. 

 
In the event model, the Animation Scheduler 

picks up the first available sequence in the schedule 
(e.g. S1), and feeds it to the Animation Handler. The 
following pseudo-code fragment then outlines, how 
the Animation Handler actually processes and 
realizes the animation. 
 
List<List<Transition>> AnimationSequence 
 
while AnimationSequence haschildren 
  if interrupt: break 
  if previous-step-done: 
    List<Transition> AniamtionStep = AnimationSequence.TakoutFirst 
    foreach Transition in AniamtionStep 
       AnimateTarget(Transition) 

As can be seen, each animation sequence is 
represented as an object List<List<Transition>>, 
while the animation step as List<Transition>. 
Object Transition represents a configuration of a 
movement controller, by including its target and 
step duration. As outlined in the pseudo code, the 
Animation Handler will stop his tasks only then, if 
an interrupt condition is received, or if the sequence 
que has been cleared.  For each animation step then 
Animation Handler separately processes each 
movement controller. This is important, since in the 
same step several movement controllers may move 
at different velocities, and may be even delayed at 
the beginning. The Animation Handler continues 
with the next step only after the previous one has 
been completely finished. Each transition is moved 
from its current configuration to its targeted ‘in-
between’ configuration by calculating frames in 
between. The next pseudo-code outlines the 
calculations involved in this task: 

 
float duration = step.Duration; 
float local_start_time = this.localStartTimes[step.Controller]; 
Vector3 complete = step.Target; 
Vector3 begin = step.Origin[step.Controller]; 
float td = (Time.time - local_start_time) / duration; // frame 
joint.transform.localRotation = 
    Interpoaltion(Quaternion.Euler(begin),  
    Quaternion.Euler(complete), td) 

In the given pseudo-code we are trying to control a 
joint, e.g. elbow joint, and to rotate it from Pose 1 to 
Pose 2. The duration variable stores the complete 
step duration, while the local_start_time indicates, 
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when the controller starts to animate relatively to the 
beginning of the step. By using two variables plus 
the current time, we can perform calculations of the 
interpolation parameter td, which is always between 
0 and 1. By using the td, the algorithm ‘knows’, 1) 
where on the interpolation curve we are (Fig. 5), and 
2) the joint’s configuration prior to the step and 3) 
the targeted end configuration. Based on the above 
fragments of data we can calculate the most 
appropriate in-between configuration at current 
frame. For this we use the Quaternion.Slerp 
function. Slerp is here a shorthand for spherical 
linear interpolation9. The Quaternion.Slerp then 
denotes that quaternions are used for units. When 
Slerp is applied to unit quaternions, the effect is a 
rotation with uniform angular velocity around a 
fixed rotation axis. Thus, the interpolation allows us 
for achieving smooth and continuous animation 
without abrupt starts or finishes, especially when the 
direction changes. In essence, various interpolation 
curves allow us to model angular velocity at various 
stages of the animation. Thus, we manipulate the 
perceived acceleration of the displayed movement in 
order to make it even more natural. Fig. 5 outlines a 
few of the curves we support via adaptation of 
unity’s MathFX10.  

Linear Hermite

Sinerp Coserp

 
Figure 5: Linear interpolation curves. 

The linear interpolation curve denotes that 
angular velocity is constant throughout the 
animation. Linear animation does allow for a 
smooth progression of the animation, however, the 
animation starts abruptly and ends abruptly. The 
hermit interpolation curve denotes interpolation 

9 https://en.wikipedia.org/wiki/Slerp 
10 http://wiki.unity3d.com/index.php?title=Mathfx 

with easing -in and -out at the limits. The Sinerp 
method interpolates, while easing around the end, 
when value is near one. And the Coserp eases in, 
when value is near zero, instead of easing out (and 
uses cosine instead of sine). 

5 Results 
 
 
In order to evaluate the functioning of EVA U-
Realizer and to proof that all functionalities 
developed in Panda 3D realizer can still be 
supported, we have performed a series of tests. 
During these tests, EVA-Events were generated and 
realized by both realizers. The Panda 3D realizer 
was used first in order to validate, weather it is 
possible to actually realize the co-verbal act. After 
that EVA-Event was dispatched to the EVA-U-
Realizer, where we assessed the realization in terms 
of smoothness, dynamics, and precision (e.g. proper 
controllers, to proper positions in proper time 
intervals). During the testing we evaluated the 
following concepts: a) interpretation of EVAScript 
language and body-part-based procedural animation, 
b) lip-sync, facial expressions, and animation 
blending. The following section outlines realization 
of a complex co-verbal act, performed as a part of 
evaluation and testing process. 
 
5.1 Realization of Complex Co-Verbal Act 
 
The series of tests were used to evaluate how the 
EVA U-Realizer interprets and realizes EvaScript 
events, including various layers of complexity and 
EVA Script attributes introduced through the 
definition of the EVAScript language. In this test 
session we (the external generator) defined a co-
verbal act that consisted of two co-verbal events.  
Each of the co-verbal events is triggered as an event. 
The first one resembles the end of ‘searching’ idea 
event (e.g. when an idea of a solution comes to our 
mind), and the second one reassembles the 
beginning of revelation of the idea (e.g. how one 
starts outlining the solution to collocutors). The co-
verbal behavior is described to be performed via full 
embodiment, namely, by using both arms, hands, 
face and head. Fig. 6 outlines the overall test 
scenario. However, the inner synchronization and 
the temporal distribution is different for each co-
verbal artefact defined within the EVAScript (e.g. 
arms, hands, face, and head). During the first co-
verbal event (e.g. revelation), the head (and face) 
and right hand are the dominant artefacts. Thus, they 
will appear to ‘move’ with most significance and 
power. On the other hand, the left hand moves to its 
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targeted position slightly delayed, but as fast as 
possible. In the second act, however, the left hand is 
the dominant artefact. Thus, its movement will also 
appear as most significant, e.g. the longest and with 
most power. The face/head and right arm/hand are 
moved to the position as ‘quietly’ as possible. Off 
course, the described event is generated externally 
by proprietary EVA co-verbal behavior generator 
[15]. Thus, all expressive parameters (e.g. speed of 
execution, spatial configuration, power, etc.) and 
temporal synchronization (along with other 
corresponding EVA Script parameters), was pre-
determined by the external generator. The EVA-U-
Realizer ‘simply’ has to properly interpret, schedule, 
and realize the described animation on the specified 
articulated body. Fig. 6 outlines the EVAScript 
created for the event for the first co-verbal act, 
which is delivered e.g. as EVA EVENT A. Fig. 6 
shows that for the first co-verbal act the overall 
duration of the act is 1.567s. During this time 
period, the agent has to perform a pointing gesture, 
by pointing to the sky and by moving its left arm to 
a position that is relevant for the specified pointing 
gesture (e.g. almost touching the torso). 
Additionally, the agent should express a blend of 
happy/surprised emotion on his/hers face.  
 

 
Figure 6: EVAScript for EVENT A, as interpreted 
and realized by the EVA-U-Realizer. 
 
Fig. 7 then outlines the implementation of this 
complex act by using the EVA-U-Realizer. For the 
revelation concept, the co-verbal generator predicted 
that the occurrence of the idea (e.g. revelation) 
should be first signaled via the head movement and 
facial expressions, which are then followed by torso 
reconfiguration and pointing gesture performed in a 
quite fast manor. The left hand should also start to 
move into position at the same time; however, its 
movement should be significantly slower, in order 
to appear less relevant. As outlined in Fig. 7 
head/gaze and facial expression started to appear 
first (delay = 0.0s). The two co-verbal artefacts then 
moved to their final configuration in 0.5s. The right 

and left-hand movement are delayed for 0.4s. Thus, 
both configurations started to form 0.1s interval, 
before the previous two co-verbal artefacts finished. 
The right arm finished with its animation after 
0.567s, while the right hand manifested the targeted 
hand-shape in 0.3s. The left hand and arm 
propagated to their end-configuration until the 
overall end of the event (e.g. for 1.167s). Those co-
verbal artefacts, which have already finished, just 
maintained their configuration.  
 

 
Figure 7: Realization of the co-verbal act - EVA 
Event A. 

The second co-verbal act is delivered to EVA-U-
Realizer via EVA EVENT B. Figure 8 outlines the 
result. During the realization of the second co-verbal 
act, the right arm (with hand) is regarded as less 
significant, therefore, it is moved to its intended rest 
position as slowly as possible. The left arm (with 
hand) is, in this situation, regarded as one of the 
significant co-verbal artefacts carrying some 
conversational meaning. The same holds true for 
head and face. The left hand movement in this case 
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appeared as with most power in order to gain the 
most attention of the collocutor, and the face 
expressed confidence colored with excitement. 
Finally, by directing gaze to the collocutor the ECA 
EVA prepares the conversational environment, 
which facilitates the full attention of the collocutor. 
Thus, it can start with the representation of the 
recently developed idea.  

 
 
Figure 8: The realization of the second co-verbal act 
conversational conditions fully established, ECA 
establishes full attention and speaker role. 
 
5 Discussion and Future Work 
 

We have presented novel EVA-U-Realizer 
implemented in Unity 3D game engine. The realizer 
represents further possibilities for realizing human-
like behavior on ECAs, intended especially for 
mobile and ubiquitous environments. The solution 
described allows us fully facilitate all the capacities 
of EVA behavior generator, and to re-use existing 
conversational agents and existing behavior 
templates. The EVA framework is able to generate    
affective, situation/user aware conversational 
behavior by synchronizing verbal    and    non-
verbal behavior in form of conversational events. 
Each co-verbal event is now realizer agnostic, and 
can be used with various behavior realizers. With 
this solution, we have actually gained another 
arguably far more capable conversational behavior 
realization engine. The novel realizer is also highly 

modular and event oriented. Unity environment 
proves to be an ideal engine for rapid development 
of articulated agents. Namely, it doesn’t require 
animators, or researchers specifically trained in 
animation skills. Namely, virtual characters Eva and 
Adam outlined in Fig. 3, were generated in Daz3D11 
using the default Genesis3 male and female setups. 
They were then imported into Unity environment 
via Autodesk’s FBX format. The generated 
conversational acts (gestures) are based on the 
templates generated for Panda 3D based virtual 
character. In addition to Asset Store featured by 
Unity, researchers can rapidly integrate even other 
assets from various 3D modelling environments 
(e.g. from Maya to Blender). 
 

 
Figure 9: Adam and Eva; EVA-U-Realizer performs 
the same generated behavior on different embodied 

conversational agents 
As indicated in Fig. 9, the EVA-U-Realizer also 

allows us to quickly develop several prototypes of 
an idea and test them on various ECAs. Namely, 
Unity also features some components usually found 
in modern 3D modeling framework, such as: drag & 
drop editing, shades, animation, and other online 
configuration of controllers. All these and similar 
mechanisms are already in place, and allow a 
developer to directly diving right into developing a 
functionality or, to test a visualization of a new 

11 https://www.daz3d.com/ 
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conversational concept, without extra knowledge 
regarding 3D modeling framework. The editor’s 
GUI, featured in Unity is also very powerful and 
intuitive. It allows for ‘pausing’ the execution, and 
manipulating the scene at any time, as well as 
progress gameplay frame-by-frame. It also has 
powerful asset management, and attributes 
inspection.  

Finally, the event oriented concept designed as 
the part of the realizer allows the virtual agents to 
properly react to any given conversational context, 
instantly as it appears. This will enable us to 
integrate proprietary conversational agents into 
complex dynamic situations, were agents need not 
only to be expressive, but also to be pro-active. 
Such agents are not only presenters or listeners, but 
can also provide reactive feedback and even take 
over the conversation, just as real humans do. The 
event-oriented concept gives ECAs, the capacity to 
react to events instantly, and to manipulate 
animations at frame level. 

However, Unity 3D is currently still proprietary, 
therefore, closed source game engine. Although, 
non-commercial variations are available, updates to 
the core may be provided only by the game engines 
developers. In case that performance doesn’t satisfy 
the growing requirements of a project, or when an 
extra functionality is needed, it has to be implanted 
as an add-on to core functionality. Such solutions 
generally result in degraded performance, or at least 
in suboptimal results. Further, since Unity 3D is 
quite self-centered, the migration to another engine 
will probably require some extra work. Namely, 
Unity 3D uses unique approach for implementing 
and executing various animation/graphical concepts. 
Some of them are less compatible with other game 
engines. Also due to these facts, we support and 
develop further also Panda 3D realizer within the 
EVA framework. The realizer is currently primarily 
used for the desktop/server based solution.  

To sum up, the ability to express, plays  a  central  
role  in defining  ECA’s  personality, its  emotional  
state,  and  can produce agents as active participant 
in conversation. However, in order to make agents 
to be perceived even more natural, the agents must 
be able to respond to situational triggers smoothly 
and almost instantly, as they are perceived. Thus, 
the presented EVA framework seems not only more 
exciting, but also an important step towards 
generating more natural and human-like 
companions, and machine generated responses. 
Through a series of evaluation tests we have tested 
and shown the capacity of the novel EVA U-
Realizer and its capability to properly handle co-
verbal behavior generated by behavior generators in 

EVA Framework.   Some challenges, such as 
generation of EVAScript behavior templates, and 
variety and plausibility of idle behavior, however, 
still remain. Also the use of lightning, shaders, and 
exploitation of the scene is quite rudimentary. Thus, 
we will work on the idea to exploit various physical 
objects in the scene for even more natural 
conversation. Through the use of Unity Animation 
editor, its Inverse Kinematics capabilities, and a 
powerful PhsyX engine (with IK), these options are 
viable improvements in the near future. 
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