
A Novel Realizer of Conversational Behavior for Affective and
Personalized Human Machine Interaction - EVA U-Realizer -

IZIDOR MLAKAR1, ZDRAVKO KAČIČ1, MATEJ BORKO2, MATEJ ROJC1

1Faculty of Electrical Engineering and Computer Science, University of Maribor
2A1 Slovenija
SLOVENIA

izidor.mlakar@um.si, kacic@um.si, matej.rojc@um.si, Matej.Borko@A1.si

Abstract: - In order to engage with user on more personal level, natural human-machine interaction is starting
to virtual or even physical entities resembling human collocutors. Namely, through human-like entities the
designed multimodal interaction models, try to adapt to user’s context and to facilitate context of the
conversational situation. The designed multimodal processes tend to follow the ‘’rules’’ and ques as implanted
during face-face interaction among humans. In this way, the integration and exploitation of embodied
conversational agents (ECA) for human-like interaction seems only natural. The ECA’s artificial body and
articulation capabilities are already close to those found on real humans. From skin, face, hands, and body
posture, these virtual entities tend to look and behave as realistically as possible. Furthermore, ECAs tend to
imitate as many features of human face-face dialogs as possible, and integrate them into interaction as
synchronized as possible. One of the essential functions in face-to-face interaction is the ability to reproduce
synchronized verbal and co-verbal signals coupled into conversational behavior. Other signals, such as: social
cues, attitude (emotions), personality, eye-blinks, and spontaneous head movements are equally important, and
have to be blended into multimodal expressions. However, designing a realistic entity that acts realistically like
humans do, is a daunting task. Modern 3D environments and 3D modeling tools, such as: Maya, Daz3D,
Blender, Panda3D and Unity, have opened up a completely new possibilities to design virtual entities, which
appear almost (if not completely) like real-life persons. However, the modern 3D technology mostly covers the
design and deployment part of such realism, while the realism of the behavior itself and its diversity and
dynamic nature are generally not the focus of 3D modeling frameworks. Namely, most of the animation
prepared in 3D frameworks is planned, designed in advance, and over well-written and well-designed
situations. Therefore, it integrates limited diversity as well as limited capacity to adapt to a new set of
parameters. As a result, 3D frameworks have a limited capacity to handle highly dynamic and interchangeable
contexts present in human interaction. In this paper we, therefore, outline EVA U-Realizer, the second
generation of proprietary behavior realization module. The goal of the realizer is to integrate the diversity,
responsiveness, and adaptiveness that is required for the facilitation of conversational responses with animation
capacities and realism provided by 3D modeling frameworks. As a result, the presented novel realizer is built
over Unity 3D game engine’s core. The proposed realizer considerably improves the capabilities of the
animation engine itself, by providing interpreter and executor for incorporating dynamic and real-time
generated conversational artefacts, similar to those found in conversations among humans.

 Key-Words: - embodied conversational agents, personalized interaction, co-verbal behavior, behavior realizer,
animation, virtual reality, mixed reality, multimodal interaction

1 Introduction

In the last few years we can observe that
conversation is becoming a key model in human
machine interaction [1]. One of the key challenges
in the modern human-machine interaction (HMI) is
the generation of more natural output. Namely, the
emergence of several new devices that are already
capable to support multi-media conversational agent
(CA) technology is gaining traction in user
interfaces [24]. The CAs have, therefore, actually

become an indispensable tool in everyday scenarios
for advanced HMI. Namely, from Apple and
Microsoft, to Amazon, Google and Facebook all
have adapted their own variations of CAs. The CAs
range from chat-bots and 2D cartoon-like
realizations of talking heads [2,3,4,5], which are
used primary as the human-like representation for
visual speech synthesis, to fully articulated
embodied conversational agents (ECA’s) that are
able to perform interaction in various concepts
including sign language [6,25], storytelling [8],

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 87 Volume 14, 2018

companions and pedagogical agents [26,27], and as
virtual hosts for various user interfaces [7,13,28]. In
general, the embodied Conversational Agents
(ECAs) are, nowadays, the best choice for
development of natural and human-like machine
interfaces. Recent studies in the field of face-to-face
conversation show that the proper synchronization
of verbal and co-verbal signals represents the key
element for recreating truly natural interaction
(gestures and expressions)[9]. Namely, the co-
verbal behavior represents a major source of
discourse cohesion. It regulates communicative
relationships and may support, or even replace the
verbal counterparts [10]. Thus, the co-verbal
behavior effectively retains semantics of the
information and adds a certain degree of clarity in
the discourse. Further, it clarifies collocutors
communicative goal, and reflects psycho-social
nature of given information, through social and
psychological responses, attitudes, and personality.
An ideal user interface would, therefore, integrate
most (if not all) artefacts that humans use while
talking to each other. Human interaction also
implies that classical direction-based or task-
oriented functionality should be replaced with the
conversation oriented tactics, in order to make the
dialogue more natural and more personalized [30,
31]. Overall, ECAs (human like virtual characters
with embodiment) foster the capacity to resemble
and to foster the natural way of reacting and
interacting, and they can select and display
appropriate non-verbal cues.

However, natural multimodal interaction is much
more than speech accompanied with the repetitive
movements of limbs and face. Natural interaction
entails multiple behavior variations that are
correlated in a dynamic and highly unpredictable
settings [11]. Furthermore, natural conversational
behavior also incorporates various social and
interpersonal signals, in order to ‘color’ the final
outcome. Thus, the virtual entity must behave like
human in any situation. Further, it must also have
the capacity to dynamically adapt itself to the social
and other situational contexts [1,12,27,32]. The
design of ECAs, therefore, represents a complex and
still a daunting task. Nowadays, game engines, such
as: Unity 3D1, Panda 3D2, Irrlicht Engine3,
Ogre3D4, are also must-have tools for developing
3D Virtual Reality environments in the field of

1 https://unity3d.com/
2 https://www.panda3d.org/
3 http://irrlicht.sourceforge.net/
4 http://www.ogre3d.org/

embodied conversational agents. Namely, in
combination with various 3D modeling tools (e.g.
Maya, Daz3D, Blender), the production of highly
realistic humans is then much easier and affordable.
Nevertheless, when a virtual character is to be
represented as a viable and realistic imitation of a
human, it must also facilitate human like behavior.
Body motion, postures, and other artefacts of non-
verbal behavior must be aligned with various
contexts and aspects of the conversation situation
and everyday life. In the field of embodied
conversational agents, in general the intent planner
and behavior generator are responsible to produce
human like behavior. The behavior is composed of
speech acts, communicative intents, and non-verbal
signals (gestures and expressions) that are
synchronized into common expressive reaction. The
task of the behaviour realizer is the proper
realization of the behaviour regarding time, on the
targeted virtual entity [13]. The game engines and
3D modelling frameworks provide a perfect
development environment for design and
deployment of realistic virtual entities, and their
highly realistic animation. However, they fail to
satisfy several believability parameters of
conversational behaviour, such as: diversity and
multimodal planning, situational awareness,
synthesis of verbal content, synchronization, etc.
E.g. if the human eyes are exposed to the same (or
quite similar) sequences of movement, then in time,
they will start to appear less and less natural. Thus,
the diversity and the ability to use several variations
of visual cues in the same context, as well as a
variation of a visual cue in various contexts, is one
of the key things in order to achieve truly natural
interaction. The coupling of behaviour planners and
generators (e.g. behaviour specification tools) with
the animation components is, therefore, only
natural. Namely, the behaviour specification
components on one hand, bring diversity and
synchronization with advanced interaction models
and vast repositories of non-verbal cues. The
modern animation engines on the other hand, take
care of the realism of the agents and the scenes, as
well as the realism of the animated movement [34,
35].

In this paper we represent a framework for rapid
design and development of embodied conversational
agents that are capable of realizing dynamic and
complex conversational behaviour. We follow the
modular concept of separating behaviour
specification and realization into two independent
processes. The EVAScript acts as interlink between
the two [14]. And EVA behaviour generator

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 88 Volume 14, 2018

specifies the behaviour, while the EVA Realizer
animates it [15].

In this paper we represent our latest effort
towards exploitation of 3D modelling framework for
the deployment of more natural HMI. Namely, we
integrated Unity 3D game engine’s powerful
functionalities into proprietary ECAs behaviour
generation framework, by integrating them as an
additional instance of the EVA Realizer. Already
available EVA realizer ran over Panda 3D core. In
contrast to Panda 3D technology, we can achieve far
greater realism of the environment and virtual
characters, when using Unity. This is mainly due to
far more controllable and event oriented virtual
environment that we are able to establish by using
the Unity environment. However, in terms of
procedural animation and integration with EVA
concepts, the native mechanism of animation and
control in Unity were less compatible with our
concept of co-verbal events. Thus, this required
additional research effort, in order to develop the
animation engine within the EVA framework, and to
exploit its features for behaviour realization.

To sum up, this paper is structured as follows. In
the next section we outline the motivation behind
the research in the field of the conversational
behaviour realization. Thus, the next section
overviews relevant research efforts, and points out
the key advantages and benefits of the Unity engine.
We then continue with the outline of the overall
architecture of the ECA framework, and how it is
designed and used in our studies in HMI as a whole.
Next, we focus on the development of behaviour
realization engine in particular. We outline and
describe its architecture, implementation, and the
envisaged event-oriented animation model. The
paper is concluded with achieved visualizations of
co-verbal behaviour on female and male agents,
followed by a discussion and final remarks.

2 Related works

Conversational characters are becoming
increasingly more realistic and human like.
However, human eyes see every detail and even a
small discrepancy in outlook or movement may
already appear highly unnatural and synthetic.
Furthermore, if users are exposed to a similar visual
stimulus for longer periods, the movement will over
time, start to appear less and less natural. Thus, the
diversity of the repository of non-verbal stimuli and
the overall animation of conversational behaviour
(including interrupts and changes) are equally
important for the appearance and the actual

synchronization. In the field of conversational
agents, the animation part and handling of the
virtual environment is usually left to a (rudimentary)
realizer component. The most spread are those
realizers, which handle behaviour events specified
in BML. Among BML realizers, Unity 3D has been
chosen as the preferred animation engine.
Nevertheless, the Virtual Human Toolkit (VHTK)
[16] uses SmartBody [17] as the underlying
realization and animation engine. Further, E-VOX
[33] is emotionally enhanced semantic ECA, which
supports the realization of expressive facial gestures
based on an emotional model inspired by ALMA.
This allows the ECA to take into account features
needed for social interaction. Greta [18] also
supports the realization of expressive conversational
behaviour based on MPEG4 BAP-FAP layers. In
this case the platform facilitates Ogre5 game engine
for the animation. There is also an ongoing effort to
deploy Greta over Unity game engine6. Further,
Elckerlyc [19] is a BML realizer for generating
multimodal verbal and nonverbal behaviour for
Virtual Humans (VHs). It is a model-based platform
for the specification and animation of synchronised
multimodal responsive animated agents. EMBR [20]
is also a BML realizer that offers a high degree of
animation control via the EMBRScript language that
is used as interlink between the behaviour generator,
and the animation engine. EMBR is based on Panda
3D2 as the underlying animation engine. An ASAP
Realizer-Unity3D Bridge [21] also represents BML
realizer facilitating Unity game engine as the
animation and rendering engine. This system
combines the benefits of a modern game engine and
a modern BML realizer.

Similarly, as these systems, we tried to exploit
capabilities of modern game engines in development
of novel behaviour generation engines. The EVA
realizer presented in [22], is already capable of
animating high-quality conversational behaviour
consisted of gestures, facial expressions, lip-sync,
gaze and head movement, and posture. The realizer
facilitates procedural animation delivered via
EVAScript language, synthesis of subconscious
behaviour in form of spontaneous and expressive
eye and head movements, as well as targeted
animation in form of LookAt, PointAt and Follow
commands. This version of the realizer presented in
[21], has been implemented based on Panda 3D
environment2, while novel development

5 Ogre3D: http://www.ogre3d.org/
6 Greta in Unity: https://trac.telecom-
paristech.fr/trac/project/greta/wiki/GretaUnity

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 89 Volume 14, 2018

achievements regarding EVA realizer are presented
in this work, where new possibilities of Unity game
engine are exploited.

To sum up, modern behaviour realizers have the
capacity to support several parameters of
believability of conversational behaviour, such as:
diversity and multimodal planning, situational
awareness, synthesis of verbal content,
synchronization, etc. They, however, lack in
production capacities in terms of agent and
environment, as well as the visual realism and
integration into various interfaces. Game engines on
the other hand are powerful tools for rapid and high
quality design and rendering of virtual human-like
entities including ECAs. They enable the design and
delivery of beautiful and highly realistic graphics,
and the efficient handling of hardware resources.
The game engines, however, lack in the capacity to
dynamically adapt movement artefacts to various
conversational, social, and other situational
contexts. Thus, game engines provide only limited
(if any) mechanisms to generate and deliver the
diverse set of co-verbal artefacts, which are
synchronized over multiple channels and adapted
with the context of situation.

 EVA U-Realizer presented in the paper
significantly improves proprietary behaviour
realization module presented in [22].
Architecturally, both realizers are quite similar in
the design. Nevertheless, important advantages of
the Unity-based implementation over the Panda 3D
– based implementation are the following:
• Integrated animation scheduling and frame by

frame control, with the capacity to control the
scheduled animation and even animation
already being executed. In contrast, the Panda
3D realizer implements stop and interrupt
procedures to handle new events. Further, the
scheduling is quite rudimentary, in form of
FIFO ques that hold the pre-processed
animation sequences to be realized. The
scheduling in Unity-3D realizer incorporates
associative arrays and allows for a) replacement
of sequences, b) replacement of parts of
sequences, and c) changes made to the
scheduled sequences and sequences already
being played-out.

• Direct support for inverse kinematics (IK)
supporting targeted animation (e.g.
LookAtObject and FollowObject behaviour).
Panda 3D realizer only partially supports IK via
external libs and implanted LookAt and Follow
behaviours, via transformation of 3D position to
the rotations of neck joint and arm joint chain
(online estimation).

• Specification of customized interpolation curves
for more natural smoothing of the animation.
The Panda 3D realizer supports Linear, EaseIn,
EasOut, and EasInOut interpolation, where
curves are static and cannot be managed. In
Unity 3D realizer we support virtually any kind
of mathematical function used to calculate the
‘in-between’ configuration of movement
controller in relation to the current time-frame.

• Integrated scene and animation editor with the
ability to visually set-up the environment
parameters, as well as to design agents’ posture
and gestures. Off course, 3D modelling tools,
such as: Maya 3D and Daz 3D, are still
supported and being used. The Unity 3D
realizer actually supports direct import of
Autodesk’s FBX. In turn, this significantly
reduces the complexity of the integration of 3D
scene designed in 3D modelling environment,
and its facilitation in the interactive
environment (e.g. ECA environment).

• Deployment to various mobile and stationary
platforms. Thus, richer support for various
communicative contexts in various
environments. Panda 3D realizer only partially
supports this option via web clients.

However, there are also some cons to the Unity
3D realizer. For instance, Unity3D is proprietary
and closed source game engine. In contrast, the
Panda 3D game engine is free and open source.
Unity3D is also quite self-centred engine. Thus, it
uses very unique approach for doing ‘things’. Most
of the knowledge and mechanisms are not directly
transferable to other engines. Finally, for efficient
memory handling, classes have to be implemented
in order to manage objects in memory (e.g. object
pooling).

3 The EVA Framework Architecture

The general concepts of the EVA framework
architecture are in line with the related research
achievements in the field. Thus, we follow the
principle of the component modularization, similar
to the one outlined in the SAIBA architecture [23].
Architecture of the EVA Framework and the EVA
realizer in particular is outlined in Fig. 1, where we
outline the overall framework that we have
envisaged and deployed in order to facilitate more
natural human machine interaction, as can be
delivered by using ECA technology. It also specifies
those particular components that have been designed
and developed for the transformation of the co-

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 90 Volume 14, 2018

verbal behavior into speech synchronized
animations performed by an embodied
conversational agent, named EVA.

Figure 1: The framework for the delivery of natural

human-machine interaction - EVA Framework

The architecture of the EVA Framework, as
outlined in Fig. 1, is highly modular and includes
an 3rdParty game engine, which is responsible for
generating the conversational behavior in form of
synchronized co-verbal (e.g. gestures and
expressions) and verbal acts (e.g. speech). Within
the EVA framework, the component is named EVA
Behavior generator [15]. This is actually an omni-
comprehensive TTS engine, which generates the
synchronized conversational behavior in form of
conversational events. Each event consists of non-
verbal events described in EVA Script, and are
aligned with the synthesized verbal counterparts.

The second component is the EVA Behavior
Realizer, which is also the focus of this paper. It
realizes the generated synchronized behavior and
represents it to the user. In order to do that, the EVA
Behavior Realizer transforms conversational events
into their physical representations. This is achieved
by applying the various co-verbal features described
in the co-verbal events to the 3D resources available
in the renderer. In addition to scene artefacts and
camera, the more important artefacts are the
exposed controlled objects, which are used to
manipulate the embodiment of the virtual character
(e.g. its movement controllers). Upon completion of
the animation sequence (and the whole co-verbal
act), a feedback in form of a conversational context,
is also sent back to the behavior generator, or any

other component requiring it (e.g. dialog manager).
As part of the EVA framework, so far we have
designed and deployed two EVA realizers, one is
based on Panda 3D game engine, and the other one,
represented in this paper, is based on Unity 3D
engine. The main components of both EVA
realizers are: Event Handler, Animation Generator,
Animation Scheduler and Animation Handler. The
Event Handler intercepts and handles the
conversational events. It parses event stream, and
checks for the event type and the event priority. The
Animation Generator then transforms the
conversational behavior into animation sequences.
As part of this process, the Animation Generator
applies temporal and spatial constraints adjusted to
agents’ articulated body. The Animation Scheduler
then inserts the generated animation sequences into
the execution plan. It handles the animation graph
and feeds them to the rendering engines
accordingly. Finally, after the realization of each
animation sequence is completed, the Event Handler
signals its status (conversational context) to the
behavior generator, and possibly also to the dialog
handlers. Similarly, after the full realization of the
behavior que, a change in conversational context
event is raised and the generation of inactive (rest)
behavior is triggered.

3.1 The EVA U-Realizer: Architecture and
Implementation

In order to integrate and fully facilitate all aspects of
the conversational behavior supported by EVA
framework, the design and development of the EVA
U-Realizer follows the approach presented in [14].
The basic architecture and implementation of the
EVA U-Realizer is outlined in Fig. 2.

Figure 2: The EVA U-Realizer architecture

The 3D resources outlined in Fig. 1, are
represented by SCENE and ARTICULATED ECA

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 91 Volume 14, 2018

components, as outlined in Fig. 2. The
ARTICULATED ECA component maintains all 3D
resources designed for each separated virtual agent
and the overall scenes. The 3D objects are either
physical animation objects (3D resources in Fig.1),
such as: lights, objects in environment, cameras,
interpolation curves and the articulated virtual
characters, meshes, skeletal structure; or C#
algorithms (scripts) implementing targeted
functionality encapsulated into C# classes (e.g.
animation scripts and event system in Fig. 1). The
C# classes extend the Unity’s native
MonoBehaviour class.

The physical 3D resources are actually those
‘tools’, through which body-part based animation
and co-verbal behavior are implemented. In addition
to gestures, gaze, facial expressions and lip-sync,
the agent can also engage with various artefacts in
the environment. This implies that a proper
implementation of an articulated agent and its
embodiment in addition to interactive objects in the
environment are exposed to the game engine. For
the design and the implementation of the agent, the
Unity directly supports most of the popular 3D
formats from obj, collada, and fbx to even direct
import of Maya scene files (.mb). Furthermore, the
interaction between agent’s embodiment and objects
in the environment can also be inherited from the
imported 3D scene.

As already mentioned, the EVA U-Realizer is
implemented as a series of algorithms and scripts
extending Unity’s MonoBehaviour class.
MonoBehaviour class is the base class of all scripts
that can be attached to the ‘game’ objects, and can
manipulate objects in the scene. Furthermore, each
class of type MonoBehaviour, automatically
implements event functions. These functions are
inserted into the programs lifecycle and executed in
a predetermined order7. Among more important
event functions are the following:
a) Start, which handles all the initialization

procedures, and is called just once for a given
script.

b) On (MouseXXX), which handles scene events
natively supported by the engine.

c) Update, which handles ‘game’ logic at each
frame. Co-routine updates are run after the
Update function returns. This function
performs the key mechanism for the
implementation of frame-by-frame operations
of the EVA U-Realizer.

d) OnDestroy, which handles the
decommissioning of an object. It actually

7https://docs.unity3d.com/Manual/ExecutionOrder.html

specifies what happens, when an object is
destroyed. This function is called after all
frame updates for the last frame of the
object’s existence (the object might be
destroyed in response to Object.Destroy, or at
the closure of a scene).

 Animation Scheduler is the central component in

the EVA U-Realizer. The Animation Scheduler is
represented by the AnimationScheduler script,
which manages all other resources and threads. It
loads 3D resources, builds the scene, and initiates all
other sub components, such as: animation
generators represented by Animator scripts, and the
Animation and Event handlers.

The Event Handler is represented by EventSystem
object, which extends Unity’s native event handling
framework (and the event oriented lifecycle of the
application) by incorporating EVA conversational
events and publish-subscribe (unsubscribe)
mechanism for handling of particular animation
streams and contextual events beyond the scope of
‘mouse’, ‘keyboard’, and similar input events
supported internally by Unity. It is initiated by the
Animation Scheduler in the beginning of the
applications’ life cycle. It implements all event-
related function of the MonoBehavior class, through
which it handles internal events. In addition to
handling internal events, it also acts as a bridge
between the EVA U-Realizer and the rest of the
EVA Framework. For this functionality, the event
handling framework is extended with publish-
subscribe mechanism based on the .NET event
handling and delegates’ concepts8. In general, the
Event Handler subscribes to listen to all events in
the system. Thus, when a sub-component (e.g.
animation handler, EVA event handler) raises an
event, the Event System intercepts it. If it is relevant
it processes it, and at the end posts a proper request
to the Animation Scheduler. In addition to handling
internal events (and the communication between all
the components exposed in the virtual 3D space),
the Event System also acts as a bridge between the
EVA U-Realizer, and the rest of the EVA-
Framework. Thus, it exposes the EVA U-Realizer to
the rest of the “world”. This is achieved via EVA
Event handler sub-component that after some EVA
event is received, triggers an internal event relevant
for the Event Handler.

Next, the EVA U-Realizer implements several
animation generators for planning idle/sub-
conscious behavior, and three generators for
interpreting the co-verbal behavior. The Eye Blink

8https://docs.microsoft.com/en-us/dotnet/standard/events/

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 92 Volume 14, 2018

Animator is a script used to generate sub-conscious
eye-blinks. The Idle Animator is then a script that
interprets and generates the behavior of the agent,
when it is not performing any interactive function.
Such behavior for instance, includes spontaneous
head movement and facial gestures. The Event
Handler treats all idle/subconscious generators as
regular animators. This is archived by designing the
idle/subconscious models, which are engaged on
demand by the Animation scheduler, in order to
trigger proper EVA co-verbal events, which are
relevant to the Event Handler. When animation
scheduler has no more co-verbal sequences to
execute, it will start the idle/subconscious models
and indirectly signal the Event Handler to deploy
the idle/subconscious behavior. However, when an
EVA event is received, the Event Handler will
pause idle/subconscious models, remove the
planned idle/subconscious behavior, and ensure for
a smooth transition between the last frame of the
idle/subconscious models sequence to the first frame
of the co-verbal sequence.

Finally, the Animation Scheduler supports three
independent animation streams: one for speech, one
for facial expressions, and one for gestures. Each of
the streams is handled by one of the Animation
Handler’s components (e.g. Animators). The
Animation Handlers transform EVAScript
descriptions into sequences of agent’s embodiment
configurations, and into those time intervals as
specified in the EVAScript language. Each of the
Animators prioritizes over a separate segment of
embodiment and co-verbal artefacts. Namely, it will
have higher priority, when several Animators try to
configure the same segment. For instance, Speech
Handler targets primarily the visualization of
phonemes (vizemes). Thus, it will have higher
priority in comparison to the movement controllers
in the lower facial region. However, it will share
them with the FacialExpression Handler. In this
way, both handlers are capable of controlling
movement controllers in the lower facial region.
However, when both try to configure them at the
same time, the Speech Handler will provide the
highest influence, what lies in line with the
animation blending concept. Thus, e.g. in this way
the agent can display a vizeme with a smile.

In general, the Animator represents the link
between the rendering engine and the objects in the
scene, including the articulated embodiment. Speech
is visualized via the Speech Animator. Further,
facial expressions are animated via the Expression
Animator and Gestures (including posture), while
head movements (including gaze) are handled via
the Gesture Animator. In order to properly interpret

EVAScript language, and to deploy animation
blending, each Animator deploys an Animation
generator. The Animation Generator applies the
sequences of agent’s embodiment configurations, as
described within the particular co-verbal event, into
an internal animation objects adapted to both the
scene, and the targeted section of the agent’s
embodiment. Thus, the generator is responsible for:
a) applying EVAScript descriptions onto designated
parts of embodiment, b) to apply configurations for
subconscious/idle behavior, and c) interaction with
various concepts in environment, such as:
Follow/LookAt object, Grab object, etc.

4 The Publish/Subscribe Model
and Frame-by-Frame Operation

Figure 3: The event diagram of the event model.

As already mentioned, the communication
between several processes within the realizer is
implemented via event-oriented publish/subscribe
model. Fig. 3 outlines the event diagram of the
event model implanted for the EVA U-Realizer. In
the architecture of the EVA U-Realizer, the model is
managed by the Event Handler that is
interconnected with the Animation Scheduler.
Namely, the Animation Scheduler has to store the
information about the virtual character (or
characters) that is being controlled, and also the
scene (including all controllable objects). Among
more important data is the nature of agent’s
embodiment, which includes the composition of the
skeleton and the face, as well as the initial/rest
configurations of the embodiment and possible
temporal and spatial constraints of the articulated
body. These are loaded into realizer’s environment
upon initialization (e.g. configuration phase). Upon

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 93 Volume 14, 2018

initialization, the Animation Scheduler initiates the
Event Handler sub-component, and registers itself
into the event system as the master. It also exposes
all available Animation Handlers it can manage,
along with available idle/subconscious behavior
generators. All further functionality of the Event
Handler is implemented within the scope of the
unity’s native Update() event-function.

After the initialization and configuration stage,
the Animation Scheduler contains an empty
schedule. Thus, it will trigger the realization of the
idle/subconscious behavior. As outlined in Fig. 3,
the Animation Scheduler firstly initializes all the
necessary animation generators as intendent
instances, and then starts the realization loop.

In the realization loop, the Animation Scheduler
subscribes to each of the idle/subconscious behavior
generators, and ‘asks’ them to generate an animation
sequence. Each of the idle/subconscious behavior
generators then implements its own algorithm over
its own time-line, and controls a set of unique
movement controllers. For instance, the Eye-blink
generator controls facial controllers around eyes,
including muscle movement implemented as blend
shapes, and eye-lid movement implemented via 3D
joints (bones). The Animation Scheduler starts the
behavior generation by initiating the Eye-blink
generator. When the eye-blink should occur, the
Eye-blink generator raises an event and dispatches it
to the Event Handler, and back to the scheduler, via
Event System. And after the “eye-blink” event is
completed, the Animation Scheduler asks for the
next ”eye-blink” sequence. The same concept is
introduced for all subconscious/idle behavior
handlers, as well as, when handling those co-verbal
acts generated by the external systems. The
proposed system all processes are triggered via
events and all processes are completed via events.
Thus, the execution is completely asynchronous and
such processes are actually co-routines. Furthermore
the asynchronous operation of co-routines ensures
that no co-routine may interrupt the execution of
another parallel co-routine. However, any co-routine
may interact with another co-routine via the Event
System. For instance, when Animation Scheduler
(e.g. co-routine 1) requests for an “eye-blink (e.g.
co-routine 2), it will continue with its operation until
an announcement regarding animated sequences
being prepared is intercepted. When in the
meantime a co-verbal event is received, the
scheduler is able to process and execute it (e.g. co-
routine 3), and simply disregard or reschedule the
animation of the idle/subconscious behavior.
Namely, when some co-verbal event is marked as

relevant, the Animation Scheduler inserts the
complete sequence into its schedule.

In case of subconscious “eye-blinks”, the
Animation Scheduler will start appropriate
Animation Handler and feed it with the behavior
generated by the internal “eye-blink” generator.
Similarly, the Animation Handler will also handle
those co-verbal acts received as EVA events
generated by external components. The difference is
mostly in the structure of the animation sequence
generated by the generator. Namely, the generators
for idle/subconscious behavior will always generate
a single sequence, while the next sequence will be
generated only when the current sequence is
completed and the algorithms behind the
subconscious generator plan it. In case of co-verbal
acts the co-verbal act already contains a complete
behavior plan. Such a plan includes the
manifestation of multiple embodiments, which are
synchronized with speech. The temporal domain of
the behavior must be retained. Thus, when the co-
verbal act has been transformed into animation
sequences, the Animation Scheduler will contain a
series of sequences to be realized, as opposed to a
single sequence, when animating eye-blinks.
Furthermore, in terms of animation blending, the co-
verbal acts always have the priority over
subconscious behavior. The idle behavior (e.g.
‘random’ poses) is never executed, if some co-
verbal acts exist.

During the execution of the realization loop, the
Animation Scheduler picks up the sequences from
the schedule, and feeds the Animation Handlers
with the next animation segments. After it receives a
‘sequence complete’ message, the next sequence is
picked up from the schedule, and again fed to the
handlers etc. If the schedule is empty, the Animation
Scheduler is responsible to signal that an animation
stream has been completed and to destroy the
animator objects (in order to release all reserved
resources). When all animation segments are
completed, the Animation Scheduler signals the end
of the conversational event and starts processing
IDLE behavior. During this time, also models of
subconscious behavior generation may be adapted
(e.g. eye-blinks during speech vs. no speech, etc.).
As a result, the Event Handler (if no more co-verbal
events arrive) triggers the manifestation of the idle
behavior.

In Panda 3D realizer, the frame by-frame
operations are handled internally by the renderer.
Thus, the Animation Scheduler feeds renderer with
the targeted transformation (e.g. end pose), with the
interpolation, and with the time interval for
animation sequence as a whole. Frame-by-frame

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 94 Volume 14, 2018

calculations are implemented automatically and
internally by the renderer. This means that each
animation can be controlled only on the ‘sequence
level’. Once the sequence had been fed to the
renderer, an abrupt stop is the only possibility to
immediately change/stop the animation. For a
smooth continuation, therefore, the sequence fed to
the realizer has to be played out completely. On the
other hand as outlined in Fig. 3, in EVA U-Realizer
realizer we are able to handle frame-by-frame
operations outside the renderer. The Animation
Handler actually handles frame-by-frame
operations. It calculates the transformation for each
frame separately, and then feeds the frame-to-frame
transformations to the renderer. After all planed
frames are carried out and the movement controllers
reach their designated configuration, the Animation
Handler triggers ‘animation sequence done’ event,
and are destroyed afterwards. Thus, releasing all the
reserved resources. This means that any animation
can be modified at any stage, even during the
execution of some step/sequence. Thus, for a
smooth transition, the scheduler doesn’t have to wait
and adjust its temporal scheduling. It just has to
adjust its frame-by-frame schedule, and replace it
with new configurations. It can actually instantiate
changes instantly as they occur. It can also insert
new behavior between configurations, etc. As a
result, the virtual character becomes more
responsive, and can react to changes of the
conversational, environmental and other contexts
instantly. The agent also ‘remembers’ what it was
gesturing prior to the excited state. Additionally, it
can continue with the realization of that behavior
after excited state dissipates.

4.1 Frame-by-Frame Operations and
Interpolation

As already mentioned, one of the key advantages
of the EVA U-Realizer is its capacity to
dynamically manage realization on the frame level.
The structure of an animation object as a concept is
outlined in Fig. 4. Let us assume that the co-verbal
act is represented by a series of animation sequences
that are arranged over some time interval, and where
each sequence is represented by a series of
animation steps. Finally, each animation step is
represented as a set of movement controllers
traversing towards a targeted configuration in
parallel. The frame-by-frame operations then
handle, how each of these controllers is ‘moved’
from configuration A (Pose 1) to configuration B
(Pose 2).

Figure 4: The representation of animation object.

In the event model, the Animation Scheduler

picks up the first available sequence in the schedule
(e.g. S1), and feeds it to the Animation Handler. The
following pseudo-code fragment then outlines, how
the Animation Handler actually processes and
realizes the animation.

List<List<Transition>> AnimationSequence

while AnimationSequence haschildren
 if interrupt: break
 if previous-step-done:
 List<Transition> AniamtionStep = AnimationSequence.TakoutFirst
 foreach Transition in AniamtionStep
 AnimateTarget(Transition)

As can be seen, each animation sequence is
represented as an object List<List<Transition>>,
while the animation step as List<Transition>.
Object Transition represents a configuration of a
movement controller, by including its target and
step duration. As outlined in the pseudo code, the
Animation Handler will stop his tasks only then, if
an interrupt condition is received, or if the sequence
que has been cleared. For each animation step then
Animation Handler separately processes each
movement controller. This is important, since in the
same step several movement controllers may move
at different velocities, and may be even delayed at
the beginning. The Animation Handler continues
with the next step only after the previous one has
been completely finished. Each transition is moved
from its current configuration to its targeted ‘in-
between’ configuration by calculating frames in
between. The next pseudo-code outlines the
calculations involved in this task:

float duration = step.Duration;
float local_start_time = this.localStartTimes[step.Controller];
Vector3 complete = step.Target;
Vector3 begin = step.Origin[step.Controller];
float td = (Time.time - local_start_time) / duration; // frame
joint.transform.localRotation =
 Interpoaltion(Quaternion.Euler(begin),
 Quaternion.Euler(complete), td)

In the given pseudo-code we are trying to control a
joint, e.g. elbow joint, and to rotate it from Pose 1 to
Pose 2. The duration variable stores the complete
step duration, while the local_start_time indicates,

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 95 Volume 14, 2018

when the controller starts to animate relatively to the
beginning of the step. By using two variables plus
the current time, we can perform calculations of the
interpolation parameter td, which is always between
0 and 1. By using the td, the algorithm ‘knows’, 1)
where on the interpolation curve we are (Fig. 5), and
2) the joint’s configuration prior to the step and 3)
the targeted end configuration. Based on the above
fragments of data we can calculate the most
appropriate in-between configuration at current
frame. For this we use the Quaternion.Slerp
function. Slerp is here a shorthand for spherical
linear interpolation9. The Quaternion.Slerp then
denotes that quaternions are used for units. When
Slerp is applied to unit quaternions, the effect is a
rotation with uniform angular velocity around a
fixed rotation axis. Thus, the interpolation allows us
for achieving smooth and continuous animation
without abrupt starts or finishes, especially when the
direction changes. In essence, various interpolation
curves allow us to model angular velocity at various
stages of the animation. Thus, we manipulate the
perceived acceleration of the displayed movement in
order to make it even more natural. Fig. 5 outlines a
few of the curves we support via adaptation of
unity’s MathFX10.

Linear Hermite

Sinerp Coserp

Figure 5: Linear interpolation curves.

The linear interpolation curve denotes that
angular velocity is constant throughout the
animation. Linear animation does allow for a
smooth progression of the animation, however, the
animation starts abruptly and ends abruptly. The
hermit interpolation curve denotes interpolation

9 https://en.wikipedia.org/wiki/Slerp
10 http://wiki.unity3d.com/index.php?title=Mathfx

with easing -in and -out at the limits. The Sinerp
method interpolates, while easing around the end,
when value is near one. And the Coserp eases in,
when value is near zero, instead of easing out (and
uses cosine instead of sine).

5 Results

In order to evaluate the functioning of EVA U-
Realizer and to proof that all functionalities
developed in Panda 3D realizer can still be
supported, we have performed a series of tests.
During these tests, EVA-Events were generated and
realized by both realizers. The Panda 3D realizer
was used first in order to validate, weather it is
possible to actually realize the co-verbal act. After
that EVA-Event was dispatched to the EVA-U-
Realizer, where we assessed the realization in terms
of smoothness, dynamics, and precision (e.g. proper
controllers, to proper positions in proper time
intervals). During the testing we evaluated the
following concepts: a) interpretation of EVAScript
language and body-part-based procedural animation,
b) lip-sync, facial expressions, and animation
blending. The following section outlines realization
of a complex co-verbal act, performed as a part of
evaluation and testing process.

5.1 Realization of Complex Co-Verbal Act

The series of tests were used to evaluate how the
EVA U-Realizer interprets and realizes EvaScript
events, including various layers of complexity and
EVA Script attributes introduced through the
definition of the EVAScript language. In this test
session we (the external generator) defined a co-
verbal act that consisted of two co-verbal events.
Each of the co-verbal events is triggered as an event.
The first one resembles the end of ‘searching’ idea
event (e.g. when an idea of a solution comes to our
mind), and the second one reassembles the
beginning of revelation of the idea (e.g. how one
starts outlining the solution to collocutors). The co-
verbal behavior is described to be performed via full
embodiment, namely, by using both arms, hands,
face and head. Fig. 6 outlines the overall test
scenario. However, the inner synchronization and
the temporal distribution is different for each co-
verbal artefact defined within the EVAScript (e.g.
arms, hands, face, and head). During the first co-
verbal event (e.g. revelation), the head (and face)
and right hand are the dominant artefacts. Thus, they
will appear to ‘move’ with most significance and
power. On the other hand, the left hand moves to its

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 96 Volume 14, 2018

targeted position slightly delayed, but as fast as
possible. In the second act, however, the left hand is
the dominant artefact. Thus, its movement will also
appear as most significant, e.g. the longest and with
most power. The face/head and right arm/hand are
moved to the position as ‘quietly’ as possible. Off
course, the described event is generated externally
by proprietary EVA co-verbal behavior generator
[15]. Thus, all expressive parameters (e.g. speed of
execution, spatial configuration, power, etc.) and
temporal synchronization (along with other
corresponding EVA Script parameters), was pre-
determined by the external generator. The EVA-U-
Realizer ‘simply’ has to properly interpret, schedule,
and realize the described animation on the specified
articulated body. Fig. 6 outlines the EVAScript
created for the event for the first co-verbal act,
which is delivered e.g. as EVA EVENT A. Fig. 6
shows that for the first co-verbal act the overall
duration of the act is 1.567s. During this time
period, the agent has to perform a pointing gesture,
by pointing to the sky and by moving its left arm to
a position that is relevant for the specified pointing
gesture (e.g. almost touching the torso).
Additionally, the agent should express a blend of
happy/surprised emotion on his/hers face.

Figure 6: EVAScript for EVENT A, as interpreted
and realized by the EVA-U-Realizer.

Fig. 7 then outlines the implementation of this
complex act by using the EVA-U-Realizer. For the
revelation concept, the co-verbal generator predicted
that the occurrence of the idea (e.g. revelation)
should be first signaled via the head movement and
facial expressions, which are then followed by torso
reconfiguration and pointing gesture performed in a
quite fast manor. The left hand should also start to
move into position at the same time; however, its
movement should be significantly slower, in order
to appear less relevant. As outlined in Fig. 7
head/gaze and facial expression started to appear
first (delay = 0.0s). The two co-verbal artefacts then
moved to their final configuration in 0.5s. The right

and left-hand movement are delayed for 0.4s. Thus,
both configurations started to form 0.1s interval,
before the previous two co-verbal artefacts finished.
The right arm finished with its animation after
0.567s, while the right hand manifested the targeted
hand-shape in 0.3s. The left hand and arm
propagated to their end-configuration until the
overall end of the event (e.g. for 1.167s). Those co-
verbal artefacts, which have already finished, just
maintained their configuration.

Figure 7: Realization of the co-verbal act - EVA
Event A.

The second co-verbal act is delivered to EVA-U-
Realizer via EVA EVENT B. Figure 8 outlines the
result. During the realization of the second co-verbal
act, the right arm (with hand) is regarded as less
significant, therefore, it is moved to its intended rest
position as slowly as possible. The left arm (with
hand) is, in this situation, regarded as one of the
significant co-verbal artefacts carrying some
conversational meaning. The same holds true for
head and face. The left hand movement in this case

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 97 Volume 14, 2018

appeared as with most power in order to gain the
most attention of the collocutor, and the face
expressed confidence colored with excitement.
Finally, by directing gaze to the collocutor the ECA
EVA prepares the conversational environment,
which facilitates the full attention of the collocutor.
Thus, it can start with the representation of the
recently developed idea.

Figure 8: The realization of the second co-verbal act
conversational conditions fully established, ECA
establishes full attention and speaker role.

5 Discussion and Future Work

We have presented novel EVA-U-Realizer
implemented in Unity 3D game engine. The realizer
represents further possibilities for realizing human-
like behavior on ECAs, intended especially for
mobile and ubiquitous environments. The solution
described allows us fully facilitate all the capacities
of EVA behavior generator, and to re-use existing
conversational agents and existing behavior
templates. The EVA framework is able to generate
affective, situation/user aware conversational
behavior by synchronizing verbal and non-
verbal behavior in form of conversational events.
Each co-verbal event is now realizer agnostic, and
can be used with various behavior realizers. With
this solution, we have actually gained another
arguably far more capable conversational behavior
realization engine. The novel realizer is also highly

modular and event oriented. Unity environment
proves to be an ideal engine for rapid development
of articulated agents. Namely, it doesn’t require
animators, or researchers specifically trained in
animation skills. Namely, virtual characters Eva and
Adam outlined in Fig. 3, were generated in Daz3D11
using the default Genesis3 male and female setups.
They were then imported into Unity environment
via Autodesk’s FBX format. The generated
conversational acts (gestures) are based on the
templates generated for Panda 3D based virtual
character. In addition to Asset Store featured by
Unity, researchers can rapidly integrate even other
assets from various 3D modelling environments
(e.g. from Maya to Blender).

Figure 9: Adam and Eva; EVA-U-Realizer performs
the same generated behavior on different embodied

conversational agents
As indicated in Fig. 9, the EVA-U-Realizer also

allows us to quickly develop several prototypes of
an idea and test them on various ECAs. Namely,
Unity also features some components usually found
in modern 3D modeling framework, such as: drag &
drop editing, shades, animation, and other online
configuration of controllers. All these and similar
mechanisms are already in place, and allow a
developer to directly diving right into developing a
functionality or, to test a visualization of a new

11 https://www.daz3d.com/

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 98 Volume 14, 2018

conversational concept, without extra knowledge
regarding 3D modeling framework. The editor’s
GUI, featured in Unity is also very powerful and
intuitive. It allows for ‘pausing’ the execution, and
manipulating the scene at any time, as well as
progress gameplay frame-by-frame. It also has
powerful asset management, and attributes
inspection.

Finally, the event oriented concept designed as
the part of the realizer allows the virtual agents to
properly react to any given conversational context,
instantly as it appears. This will enable us to
integrate proprietary conversational agents into
complex dynamic situations, were agents need not
only to be expressive, but also to be pro-active.
Such agents are not only presenters or listeners, but
can also provide reactive feedback and even take
over the conversation, just as real humans do. The
event-oriented concept gives ECAs, the capacity to
react to events instantly, and to manipulate
animations at frame level.

However, Unity 3D is currently still proprietary,
therefore, closed source game engine. Although,
non-commercial variations are available, updates to
the core may be provided only by the game engines
developers. In case that performance doesn’t satisfy
the growing requirements of a project, or when an
extra functionality is needed, it has to be implanted
as an add-on to core functionality. Such solutions
generally result in degraded performance, or at least
in suboptimal results. Further, since Unity 3D is
quite self-centered, the migration to another engine
will probably require some extra work. Namely,
Unity 3D uses unique approach for implementing
and executing various animation/graphical concepts.
Some of them are less compatible with other game
engines. Also due to these facts, we support and
develop further also Panda 3D realizer within the
EVA framework. The realizer is currently primarily
used for the desktop/server based solution.

To sum up, the ability to express, plays a central
role in defining ECA’s personality, its emotional
state, and can produce agents as active participant
in conversation. However, in order to make agents
to be perceived even more natural, the agents must
be able to respond to situational triggers smoothly
and almost instantly, as they are perceived. Thus,
the presented EVA framework seems not only more
exciting, but also an important step towards
generating more natural and human-like
companions, and machine generated responses.
Through a series of evaluation tests we have tested
and shown the capacity of the novel EVA U-
Realizer and its capability to properly handle co-
verbal behavior generated by behavior generators in

EVA Framework. Some challenges, such as
generation of EVAScript behavior templates, and
variety and plausibility of idle behavior, however,
still remain. Also the use of lightning, shaders, and
exploitation of the scene is quite rudimentary. Thus,
we will work on the idea to exploit various physical
objects in the scene for even more natural
conversation. Through the use of Unity Animation
editor, its Inverse Kinematics capabilities, and a
powerful PhsyX engine (with IK), these options are
viable improvements in the near future.

Acknowledgments:
This work is partially funded by the European
Regional Development Fund and the Ministry of
Education, Science and Sport of Slovenia; project
SAIAL.

This work is partially funded by the European
Regional Development Fund and Republic of
Slovenia; project IQHOME.

References:
[1] Luger, E., & Sellen, A. (2016, May). Like

having a really bad PA: the gulf between user
expectation and experience of conversational
agents. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing
Systems (pp. 5286-5297). ACM.

[2] Ochs, M., Pelachaud, C., & Mckeown, G.
(2017). A User Perception--Based Approach to
Create Smiling Embodied Conversational
Agents. ACM Transactions on Interactive
Intelligent Systems (TiiS), 7(1), 4.

[3] Fabian, R., & Alexandru-Nicolae, M. (2009).
Natural language processing implementation on
Romanian ChatBot. In WSEAS International
Conference. Proceedings. Mathematics and
Computers in Science and Engineering (No. 5).
WSEAS.

[4] Malcangi, M. (2009). Soft-computing methods
for text-to-speech driven avatars. In Proceedings
of the 11th WSEAS international conference on
Mathematical methods and computational
techniques in electrical engineering (pp. 288-
292). World Scientific and Engineering
Academy and Society (WSEAS).

[5] Kuhnke, F., & Ostermann, J. (2017, July).
Visual speech synthesis from 3D mesh
sequences driven by combined speech features.
In Multimedia and Expo (ICME), 2017 IEEE
International Conference on (pp. 1075-1080).
IEEE.

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 99 Volume 14, 2018

[6] Caridakis, G., & Karpouzis, K. (2004). Design
and implementation of a greek sign language
synthesis system. WSEAS Transactions on
Systems, 3(10), 3108-3113.

[7] Rojc, M., Presker, M., Kačič, Z., & Mlakar, I.
(2014). TTS-driven Expressive Embodied
Conversation Agent EVA for UMB-SmartTV.
International journal of computers and
communications, 8, pp. 57-66.

[8] Tolins, J., Liu, K., Neff, M., Walker, M. A., &
Tree, J. E. F. (2016). A Verbal and Gestural
Corpus of Story Retellings to an Expressive
Embodied Virtual Character. In LREC.

[9] Esposito, A., Esposito, A. M., & Vogel, C.
(2015). Needs and challenges in human
computer interaction for processing social
emotional information. Pattern Recognition
Letters, 66, 41-51.

[10] Kok, K. I., & Cienki, A. (2016). Cognitive
Grammar and gesture: Points of convergence,
advances and challenges. Cognitive Linguistics,
27(1), 67-100.

[11] Kopp, S., & Bergmann, K. (2017, April).
Using cognitive models to understand
multimodal processes: The case for speech and
gesture production. In The Handbook of
Multimodal-Multisensor Interfaces (pp. 239-
276). Association for Computing Machinery
and Morgan & Claypool.

[12] Pelachaud, C. (2015, May). Greta: an
interactive expressive embodied conversational
agent. In Proceedings of the 2015 International
Conference on Autonomous Agents and
Multiagent Systems (pp. 5-5). International
Foundation for Autonomous Agents and
Multiagent Systems.

[13] Neff, M. (2016). Hand Gesture Synthesis for
Conversational Characters. Handbook of
Human Motion, 1-12.

[14] Rojc, M., Mlakar, I., 2016. An Expressive
Conversational-behavior Generation Model for
Advanced Interaction within Multimodal User
Interfaces, (Computer Science, Technology and
Applications). Nova Science Publishers, Inc.,
Corp., New York, 234.

[15] Rojc, M., Mlakar, I., & Kačič, Z. (2017). The
TTS-driven affective embodied conversational
agent EVA, based on a novel conversational-
behavior generation algorithm. Engineering
Applications of Artificial Intelligence, 57, 80-
104.

[16] Gratch, J., Hartholt, A., Dehghani, M., &
Marsella, S. (2013). Virtual humans: a new
toolkit for cognitive science research. Applied
Artificial Intelligence, 19, 215-233.

[17] Thiebaux, M., Marsella, S., Marshall, A. N., &
Kallmann, M. (2008, May). Smartbody:
Behavior realization for embodied
conversational agents. In Proceedings of the 7th
international joint conference on Autonomous
agents and multiagent systems-Volume 1 (pp.
151-158). International Foundation for
Autonomous Agents and Multiagent Systems.

[18] Pelachaud, C., 2015. Greta: an interactive
expressive embodied conversational agent. In:
Proceedings of the 2015 International
Conference on Autonomous Agents and
Multiagent Systems, International Foundation
for Autonomous Agents and Multiagent
Systems, (pp. 5-5).

[19] Klaassen, R., Hendrix, J., Reidsma, D., & van
Dijk, B. (2013). Elckerlyc Goes Mobile
Enabling Natural Interaction in Mobile User
Interfaces.

[20] Heloir, A., & Kipp, M. (2010). Real-time
animation of interactive agents: Specification
and realization. Applied Artificial Intelligence,
24(6), 510-529.

[21] Kolkmeier, J., Bruijnes, M., Reidsma, D., &
Heylen, D. (2017, August). An asap realizer-
unity3d bridge for virtual and mixed reality
applications. In International Conference on
Intelligent Virtual Agents (pp. 227-230).
Springer, Cham.

[22] Mlakar, I., & Rojc, M. (2011). EVA:
expressive multipart virtual agent performing
gestures and emotions. International journal of
mathematics and computers in simulation.

[23] Bédi, Branislav, et al. "Starting a Conversation
with Strangers in Virtual Reykjavik: Explicit
Announcement of Presence." Proceedings from
the 3rd European Symposium on Multimodal
Communication, Dublin, September 17-18,
2015. No. 105. Linköping University Electronic
Press, 2016.

[24] Li, J., Galley, M., Brockett, C., Spithourakis,
G. P., Gao, J., & Dolan, B. (2016). A persona-
based neural conversation model. arXiv preprint
arXiv:1603.06155.

[25] Gibet, S., Carreno-Medrano, P., & Marteau, P.
F. (2016). Challenges for the Animation of
Expressive Virtual Characters: The Standpoint
of Sign Language and Theatrical Gestures. In
Dance Notations and Robot Motion (pp. 169-
186). Springer International Publishing.

[26] Salama, M. A. R. I. A., & Shawish, A. H. M.
E. D. (2013). A Comprehensive Mobile-Based
Companion for Diabetes Management. In 7th
WSEAS European Computing Conference,
Dubrovnik.

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 100 Volume 14, 2018

[27] Ochs, M., Pelachaud, C., & Mckeown, G.
(2017). A User Perception--Based Approach to
Create Smiling Embodied Conversational
Agents. ACM Transactions on Interactive
Intelligent Systems (TiiS), 7(1), 4.

[28] Belessiotis, V. S., Vosinakis, S., &
Panayiotopoulos, T. (2001). The use of the
Virtual Agent SimHuman in the ISM scenario
system. Advances in Automation, Multimedia
and Video Systems, and Modern Computer
Science, 97-101.

[29] Linehan, C., & McCarthy, J. (2017). 57 Using
conversation to model interaction in the
MATHS workstation. Engineering Psychology
and Cognitive Ergonomics: Volume Five-
Aerospace and Transportation Systems, 51.

[30] El Haddad, K., Cakmak, H., Dupont, S., &
Dutoit, T. (2016). Laughter and Smile
Processing for Human-Computer Interactions.
Just talking-casual talk among humans and
machines, Portoroz, Slovenia, 23-28.

[31] Linehan, C., & McCarthy, J. (2017). 57 Using
conversation to model interaction in the
MATHS workstation. Engineering Psychology
and Cognitive Ergonomics: Volume Five-
Aerospace and Transportation Systems, 51.

[32] Porcheron, M., Fischer, J. E., McGregor, M.,
Brown, B., Luger, E., Candello, H., & O'Hara,
K. (2017, February). Talking with
conversational agents in collaborative action. In
Companion of the 2017 ACM Conference on
Computer Supported Cooperative Work and
Social Computing (pp. 431-436). ACM.

[33] Pérez, J., Sánchez, Y., Serón, F. J., & Cerezo,
E. (2017, August). Interacting with a semantic
affective ECA. In International Conference on
Intelligent Virtual Agents (pp. 374-384).
Springer, Cham.

[34] Kang, J., Badi, B., Zhao, Y., & Wright, D. K.
(2006, April). Human motion modeling and
simulation. In 6th International Conference on
Robotics, Control and Manufacturing
Technology (ROCOM 2006) (pp. 62-67).

[35] Akinjala, T. B., Agada, R., & Yan, J. (2016,
December). Animating Human Movement &
Gestures on an Agent Using Microsoft Kinect.
In Multimedia (ISM), 2016 IEEE International
Symposium on (pp. 369-374). IEEE.

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Izidor Mlakar, Zdravko Kačič,

Matej Borko, Matej Rojc

E-ISSN: 2224-3496 101 Volume 14, 2018

