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Abstract: - From the standpoint of control theory, the Earth’s climate system (ECS) can be considered as a self-

regulating feedback cybernetic system, in which the climate system itself represents control object and the role 

of controller is given to human operators.  Mathematical modelling is one of the most suitable and reasonable 

instruments to study the ECS and to explore climate manipulation (geoengineering) and weather modification 

technologies. This is because of the extreme complexity of the ECS as physical object. Mathematical modelling 

allows describing large-scale interventions in the ECS parametrically. Consequently, the efficiency of 

geoengineering methods can be estimated by studying the sensitivity of ECS models with respect to variations 

in their input parameters that reflect the influence of external man-made forcing. In this paper, we will discuss 

the use of sensitivity analysis in climate engineering and controlling the weather and climate problems. Certain 

critical issues that can arise will be also considered.   
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1 Introduction 
Geoengineering also referred to as climate 

engineering, is the deliberate and purposeful large-

scale modification of the Earth’s climate system 

made by humans [1, 2]. Climate engineering has 

been suggested as a response measure on the global 

warming, which is currently acknowledged by both 

the international scientific community and majority 

of policymakers. Observations show that since the 

beginning of the 20-th century, the Earth's global 

average surface temperature has increased by almost 

0.8 °C, with about two-thirds of the increase 

occurring since 1980. The IPCC (Intergovernmental 

Panel on Climate Change) Fifth Assessment Report 

(AR5) [3] provides a clear view of the up-to-date 

state of scientific knowledge regarding climate 

change. It is recognized, that mankind is causing 

global warming by anthropogenic CO2 emissions 

generated by human activities through combustion 

of fossil fuel, mainly coal, oil, natural gas and wood. 

Due to the burning of fossil fuels and destruction of 

native forests, the concentration of carbon dioxide is 

increased from 280 to more than 400 parts per 

million (ppm) since the beginning of the so-called 

Industrial Revolution (~1750).   

The most suitable solution to reduce global 

warming is sequestration the anthropogenic 

emissions of greenhouse gases (GHG) [1, 3]. 

However, this is unlikely achievable because the 

world economic growth and increasing population 

require more and more energy resources generating 

more and more GHG emissions. Carbon dioxide-

free renewable energy resources and energy 

efficiency measures are at the moment not the 

alternative because they are very expensive and 

require long time to achieve tangible results. 

Considering these arguments, scientists and 

engineers proposed several solutions, known as 

geoengineering, to stabilize the global climate (e.g. 

[4-9]). Geoengineering technologies, in general, are 

divided on two main categories: carbon dioxide 

removal technologies (CDR), and solar radiation 

management (SRM). A number of geoengineering 

solutions are offered to date, however, all of them 

introduce uncertainties and unexpected 

consequences that must be explored.   

Implementation and execution of climate 

engineering technologies is a purposeful process, 

i.e. the process which has a specific purpose and, 

therefore, outcome that can be formulated in various 

ways and must be achieved to successfully complete 

a geoengineering operation. In this respect, climate 
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engineering is essentially the process of controlling 

the climate system that can be examined from the 

standpoint of control theory [10-13]. Therefore, the 

ECS can be considered as a self-regulating feedback 

cybernetic system, in which the climate system itself 

represents control object, and the role of controller 

is given to human operators.  

The ECS is a complex, interactive, nonlinear 

dynamical system consisting of the atmosphere, 

hydrosphere, cryosphere, lithosphere and biosphere. 

The state of the ECS at a given time and place with 

respect to variables such as temperature, barometric 

pressure, wind velocity, moisture, precipitations is 

known as the weather. Climate is usually defined as 

“average weather” or, in other words, as an 

ensemble of states traversed by the climate system 

over a sufficiently long period of time. Commonly, 

this period corresponds to ~30 years, as defined by 

the World Meteorological Organization. Since the 

ECS is a unique physical object with a large number 

of specific features [14-17], control of physical and 

dynamical processes occurring in the ECS is an 

extremely complex and difficult problem. Synthesis 

of control systems of such natural objects represents 

a multidisciplinary research area, which is 

developed on the ideas and methods of optimal 

control theory, dynamical systems theory, technical 

cybernetics, climate physics and dynamics, and 

other academic disciplines. The success of climate 

engineering strongly depends on the understanding 

of physics, chemistry and dynamics of climate 

processes as well as the availability of enabling 

technologies. We also need to know the response of 

the ECS to geoengineering interventions.  

To estimate the efficiency of climate modification 

methods and to assess their direct and indirect 

impacts on the ECS, we can use the method of 

mathematical/numerical modelling since the ability 

of laboratory simulations of the ECS are, with rare 

exceptions, very limited. In this framework, in order 

to explore the applicability of geoengineering 

methods and technologies to climate manipulation 

and weather modification, we can use sensitivity 

analysis since control actions may be considered as 

variations in the model parameters. Mathematical 

models of the ECS used in variety of applications 

are derived from a set of multidimensional nonlinear 

differential equations in partial derivatives, which 

are the equations of fluid dynamics and 

thermodynamics that describe dynamical, physical 

and chemical processes and cycles in the ECS. 

Mathematical models of the ECS are mostly 

deterministic with a large phase space dimension 

[18-24]. Equations that describe the evolution of the 

ECS cannot be solved analytically with an arbitrary 

set of initial conditions, but only numerically using 

various types of finite-dimensional approximations 

such, for example, as Galerkin projection or finite-

difference methods. In mathematical models, large-

scale intervention in the ECS can be described 

parametrically, or, in other words, effects of 

geoengineering actions can be parameterized using 

conventional parameterization schemes of sub-grid 

physical processes, first of all schemes that describe 

radiative processes (short-wave solar radiation, 

long-wave emissions of the Earth). Consequently, 

the efficiency of geoengineering methods can be 

estimated by studying the sensitivity of ECS models 

with respect to variations in their input parameters 

that reflect the influence of external man-made 

forcing [25-27].  

Dynamical systems used to model ECS, are 

essentially nonlinear and under certain conditions 

they exhibit aperiodic oscillations, which are known 

as the phenomenon of deterministic chaos [28]. For 

such systems, the conventional methods of 

sensitivity analysis, such as forward and adjoint 

approaches, are not sufficiently effective, since 

calculated sensitivity functions are uninformative 

and inconclusive [29-32]. In this context, the 

exploration of sensitivity of nonlinear models of the 

ECS with respect to variations in their parameters 

requires special consideration. In this paper, we will 

discuss the use of sensitivity analysis in climate 

engineering and controlling the weather and climate 

problems. Certain critical issues that can arise will 

be also considered. 

This paper is organized as follows. Section 2 

considers the Earth’s climate system as a dissipative 

and chaotic dynamical system, as well as its unique 

properties as physical and control object. This 

section also presents the formulation of the optimal 

control problem for controlling the Earth’s climate 

system. Special attention is paid to the problem of 

stabilizing the trajectory of the system around the 

reference trajectory in the phase space. Sensitivity 

analysis methods used in climate research and 

modelling are discussed in Section 3. Besides 

conventional methods of sensitivity analysis, this 

section presents the novel approach that is based on 

shadowing properties of dynamical systems. Section 

4 describes two low order coupled chaotic climate 

models and examines the results of numerical 

experiments. Summary and discussions are given in 

section 5.  
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2 Controlling the Weather and 

Climate: Problem Formulation 
 

 

2.1 The Earth’s Climate System as a 

Dynamical System 
Dynamical systems theory represents a very 

powerful and comprehensive framework for 

exploring, predicting, explaining and understanding 

physical processes and phenomena occurring in the 

ECS. In general, any abstract dynamical system can 

be considered as a pair  , tX  , where X is the 

system phase (or state) space, and :t X X 
 
is a 

family of evolution operators parameterized by a 

real variable t T , where T is a time set. It is 

usually assumed that the phase space is a complete 

metric or Banach space, which can be either finite- 

or infinite-dimensional. A family of operators forms 

a semigroup, therefore: t t     , 0 I  , 

,t T  , where I is the identity operator.  

Suppose that t  , then a continuous time 

dynamical system can be generated by the following 

set of autonomous ordinary differential equations 

  x f x                               (1) 

with given initial conditions 

    00x x ,                              (2) 

where x X , f is the (nonlinear) vector-valued 

function, and x0 is a given initial state of the system. 

In most cases, mathematical models cannot be 

solved analytically, requiring a numerical solution. 

Consequently, the set of infinite-dimensional 

equations (1) has to be truncated by some means to 

finite-dimensional approximate model, for which a 

solution can be sought numerically. Applying either 

a projection onto a finite set of basic functions or a 

discretization in time and space, one can derive a 

discrete model, which approximates the system (1) 

and can be solved numerically if the initial 

conditions are specified: 

 1 ,   k+ k +x f x k  .                      (3)   

Given the system state
0  x X at time  0t  , we 

define the trajectory of 0 x  
under f to be the 

sequence of points  :kx X k    such that 

 0

k

kx f x , where 
kf  indicates the k-fold 

composition of f with itself, and  0f x x . Thus, 

given a map f : X X and the initial condition x0, 

equation (3) uniquely specifies the orbit of a 

dynamical system. If  kx  is the state of dynamical 

system at time  kt , then the state at the next time 

 k+1x  is given by  kf x .  

The ECS is a physical continuum and its 

evolution is mathematically described by the set of 

partial differential equations of the form: 

   0  0t ( r,t ) L ( r,t ), ( r,t ) , ( r, ) r       . (4) 

Here  tQ   is the state vector of a system, 

where  tQ   is the infinite real space of 

sufficiently smooth state functions satisfying some 

problem-specific boundary conditions at the 

boundary   of the space domain  ; 3r  

is a vector of spatial variables;   0t ,   is a 

bounded space-time domain,  0t ,  is the time; L 

is a nonlinear operator that describes the dynamics, 

dissipation and external forcing of the system; 

 tG   is the system parameter vector, where 

 tG   is the domain of admissible values of the 

parameters; and 0  is the initial state estimate. Note 

that the system (4) characterizes a continuous 

medium for which the state vector   is infinite-

dimensional:  , where   is the infinite-

dimensional Hilbert space. In order to obtain a 

system with a finite number of degrees of freedom, 

which is required to solve the problem numerically, 

the equations (4) can be projected onto the subspace 

spanned by the orthogonal basis  
1

n

i i



 so that   

can be represented as a normally convergent series:  

 
1

n

i

i

r,t x ( t ) ( r ) 


 .                  (5) 

Substituting (5) into (4) and using then the Galerkin 

method, we can obtain the dynamical system that is 

described by the set of ordinary differential 

equations (ODEs):  

  0  [0 ]   0x f x, , t , , x( ) x    ,          (6)  

where nx X   is the state vector the 

components of which belong to the class of 

continuously differentiable functions  1 [0, ] , 

mP   is the parameter vector the components 

of which belong to the class of piecewise continuous 

functions  ˆ [0, ] ,  nf   is a nonlinear vector-

function defined in the domain  0X P ,   that is 

continuous with respect to both x and  , 
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continuously differentiable with respect to x, as well 

as piecewise continuous with respect to t, and x0 is a 

given initial conditions. The finite-dimensional 

dynamical system (6) can be also obtained by 

discretization in space of the equations (4). For the 

ECS, the vector-function f is strongly nonlinear. 

This nonlinearity arises from numerous feedbacks 

existed in the ECS, a broad spectrum of interactive 

oscillations, and external forcing caused by natural 

and anthropogenic processes. 

 

 

2.2 Essential features of the Optimal Control 

Problem for the Earth’s Climate System 
The ECS is extremely difficult to control because it 

is a very unique physical object, which possesses a 

number of specific features [14-17]: 

- The ECS is a complex interactive system with 

numerous positive and negative feedback 

mechanisms. Various physical and chemical 

interaction processes occur among the different 

components of the ECS system on a wide range of 

space and time scales, making the system 

enormously sophisticated; 

- The components of the ECS are very different in 

their physical and chemical properties, structure and 

dynamics; they are linked together by fluxes of 

momentum, mass and energy;  

- The ECS is an open system but its impact on the 

external environment is negligible; 

- Time scales of physical processes occurring in 

the ECS vary over a wide range - from seconds to 

tens and hundreds of years; 

- The ECS is a global system and its spatial 

spectrum of motions covers molecular to planetary 

scales;  

- Dynamical processes in the ECS oscillate due to 

both internal factors (natural oscillations) and 

external forcing (forced oscillations). Natural 

oscillations are due to internal instability of the 

atmosphere and ocean with respect to stochastic 

infinitesimal disturbances. Anthropogenic impacts 

on the ECS, both intentional and unintentional, 

belong to the category of external forcing; 

- Nonlinear motions in the atmosphere, which is 

the most fast-oscillating component of the ECS, 

under certain conditions exhibit the chaotic 

behavior; 

- The ECS is a dissipative dynamical system, 

which possess a global attractor. This implies that 

there exists an absorbing set which is bounded set is 

the phase space that attracts any trajectory of the 

system. In other words, the norm of the solution of 

the model equations with arbitrary initial conditions, 

from a certain moment of time t* , does not exceed 

some fixed value: 0( )  x t d , t t* .  Usually, in 

many applications, the ECS evolution is considered 

on its attractor assuming that the system is ergodic.    

Certainly, the ECS has a number of other specific 

features that make it a unique physical object, which 

is virtually impossible to study using laboratory 

simulations (with rare exceptions). Therefore, the 

main method of studying the ECS is mathematical 

modelling. It is important to note that the 

atmosphere is the most unstable and rapidly 

changing component of the ECS.  

With respect to the problem of control of the 

ECS, it should be emphasized that the application of 

cybernetic approaches and techniques developed for 

the study and optimal control of systems in many 

scientific areas, ranging from engineering and 

sciences to economics and social sciences, is very 

difficult. This is due to the following factors: 

- Climate processes are not sufficiently well 

identified as control objects; their mathematical 

models are insufficiently perfect, accurate and 

adequate; 

- The ECS refers to a class of distributed 

parameter systems described by partial differential 

equations, making the mathematical models of 

climate processes quite complex. Synthesis of 

control systems of such objects requires the 

development of control theory, which was created 

mainly for objects (systems) with lumped 

parameters. 

 

 

2.3 Formulation of the Optimal Control 

Problem for the Earth’s Climate System 
The formulation of optimal control problems 

includes mathematical model of the ECS that 

describes its behavior under the influence of control 

actions and external forcing (disturbances); 

specification of the control objectives; control 

model that imposes constrains on the controls and 

the state variables of the ECS; and specifications of 

boundary and initial conditions for the model 

equations. For this reason, deterministic 

mathematical models are mainly used for numerical 

modelling and prediction of the dynamics and 

evolution of the ECS and its processes. 

Let us make the following critical note. Physical 

processes, those are too small-scale to be explicitly 

represented in the model due to its discrete spatial-
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temporal structure, are parameterized, i.e. replaced 

by simplified parametric schemes generating 

additional model parameters. Some of them together 

with external forcing can be considered as control 

variables. By varying the control parameters, we 

can formally control the climate dynamics.  

Let us omit uncontrolled parameters in the 

equation (6), then we get the following controllable 

system on the time interval  0t ,   : 

    0  0x f x,u , x x  ,                     (7) 

where mu U   is a vector of control variables. 

Suppose that the dynamical system (7) is 

controllable, and control parameters belong to a set 

of admissible controls u U  . It is extremely 

important that the set  must be defined on the 

basis of physical and technical feasibility taking into 

account the above-mentioned specific properties of 

the ECS as a control object. Further, suppose that 

controls belong to the class of piecewise continuous 

functions   ˆ 0,
 
with values in U or Lebesgue 

measurable functions with values in U, then, 

according to the classical Caratheodory’s theorem 

[33], one can prove that the Cauchy problem (7) has 

a unique solution defined on a time interval in  . 

However, we cannot a priori determine whether the 

ECS is controllable or not. Conclusion concerning 

controllability of the system can only be made by 

solving a specific problem. If control parameters 

depend on the state of the system, i.e. 

    ,u t g t x t , then equations (7) describe a 

closed-loop control system, representing the ECS.  

The main objective of the problem considered is 

to synthesize the control law that ensures the 

achievement of the desired results. Since these 

results are expressed in terms of extremal problem, 

we are specifically interested in synthesis of an 

optimal control. Stabilization of the ECS around the 

reference phase space trajectory in order to weaken 

the global warming represents one of the most 

important problems relevant to the optimal control 

of climate processes. For this particular class of 

problems, the differential equation (7) is linearized 

with respect to the natural (reference) 

trajectory  0  x t caused by external natural 

unperturbed forcing  0 u t : 

 
     

0 0 0 0, ,

,  0 0
x u x u

d x t f f
x t u t x

dt x u


  

 
  
 

,  (8)     

where  x  is the perturbation of natural orbit of the 

ECS due to anthropogenic disturbances,  u  is a 

control vector to ensure the stabilization of the ECS 

trajectory,   f x  and   f u  are the Jacobian 

matrices. Naturally, we have to assume that 

0 0,  u u u u u    ; 0 0,   x x x x x   

The optimal control problem is formulated as 

follows:  

Find the control vector  u t   generating the 

correction of the natural orbit x   such that 
0x x X    , and the performance index J

 
is 

minimized: 

 argmin ,
u

u J x u


  



 ,                 (9) 

 

0

1
( )

2

1
  ( ) ( ) ( ) ( )

2

J x G x

x t W x t u t Q u t dt



   

   



 



   

,  (10) 

where W(t) and G are weighting positive semi-

definite n n matrices, normalizing the energy of the 

ECS per unit mass, Q(t) is a weighting positive 

define mm matrix, normalizing the energy of 

control actions per unit mass.  

The stabilization problem is solved, given the fact 

that the ECS travels along its natural trajectory that 

is subject to external natural forcing.  

The information on the ECS state x(t) is obtained 

by measurement devices and instruments followed 

by the processing using data assimilation procedure. 

The problem (9) includes a set X at which the 

functional J is defined, and constraints on the model 

state given by the subset  of a set X. The dynamic 

constraints are given by equations (7). There are 

several methods available for solving the problem 

(9): classical methods of the variational calculus, 

dynamical programming, the Pontryagin’s 

maximum principle and other methods. 

The formulation of performance index (10) 

depends on the problem under consideration and 

there are no universal approaches how it can be 

specified.    

 

 

3 Parametric Sensitivity in 

Controlling the Weather and Climate 
 

 

3.1 Forward and Adjoint Methods of 

Sensitivity Analysis 
As stated above, in mathematical models of the ECS 

control actions are described parametrically, i.e. via 

variations in the parameters. However, control 
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parameters must be a priori chosen based on 

physical and technical feasibility, they must belong 

to the set of admissible values, and also the system 

response on variations in the control parameters 

must be studied. The latter problem is closely 

related to the parametric sensitivity analysis of 

dynamical systems. 

One of the commonly used measures for 

estimating the influence of model parameter 

variations on the system state variables is a 

sensitivity function, which is the derivative of a 

certain component of a model state vector 
i

x  with 

respect to some model parameter j  [25-27]: 

0
j j

ij i jS x
 




   , where 0

j  is some fixed 

(nominal) value. Let   be an infinitesimal 

variation in the parameter vector. Approximating 

the state vector around  0x   by a Taylor 

expansion, we get: 

   0 0x x S H.O.T.       , 

where n mS x   
 


     is a sensitivity matrix 

the elements of which are sensitivity functions. 

Differentiating (6) with respect to  , we obtain the 

set of non-homogeneous ordinary differential 

equations, the so-called sensitivity equations, which 

can be written as 

    1, ,
j

j j

dS
M S D j m

dt
    , 

where    
T

1, 2, ,,  ,...,j j j j n jS x S S S     is the 

sensitivity vector with respect to parameter j , M is 

a Jacobian matrix, and 

 
T

1 2,  ,...,j j j n jD f f f         . 

Sensitivity equations describe the evolution of 

sensitivity functions along a given trajectory, and 

therefore allow tracking the sensitivity dynamics in 

time. Thus, to analyze the sensitivity of system (6) 

with respect to the parameter j  one can solve the 

following set of differential equations with given 

initial conditions: 

   

 

0

0

            0

     0j j j j j

x f x, , x x ,

S M S D , S S .

  


    

 

In sensitivity analysis to measure the response of 

a system to variations in the parameters, a certain 

generic objective function (performance measure), 

which characterizes the dynamical system (6), is 

commonly used [25, 26]:   

   
0

J x, F t;x, dt



   ,                     (11) 

where F is a (nonlinear) function of state variables x 

and parameters  . Let 0x  be the unperturbed state 

vector that corresponds to the unperturbed 

parameter vector, i.e. vector 0x  is obtained by 

solving the equations (6) with 0   . The impact 

of parameter variations on the system performance 

is quantified by the gradient of the response function 

(11) with respect to   around the unperturbed 

point 0 0 ( x , ) : 

 
0 0

0 0

1 m
x ,

dJ dJ
J x , , ,

d d





 



 
   

 
.      (12) 

Particularly, the influence of parameter j  is 

calculated as 

1 1

n n
i

ij

i ij i j j i j

xdJ J J J J
S

d x x    

   
   

    
  . 

The first order sensitivity estimate for variations in 

the parameter j  is given by 

     
0 0

0 0 0 0 0 0

1

j

j j m

j j
x ,

J x x; , , , , J x ,dJ x,

d


        


 
. 

This equation approximates the derivative of the 

first order; therefore the accuracy of approximation 

essentially depends on the choice of the parameter 

variation  j . Generally, this selection is made 

arbitrarily bearing in mind that the value of  j  is 

bounded below by the round-off error.  

Introducing the Gâteaux differential, the 

sensitivity analysis problem can be considered in the 

differential formulation that eliminates the need to 

set the value of  .The Gâteaux differential is 

defined as [25]  

 
0 0 0 0

0 0

0 x , x ,

F F
J x , x dt

x



 

   


  
       
 , (13) 

where  x  is the variation in the state vector due to 

the variation in the parameter vector in the direction 

 . Linearizing the model (6) around the 

unperturbed trajectory 0x ( t ) , we obtain the 

following system of variational equations for 

calculating  : 
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 

0 0 0 0

0

 

         
         0   0

x , x ,

x f f
x ,

t x

t , , x( ) x .

 


 



  

  
   

  

 
   (14) 

The model (14) is known as a tangent linear model. 

Variations x obtained from the equation (14) are 

then used in the equation (13) for evaluating the 

Gâteaux differential.  

Since  0 0J x , J ,     , where ,   is a 

scalar product, then the model sensitivity with 

respect to variations in the parameters can be 

estimated by calculating the components of the 

gradient  J . However, this “one-at-a-time” 

method, in spite of its simplicity, requires 

significant computational resources if the number of 

model parameters is large. The use of adjoint 

equations allows obtaining the required sensitivity 

estimates within a single computational experiment, 

since the gradient can be calculated as [26]: 

 
0 0 0 0

0 0

0

 
x , x ,

F f
J x , x dt





 


 




   
          
 , (15)       

where the vector-valued function x  is a solution of 

the adjoint model: 

   

0 0 0 0

  

          0   0

x , x ,

x f F
x ,

t x x

t , , x .

 

 








   
        

 
   (16) 

The adjoint equations (16) are integrated backward 

in time.  

As discussed in [27] and [29], general solutions of 

sensitivity equations for oscillatory nonlinear 

dynamical systems grow unbounded as time tends to 

infinity; therefore, sensitivity functions calculated 

by conventional approaches are highly uncertain. 

The reason is that nonlinear dynamical systems that 

exhibit chaotic behaviour are very sensitive to its 

initial conditions. Thus, solutions to the linearized 

Cauchy problem (6) grow exponentially 

( ) (0) tx t x e  , where 0   is the leading 

Lyapunov exponent. Consequently, calculated 

sensitivity functions include a fairly large error, 

becoming uninformative and inconclusive [30-33]. 

 

3.2 Fluctuation-Dissipation Theorem 
To estimate the ensemble-averaged response of the 

ECS to small external forcing Leith [34] has 

proposed using the fluctuation-dissipation theorem 

(FDT). According to the FDT, under certain 

assumptions, the response of stochastic dynamical 

system to infinitesimal external perturbations 

including geoengineering activities is described by 

the covariance matrix of the unperturbed system: 

     1

0
0

t
extx t C C d     , 

where ext  is an external forcing,   is the symbol 

means an ensemble average over realizations, and 

 C   is a  –lagged covariance matrix of x. It is 

generally assumed that the system is close to 

thermal equilibrium and the probability density 

function of the unforced system is Gaussian. 

However, the climate system is characterized by a 

strong external forcing and dissipation, making it a 

system for which the standard assumptions of 

equilibrium statistical mechanics do not hold.  

 

 

3.3 Novel Approach of Sensitivity Analysis 

Based on Shadowing Property of Dynamical 

Systems 
In climate studies, the average values of sensitivity 

functions  J 
 
over a certain period of time 

are usually considered as one of the most important 

measures of sensitivity, where J is a generic 

objective function (11). However, the gradient of J 

with respect to α cannot be correctly estimated by 

using conventional methods of sensitivity analysis 

since for chaotic systems it is observed [29-32] that 

   J J     . This is because the integral 

   
0

0

lim lim
J J

dt



 

  

 

  
  

 
       (17) 

does not possess uniform convergence and two 

limits (   and 0  ) would not commute.  

The “shadowing” approach for estimating the 

system sensitivity to variations in its parameters 

suggested in [30] and [31] allows us to calculate 

correctly the average sensitivities  J 
 

and 

therefore to make a clear conclusion with respect to 

the system sensitivity to its parameters. This 

approach is based on the theory of pseudoorbit 

shadowing in dynamical systems [35, 36], which is 

one of the most rapidly developing components of 

the global theory of dynamical systems and classical 

theory of structural stability [21]. Naturally, pseudo- 

(or approximate-)  trajectories arise due to the 
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presence of round-off errors, method errors, and 

other errors in computer simulation of dynamical 

systems. Consequently, we will not get an exact 

trajectory of a system, but we can come very close 

to an exact solution and the resulting approximate 

solution will be a pseudotrajectory.  

The shadowing property (or pseudo orbit tracing 

property) means that, near an approximate 

trajectory, there exists the exact trajectory of the 

system considered, such that it lies uniformly close 

to a pseudotrajectory. The shadowing theory, which 

was originated by D.V. Anosov [37] and R. Bowen 

[38], is well-developed for the hyperbolic dynamics. 

This dynamics is characterized by the presence of 

expanding and contracting directions for derivatives.  

Let (M, dist) be a compact metric space and let 

:f M M  be a homeomorphism (a discrete 

dynamical system on M). A set of points 

 k k
X x


  is a d-pseudotrajectory  0d   of f  if 

  1dist , ,   k kx f x d k   . 

Here the notation  dist  ,  denotes the distance in 

the phase space between two geometric objects 

within the brackets. We say that f  has the 

shadowing property if given 0   there is 0d   

such that for any d-pseudotrajectory  k k
X x


  

there exists a corresponding trajectory   k k
Y y


 , 

which  -traces X, i.e.  dist , ,   k kx y k  . 

The shadowing lemma for discrete dynamical 

systems [35] states that for each 0  , there exists 

0d   such that each d -pseudotrajectory can be  -

shadowed. The definition of pseudotrajectory and 

shadowing lemma for flows (continuous dynamical 

systems) are more complicated than for discrete 

dynamical systems [35]. Let :t M M    be a 

flow of a vector field X on M. A function 

:g M  is a d -pseudotrajectory of the 

dynamical system t  if the inequalities  

     dist , ,t t g g t d     

hold for any  1,  1t   and   . The 

“continuous” shadowing lemma ensures that for the 

vector field X generating the flow  t , the 

shadowing property holds in a small neighborhood 

of a compact hyperbolic set for dynamical 

system  t .  

However, the shadowing problem for continuous 

dynamical systems requires reparameterization of 

shadowing trajectories. This is because if dynamical 

system is continuous then close points of 

pseudotrajectory and true trajectory do not 

correspond to the same moments of time.  

To illustrate the applicability of this method, let 

us consider the continuous one parameter dynamical 

system   ,x f x   on the time interval   0, . The 

sensitivity analysis aims to estimate the sensitivity 

function  S x    . Let  x t  be the pseudo-orbit 

obtained by integration of the system equations with 

perturbed parameter       , where    is the 

variation in   . Since the pseudotrajectory  x t  

stays uniformly close to the “true” orbit  x t  

obtained with unperturbed parameter   , the 

integral (17) is convergent and the average 

sensitivities  J   can be easily estimated. Let 

us introduce the following transform 

    x x x x x   . It can be shown that 

    f x A x x  , where    A f x d dt        

is a “shadow” operator [30]. Thus, to find a pseudo-

orbit we need to solve the equation 1 x A f  , i.e. 

we must numerically invert the operator A for a 

given  f . To solve this problem, we decompose 

functions  x  and  f  into their constituent 

Lyapunov covariant vectors    1 , , nx x  : 

     
1

n

i i

i

x x x x  


 ,       
1

n

i i

i

f x x x  


 ,  

and then compute the Lyapunov exponents i  and 

vectors    1 , , nx x  . By executing the spectrum 

decomposition of  f  along the trajectory  x t  we 

can obtain   i x , 1,...,i n  and then calculate the 

expansion coefficients   i x , 1,...,i n  using the 

equations 

 
   ,  1, ,

i

i i i

d x
x x i n

dt


    , 

which are derived from the dynamical system 

equations. The expansion coefficients   i x  are 

used to compute x  along the trajectory. By 

averaging x  over the time interval   0,  we can 

obtain the sensitivity estimate  S x   .  

 
 

3.4 Some Important Notes 
In order to explore the applicability of 

geoengineering methods and technologies to climate 
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manipulation and weather modification, we have to 

choose the system parameters that can be considered 

as control variables. These can typically be done 

using detailed analysis of physical and technical 

feasibility and implementability of geoengineering 

methods and technologies. Then, sensitivity 

analysis, discussed in this section, allows 

establishing the reaction of the dynamical system 

onto changes in these control variables and defining 

their range of values.  

 

 

4 Application of Sensitivity Methods 

to Low Order Climate Models 
A wide spectrum of climate models of various 

complexities is used in simulation of the ECS. The 

exploration of the ECS requires considerable 

computational resources. For simple enough low 

dimensional models, the computational cost is 

minor and, for that reason, models of this class are 

widely applied as simple test instruments to emulate 

more complex systems such as the ECS. In this 

paper, we will use two low order models:   

(a) multiscale nonlinear dynamical system which 

is obtained by coupling the fast and slow versions of 

the original Lorenz model developed in 1963  (L63) 

[28], and  

(b) multiscale coupled nonlinear dynamical 

system, which is composed of fast (the 

“atmosphere”) and slow (the “ocean”) subsystems 

[39] in which the atmospheric subsystem represents 

the Lorenz chaotic system developed in 1984 [40]. 

The equations for the first model can be written as 

[41, 42]: 

   

   

,

( ),

,

,

( ) ( ),

( ) ,

z

z

x y x c aX k

y rx y xz c aY k

z xy bz c Z

X Y X c x k

Y rX Y aXZ c y k

Z aXY bZ c z









   

    

  

   

    

  

       (18) 

where lower case letters represent the fast 

subsystem and capital letters – the slow subsystem, 

,  ,  r b  are the parameters of L63 model, c is a 

coupling strength parameter for the x and y 

variables, zc  is a coupling strength parameter for z, 

k is an “uncentering” parameter,   is the time scale 

factor, and a is a parameter representing the 

amplitude scale factor. Thus, the state vector and the 

parameter vector of the system are, respectively, 

 , , , , ,x x y z X Y Z


  and  , , , , , , , .zr b a c c k  


  

The unperturbed parameter values are taken as a=1, 

k=0, 0 10  ,   0 1  1 0zc c . ; .  , b=8/3, r
0
=28, 

and 0  =0.1. Chosen values of ,  r  and b 
correspond to chaotic behaviour of the L63 model. 

Dynamical, correlation and spectral properties of the 

system (18) were considered in [43].  

 

 
Fig 1. Time dynamics of sensitivity functions 

with respect to parameter c 

 

The system behaviour strongly depends on the 

value of parameter c since this parameter controls 

the synchronization between fast and slow 

subsystems. Qualitative changes in the dynamical 

properties of a system can be detected by 

determining and analysing the corresponding 

spectrum of Lyapunov exponents. The system (18) 

has six distinct exponents. If the parameter c tends 

to zero, then the system (18) has two positive, two 

zero and two negative Lyapunov exponents. 

Numerical experiments showed that initially 

positive two largest conditional Lyapunov 

exponents decrease monotonically with an increase 

in the parameter c. At about 0.8c   they approach 

the x-axis and at about 0.95c   - negative values. 

Thus, for 0.95c   the dynamics of both fast and 

slow subsystems becomes phase synchronous [44]. 

When 1.0c  , a limit circle dynamical regime is 

observed since all six exponents become negative.  

Let us define the following sensitivity functions:  

1cS x c   , 2cS y c   , 3cS z c   , 

4cS X c   , 5cS Y c   , 6cS Z c   .  

Envelopes of these functions calculated by 

forward approach (see previous section) grow in 

time and the functions themselves demonstrate the 

oscillating behaviour (Fig. 1). Thus, these functions 
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are inherently uninformative since it is very difficult 

to draw a clear conclusion from them about system 

sensitivity to variations in the parameter c.  

Analogous results (Fig. 2) were obtained when we 

considered the system sensitivity with respect to the 

parameter r by introducing the following sensitivity 

functions:   

1rS x r   , 
2rS y r   , 

3rS z r   , 

4rS X r   , 
5rS Y r   , 

6rS Z r   .  

 

 
Fig 2. Time dynamics of sensitivity functions 

with respect to parameter r 

 

The parameter r represents the temperature 

difference between the equator and pole, and plays a 

critical role on the formation of system’s dynamical 

structure and transition to the chaotic behaviour. 

Obtained sensitivity functions with respect to other 

system parameters are also uninformative and 

inconclusive. This is because the average values of 

sensitivity functions (the components of 

 J  )
 
over a certain period of time cannot be 

correctly estimated using conventional sensitivity 

analysis methods (see the previous section).  

 

  
Fig 3. Original (in red) and pseudo (in blue) 

orbits for the fast z (left) and slow Z variables (right) 

for 015.0c  

The use of the shadowing method allows 

calculating both the original and pseudo orbits and 

then correctly estimating the sensitivities. It is 

important that the pseudo orbit is calculated by 

variations in the parameter under consideration.  

 

  
Fig 4. Original (in red) and pseudo (in blue) 

orbits for the fast z (left) and slow Z variables (right) 

for 8.0c  

 

As an example, the original and pseudo orbits for 

the fast z and slow Z variables are shown in Fig. 3 

(for coupling strength parameter c=0.015) and Fig 4 

(for c=0.8). The pseudo orbit was obtained by 

variations in the parameter r. The original orbit lies 

uniformly close to a pseudotrajectory. Thus, we can 

estimate the sensitivity of dynamical system (18) 

with respect to parameters by averaging the 

calculated sensitivity functions along the trajectory. 

Table 1 shows the estimates of sensitivity functions 

with respect to parameter r for different values of 

coupling strength parameter c: variables z and Z are 

the most sensitive, and the sensitivity of variables x, 

y, X and Y with respect to r is significantly less than 

sensitivity of variables z and Z. 
 

Table 1. Sensitivity estimates for the fast and slow 

variables with respect to the parameter r 

c rx   ry   rz   rX   rY   rZ   

10-4 -0.01 -0.01 1.02 -0.03 -0.02 1.04 

0.15 -0.01 -0.01 1.01 -0.09 -0.08 0.91 

0.4 0.09 0.09 1.03 -0.01 0.03 0.95 

0.8 0.07 0.07 1.02 0.03 0.08 0.69 

1.0 0.03 0.04 1.08 0.01 0.05 1.10 

 

Let us consider the next coupled dynamical 

system: 
2 2 ,

,

,

,

,

x y z ax aF

y xy cy bxz G X

z xz cz bxy Y

X Y y

Y X z





 

 

    

    

   

  

 

           (19) 

where x is the intensity of the symmetric, globally 

averaged westerly wind current (the equivalent to 
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meridional temperature gradient); y and z are the 

amplitudes of cosine and sine phases of a series of 

superposed large scale eddies, which transport heat 

poleward; F and G represent the thermal forcing 

terms due to the average north-south temperature 

contrast and the earth-sea temperature contrast, 

respectively. The term b represents displacement of 

the waves due to interaction with the westerly wind. 

The coefficient a, if less than 1, allows the westerly 

wind current to damp less rapidly than the waves. 

The time unit of t is estimated to be ten days. The 

model (19) allows mimicking the atmosphere-ocean 

system and therefore may serve as a key element of 

a theoretical and computational framework for the 

study of various aspects of the ECS including 

geoengineering. Note that the atmospheric system 

described by equations (19) represents a chaotic 

Lorenz system [42], while the ocean system is a 

simple harmonic oscillator. The time dynamics of 

model variables is shown in Fig. 5.  

 

 
Fig 5. Time dynamics of model variables 

 

Application of conventional sensitivity analysis 

methods to the system (19) shows that sensitivity 

functions also contain fairly large errors, similar to 

the previous model: the envelopes of calculated 

sensitivity functions grow in time while these 

functions exhibit oscillating behaviour. Thus, 

obtained sensitivity functions are essentially 

uninformative and misleading, and we cannot make 

a clear conclusion from them about system 

sensitivity to variations in the model parameters.  

The FDT also cannot provide clear information 

about the system sensitivity with respect to its 

parameters. In Fig. 6 autocorrelation functions 

(ACFs) are presented for realizations of all dynamic 

variables of the model (19). Using ACFs we can 

easily calculate the system response functions. 

However, for oscillatory ACFs, the calculated 

response functions are uninformative. The use of the 

shadowing method allows us to calculate the 

average sensitivity functions that can be easily 

interpreted. However, the shadowing property of 

dynamical systems is a fundamental attribute of 

hyperbolic systems, but most real physical systems 

are non-hyperbolic. Despite the fact that much of 

shadowing theory has been developed for 

hyperbolic systems, there is evidence that non-

hyperbolic attractors also have the shadowing 

property. In theory, this property should be verified 

for each particular dynamical system, but this is 

more easily said than done. 

 
Fig. 6 Autocorrelation functions for variables x (a), 

y (b), z (c), X (d) and Y (e) 

 

 

5 Concluding Remarks 
Methods and technologies for climate engineering 

and weather modification represent a potential 

response measure to the observed climate change 

and, in particular, to the global warming. So far, 

however, geoengineering and weather modification 

are explored outside the framework of the control 

theory. Meanwhile geophysical cybernetics provides 

a conceptual and unified theoretical framework for 

developing and synthesizing the optimal control 

systems for natural ambient phenomena and 

processes occurring in the components of the ECS. 

Since the main method to study the ECS is 
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mathematical modelling, the applicability of 

geoengineering methods and technologies to climate 

manipulation and weather modification suggests the 

use of sensitivity analysis of models to be used 

because control actions are expressed via variations 

in the model parameters. Note that climate models 

contain numerous input parameters that can be 

interpreted as control variables.  

Mathematical models applied in climate system 

simulation are, in essence, nonlinear and chaotic. 

There is evidence that conventional sensitivity 

analysis methods fail when used to chaotic 

dynamics. For such models, the conventional 

methods of sensitivity analysis are not sufficiently 

effective since calculated sensitivity functions are 

uninformative and inconclusive. The use of 

shadowing method for estimating the model 

sensitivity with respect to variations in the 

parameters allows calculating correctly the average 

sensitivity functions and, therefore, making a clear 

conclusion with regard to parametric sensitivity of 

the model under consideration. This method 

represents a novel application of the theory of 

pseudo-orbit shadowing in dynamical system. 

However, the applicability of shadowing method for 

sensitivity analysis of modern climate models is a 

very complicated problem due to the extreme 

complexity of mathematical models to be applied in 

climate research. In contrast to conventional 

sensitivity analysis, which suggests using the 

ensemble approach for calculating the sensitivities, 

the shadowing method allows estimating sensitivity 

functions using a system single orbit of relatively 

small length. Thus, main advantage of shadowing 

approach is that it allows us to obtain sensitivity 

functions, which can be easily interpreted and 

analysed based on “one-at-a-time” numerical 

experiment instead of ensemble simulation. 

However, the shadowing property is a fundamental 

attribute of hyperbolic dynamical systems, but most 

real physical systems are non-hyperbolic. Therefore, 

further research needs to be done to study the 

pseudo-orbit tracing property of climate models, 

which is a focus of our future work.       
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