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Abstract: - In this paper the calibration of a traffic microsimulation model based on speed-density relationships 
is presented. Hypothesis test was applied in the calibration process to measure the closeness between empirical 
data and simulation outputs and determine whether the difference between (observed and simulated) speed-
density relationships was statistically significant. Statistical regressions between the variables of traffic flow 
were developed by using traffic data observed at the A22 Brenner Freeway, Italy. Similar relationships were 
obtained for a test freeway segment in uncongested conditions of traffic flow by using the Aimsun microscopic 
simulator; thus on field conditions were reproduced varying some selected parameters until a good match 
between measurement and simulation was achieved. 
 
Key-Words: - freeway, traffic, microsimulation, speed-density relationship, calibration, Aimsun 
 
1 Introduction 
Simulation may perform sampling experiments on 
the model of the system rather than the real system 
itself [1][17][23]. Over time, the evolution of the 
system model is then able to imitate correctly the 
evolution of the modeled system, and conclusions 
can be drawn about the system behavior by 
analyzing samples of the variables of interest and 
using statistical analysis techniques. With reference 
to traffic simulation, a model should accurately 
represent the system behavior with the result that the 
model can be used as a substitute of the real system 
for experimental purposes. Commercial traffic 
microsimulation models began to emerge in the 
1990s and now represent, together with agent-based 
simulation (see e.g. [2][24]), the latest generation of 
traffic models available for developing and 
evaluating of a broad range of road traffic 
management and control systems, and useful to 
predict future driving conditions [6].  

According to car following, lane changing and 
gap acceptance rules, traffic micro-simulators model 
the movements of individual vehicles traveling 
around road networks; as a consequence, they try to 
reproduce each individual driving behavior making 

the modeling process more complex from the model 
calibration stage.  

Microsimulation models must be carefully 
calibrated on empirical observations before a model 
can estimate traffic performances [15]. According to 
[1], calibration of a traffic microsimulation model is 
an iterative process consisting in changing and 
adjusting numerous model parameters and 
comparing model outputs with a set of empirical 
data until a good match between the two data sets is 
achieved. The guidelines for applying traffic 
microsimulation software published in the Traffic 
Analysis Toolbox Vol. III [8] highlight that every 
microsimulation software comes with a set of user-
adjustable parameters which allow to calibrate the 
model; thus, users can set the calibration setup 
parameters to obtain the best match possible 
between model and field measurements. Moreover, 
in order to reproduce each individual driving 
behavior, that is the mechanism of the decision 
made by an individual driver when he/she changes 
lane or negotiates the intersection waiting for an 
acceptable gap in the major road traffic stream, each 
traffic microsimulation model is provided with 
several sub-models each having several parameters 
to be set.  
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The calibration process should focus on adjusting 
parameters with strong effect on model outputs. 
However, direct measurement of these parameters is 
often complex, since they represent features difficult 
to observe or collect on field. Currently the lack of 
data explaining individual driving behavior has 
imposed the use of aggregate data in the process of 
model calibration; in these cases, the result often 
limits the behavioral power [15].  

The selection of calibration parameters should be 
put in relation to the purpose of the calibration 
problem. Since model calibration is an iterative 
process, achievement of calibration objectives 
requires to focus on calibration parameters more 
appropriate to the problem to be solved and having 
strong influence on the performance measures that 
will be used to assess calibration. In some studies, 
calibration focuses on the driver behavior 
parameters only [16][18], whereas in other studies 
the driving behavior is just one part of a broader 
problem, including the calibration of a route choice 
model and/or an o-d matrix [7].  

The 2014 Traffic Analysis Handbook [27] 
suggests that the parameters to be adjusted should 
be divided into global and local parameters: global 
parameters regard all elements of the simulated 
network and they should be changed and adjusted 
prior to local parameters; on the contrary, local 
parameters affect individual links or points of the 
network. Moreover, it must be said that there is no 
certainty yet on the most appropriate number of 
parameters that must be calibrated before the model 
can be used as a prediction tool. For a few number 
of parameters, the calibration process can be 
developed through a manual procedure. When 
manual calibration is proposed, a reasonable number 
of adjustable parameters (dependent on the network 
type and traffic conditions) should be used to 
appropriately calibrate the model within the required 
degree of accuracy [27]; thus, some parameters are 
calibrated often through multiple retries [25]. For 
large parameter subsets, calibration process 
normally uses automated algorithms, which should 
allow a closer approach to the optimal solution. 
Despite more parameters give more degrees of 
freedom to better fit the calibrated model to the 
specific location [27], an automated procedure 
makes harder to follow changes in the value of each 
parameter [22].  

Proper calibration requires an assessment of the 
degree of closeness of the simulation outputs to the 
on-field measured data. Since microsimulation 
models are by definition a simplified representation 
of reality, improper calibration may be influenced 
by the simplification of which some technical 

features of the above models are affected: for 
instance, updating of transport system, randomness, 
traffic generation, driver/vehicle characteristics, 
vehicle interactions, etc.  

Microsimulation tools require data collection or 
analytical determination of data for calibration and 
validation purposes [3]. It is noteworthy that each 
test used in the calibration process can also be used 
in the validation of the simulation model only if a 
new data set is used. This allows for checking 
whether a valid model is obtained, or only a 
representation of the particular set of input data is 
provided. In order to gain a valid model, indeed, two 
data sets are necessary: the first data set should be 
used for calibrating the model parameters, whereas 
the second independent data set (i.e. not previously 
used in the calibration) should be used for running 
the calibrated model so that the resulting model 
outputs can closely match the existing conditions; 
thus, validation represents the process of checking 
to what extent the model replicates reality 
[10][25][26]. 

In this article the calibration method based on the 
development of speed-density functions in the 
microsimulation calibration process is presented. 
Speed-density functions for empirical and simulated 
data were developed so that traffic patterns were 
implemented. In order to obtain speed-density 
relationships for a test freeway segment in 
uncongested traffic conditions, reference was made 
to traffic data surveyed at A22 Freeway, Italy, 
whereas microscopic traffic simulation was 
performed by using Aimsun software. On field 
conditions were reproduced varying some 
calibration parameters until a good matching 
between empirical and simulated data was achieved. 
Hypothesis test was applied in the calibration 
process to measure the closeness between empirical 
data and simulation outputs and determine whether 
the difference between (observed and simulated) 
speed-density relationships was statistically 
significant. 

The organization of the paper is as follows: 
section 2 presents calibration methods for traffic 
microsimulation models and discusses issues on 
calibration approaches, whereas section 3 describes 
the path followed to develop the speed-flow-density 
relationships based on field observations at the A22 
Freeway, Italy. Section 4 introduces the test freeway 
segment selected as case study and the parameters to 
be calibrated within the model; the calibration 
method and its implementation is described in 
section 5. At last the results are presented and 
discussed in section 6. 
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2 Calibration of microsimulation 

traffic models 
Several calibration methods for microsimulation 
traffic models have been developed up to now in 
order to improve the calibration process.  

Calibration methods use a single measure [18] or 
more than one measure through calibration of 
different sub-processes; each sub-process can use a 
different traffic measure for performing the 
calibration of a separate group of parameters. On 
this regard, Dowling et al. [7] proposed a three step 
calibration method: first, driving behavior 
parameters were calibrated by comparing capacities, 
then route choice parameters were calibrated by 
comparing flows; at last, calibration was performed 
by comparing travel times and queue lengths. 
Furthermore, Hourdakis et al. [16] proposed another 
procedure to be followed to improve the efficiency 
of the calibration effort: in the first step, observed 
and simulated flows were compared for calibrating 
global parameters (e.g. maximum acceleration and 
other vehicle characteristics), whereas in the second 
step, observed and simulated speeds were compared 
for calibrating local parameters; the third step was 
suggested as an optional calibration stage for 
comparing any measure selected by the analyst. 

According to [8], calibration of the model to 
traffic capacity is one of the steps in the 
microsimulation model calibration, within which the 
set of model parameters better matching on-field 
measurements of capacity is searched for. A global 
calibration phase and a fine-tuning phase compose 
the capacity calibration step. In order to derive the 
appropriate network-wide values of the capacity 
parameters best reproducing on-field conditions, 
global calibration is first performed. Then link-
specific capacity parameters are changed and 
adjusted to best match the on-field measurements of 
capacity at each bottleneck. In order to estimate a 
numerical value for capacity, queue discharge flow 
rate can be used. Defining capacity as a single 
numerical value results in loss of information, since 
a distribution of capacity values gives more 
information than a single numerical value. Brilon et 
al. [4] introduced the stochastic nature of capacity, 
whereas Menneni et al. [22] noted that if the 
calibration process is based on a single numerical 
value, the search for the match of the means of 
capacity distribution does not match the other 
important properties of the distribution; moreover, 
other traffic parameters characterizing capacity as 
speed or density, can be neglected. Since the main 
target in the calibration process should be to 

maximize the information appropriate for 
replicating real system performances and improving 
the efficiency of the calibration effort, the 2014 
Traffic Analysis Handbook [27] has also suggested 
that capacity calibration is completed by route 
choice calibration and system performance 
calibration.  

Generalized relationships among speed, density, 
and flow provide information on the capacity, but 
also information regarding free-flow and congested 
regions, not deducible from a single numerical value 
or a distribution of capacities. A calibration 
procedure could replicate the whole range of traffic 
behavior (not just peak periods), if it could be based 
on the generalized relationships among speed, 
density and flow, from which information about the 
free-flow, congested, and queue discharge regions 
can be derived. In order to enhance the overall 
model performance, consistently to model 
calibration purposes, just a part of the speed-density 
graph (or the speed-flow graph or flow-density 
graph) instead of the whole graph could be used 
[22]. Since a large amount of data is required for 
fitting empirical/simulated data, further information 
can be derived from speed-flow-density 
relationships; hence, a higher number of parameters 
can be submitted to the calibration process, resulting 
in a better fine-tuned simulation model. The 
calibration of speed-flow, speed-density, or flow-
density relationships should be one step in 
microsimulation calibration and, as stated above, 
should be followed by route-choice calibration and 
system performance calibration. Despite the 
potential benefits to calibration process, technical 
literature still presents few studies related to the use 
of the fundamental relationships of traffic flow in 
the microsimulation calibration process. However, 
some studies have already introduced the concept of 
replicating field speed-flow relationships and the 
use of the corresponding simulated functions to 
demonstrate closeness of field and simulated data 
[30], whereas some other researches have already 
highlighted the ability of a simulation model to 
replicate speed-flow graphs from real-world 
freeways [10]. 

One of the most recent and more comprehensive 
efforts to calibrate traffic data for freeway is 
reported by [22]. In this study calibration was based 
on scatter plots of speed-flow pairs. These diagrams 
were very useful for calibration because they 
contained information on a broad range of traffic 
situations. More specifically they showed how the 
traffic flow behaves around capacity. This is the 
reason why the speed-flow diagrams are used for 
comparing simulation results with real-world data. 
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The calibration procedure was applied using a 
genetic algorithm to systematically modify the 
parameters of the behavior model and to fit the 
speed-flow diagrams from measurements and 
simulation [22]. For information on the process of 
identifying the optimal parameters for an 
optimization algorithm see also [5].  

Menneni et al [22] developed an objective 
function based on minimizing the dissimilarity 
between (observed and simulated) speed-flow 
graphs; the same authors have measured the 
dissimilarity of two graphs by measuring the area 
not covered by the other graph. Since speed and 
flow measurements are represented as point sets, 
discretization to convert point information to area 
was necessary. Moreover, considering that the 
information derived from the field and simulation 
was often represented by an incomplete speed-flow 
graph, the comparison was only made over the 
space occupied by the field graph. 

Differently from [22], in this paper the measure 
of the closeness between observed and simulated 
data was achieved through a statistical approach 
including hypothesis test and confidence intervals 
(see next section 4).  
 
 
3 The fundamental diagram of traffic 

flow for the A22 Brenner Freeway, 
Italy 

Traffic data have been surveyed extensively at 
observation sections on the A22 Brenner Freeway, 
Italy; hence, the relationships between the 
fundamental variables of traffic flow (i.e. the speed-
flow-density relationships), for a traffic flow only 
made of cars, were modeled [19]. Data were 
collected over different locations and multiple days 
and then used to create a complete graph between 
the pairs of traffic flow variables. These speed-flow, 
speed-density, or flow-density relationships were 
developed for the roadway, the right lane and the 
passing lane, after treatment and processing of 
traffic data surveyed at specific observation sections 
(San Michele, Rovereto and Adige sections) on the 
A22 Freeway [19].  

For the same framework, a criterion for 
predicting the reliability of freeway traffic flow by 
observing speed stochastic processes in 
uninterrupted flow conditions has been already 
proposed [20].  

First the relationship between speed and density 
was created. This choice was derived from the 
following: considering the real traffic flow 
phenomenon, the speed-density relationship is a 

monotonically decreasing function, which implies a 
mathematical relation simpler than the flow-density 
and speed-flow relationships; moreover, the 
relationship V=V(D) explains the interaction 
between vehicles in a traffic stream, where users 
perceive, through the spacing among consecutive 
vehicles, the density and then adapt their speed. The 
speed-density models proposed by literature were 
considered [9][13][14][21][29], but the single-
regime models were selected because they were 
deemed more appropriate in interpreting the 
observed phenomenon.  

Among the single-regime models, May's model 
[21] was chosen; it appeared as the best in 
interpreting the data surveyed on field and the traffic 
flow phenomena at the observed sections, especially 
the maximum density values under congested traffic 
conditions. According to May's model [21], the 
speed-density relationship was expressed as follows:  
 

 
                                (1) 
 
 

 
where VFF and Dc are the free flow speed and the 
critical density (that is the density D to which 
capacity C has been reached), respectively. Equation 
(1) can be expressed into linear form through the 
following logarithmic transformation: 
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Equations (3) and (4) allowed to develop the speed-
flow function, V=V(Q), and the flow-density 
function, Q = Q(D). For the complete specification 
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of the relationships shown before the parameters VFF 
and Dc were estimated. Thus, traffic flow models 
were calibrated for the roadway, the right lane and 
the passing lane at the observation sections by using 
the values of Q [veh/h] and V [km/h], and 
calculating the density D [veh/km/lane] from 
D=Q/V; then, for each speed value V, corresponding 
to each lane and the roadway, the natural logarithm 
lnV was calculated to derive from each of the pairs 
(D, V) the corresponding pair (D2, lnV).  

Basing on the scatter plot (D2, lnV) 
corresponding to each observation section and 
according to equation (2), a least squares estimation 
was performed; then, the model calibration 
parameters (VFF and Dc) were estimated for all 
observation sections [19]. Thus, the relationships 
between the fundamental variables of traffic flow 
were specified for all observation sections by using 
equations (1), (3) and (4); estimations of capacity C 
and speed Vc, corresponding to C, were then 
provided. For all cases, R2 values corresponding to 
speed-flow and flow-density relationships were 
found to be higher than 0.7.  

In order to calculate the speed-flow-density 
relationships for the roadway, the right lane and the 
passing lane for the A22 Freeway (Italy), the 
determinations of VFF and Dc obtained at each of the 
three observation sections were averaged.  

Using the VFF and Dc values, the speed-flow-
density relationships for the A22 Freeway were 
obtained (see Fig. 1). Table 1 shows the averaged 
values of the parameters (VFF, Dc, C and Vc) for 
relationships between the fundamental variables of 
traffic flow for the A22 Freeway.  
 
Table 1 The parameters of speed-flow-density 

relationships for the A22 Freeway, Italy 
 
 
 
 
 
 
 
A case study was then selected; in the following 

sections, indeed, empirical data considered for 
calibrating the microsimulation model are those 
corresponding to S. Michele observation section 
(southbound), chosen as case study; for this 
observation section, Table 2 shows the speed-flow-
density relationships. 

 
 
 
 

 
a) Speed (V) vs. Density (D) 

 
b) Flow (Q) vs. Density (D) 

 
c) Speed (v) vs. Flow (Q) 

Fig. 1 The speed-flow-density relationships for the 
A22 Brenner Freeway, Italy [19] 
 
 
4 Calibration Parameters 
Microsimulation analysis involved application of 
Aimsun micro-simulator to replicate traffic flow on 
the transportation facility under examination.  

As for any other currently existing microscopic 
traffic simulator, Aimsun is based on the family of 
car-following, lane changing and gap acceptance 
models to model the vehicle’s behavior [1]. 

lane/lanes of 
travel VFF Dc C VC 

right lane 106.95 23.65 1534 64.86 
passing lane 130.28 25.09 1983 79.02 

roadway 117.45 48.56 3459 71.23 
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Table 2 The speed-flow-density relationships for the 
S. Michele observation section [19] 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Aimsun, indeed, uses input information (e.g. 
traffic volume, facility type, vehicle-driver 
characteristics, etc.) to move traffic using simple 
acceleration, gap acceptance, and lane change rules 
on a split second (time step) basis. Aimsun performs 
the car-following model in an evolved form 
compared to the empirical model proposed by 
[11][12]; in Aimsun the model parameters are 
determined by the influence of local parameters, 
depending on the type of driver, the road 
characteristics, the influence of vehicles driving in 
the adjacent lanes, etc. This model includes two 
components: i) acceleration, that is the intention of a 
vehicle to achieve a certain desired speed; ii) 
deceleration, reproducing the limitations imposed by 
the preceding vehicle, when trying to drive at the 
desired speed. The car-following model proposed by 
Gipps [11] considers only the vehicle and its leader, 
whereas its implementation in Aimsun also includes 
the influence of the adjacent lanes. Briefly when a 
vehicle is driving along a section, the influence that 
a certain number of vehicles driving slower in the 
adjacent lane may have on the vehicle, is 
considered. Thus the model determines a new 
maximum desired speed of a vehicle in the section, 
which will be used in the car-following model, 
considering the mean speed of vehicles driving 
downstream of the vehicle in the adjacent slower 
lane and allowing a maximum difference of speed 
[1].  

Lane changing model in Aimsun can also be 
considered an evolution of the lane changing model 
proposed by [12]. Thus, the lane change is modeled 
as a decision process which examines both the 

desirability of a lane change and the benefits of a 
lane change resulting from the attainment of the 
desired speed, when the leading vehicle is slower, 
and the feasibility conditions for a lane change 
depending on the position of the vehicle in the road 
network. Car following and lane-changing model 
parameters for freeways are widely discussed by [1]. 

It is worthwhile to note that the Aimsun output 
processor comes with a set of user-adjustable 
parameters for calibrating the model to local 
conditions through minimizing the difference 
between the empirical and the simulated values of 
the variables of interest. In order to find the set of 
values for the model parameters best reproducing 
local traffic conditions at the A22 Brenner Freeway, 
Italy, the default values for the model parameters 
were used in trial simulation runs for testing 
possible coding errors.  

Since the default parameter values did not allow 
to reproduce properly the current features of traffic 
flow, as it was noted by comparing empirical and 
simulated data, the fine tuning process required the 
iterative changing of some parameters and 
simulation replications until the best match between 
the simulated pairs of speed and density and the 
corresponding pairs on field observed was obtained. 
The use of Aimsun default parameter values, 
indeed, gave unrealistic simulation results compared 
to empirical data; thus some parameters were 
changed, basing on engineering knowledge and best 
practices.  

Among the adjusted parameters, the following 
ones were included: i) the minimum headway, 
representing the time in seconds between the leader 
and the follower vehicle; ii) the reaction time, or the 
time in seconds it takes a driver to react to speed 
changes in the preceding vehicle; iii) the minimum 
distance between vehicles or the distance, in meters, 
that a vehicle keeps between itself and the preceding 
vehicle when stopped.  

Having explored different combinations of 
values for the above mentioned parameters, the 
minimum headway parameter equal to 1.70 s was 
set instead of the default value of 2.10 s, whereas a 
value of 0.8 s was set for the reaction time 
parameter instead of the default value of 0.7 s; for 
the minimum distance between vehicles a values of 
1 m was selected instead of the default value of 1.10 
m. All the default/used parameter values used in the 
calibration process, together with their combinations 
as explored in this research, are shown in Table 3. 

The calibration process also included 
adjustments for the desired speeds, namely the 
maximum speed that a certain type of vehicle can 
travel at any point in the network. 

relationship roadway 
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Table 3 Calibration Parameters 

Parameter Default Used Levels 
minimum 

headway [s]  2.10 1.70 1.70 1.90 2.10 

minimum 
distance 
between 

vehicles [m] 

1.10 1.00 1.00 5.00 10.00 

reaction time 
[s] 0.70 0.80 0.70 0.80 1.00 

 
On this regard, Aimsun introduces a car vehicle 

type having as default values a mean desired speed 
of 110 km/h and a deviation of 10 km/h; the desired 
speed for the car vehicle type is sampled from a 
truncated Normal distribution (110, 10). 
Consistently to the observed data on the A22 
Freeway and according to what introduced by [28], 
the desired speed values on right lane were assumed 
lower than the values in the passing lane.  

Trial runs allowed to observe that the desired 
speed was sensitive to flow rate, decreasing as flow 
rate values significantly increased. Thus, 
adjustments for the mean desired speeds (used here 
as a proxy variable) were differentiated by traffic 
demand values, for each lane and the roadway as 
shown in Table 4. 

Table 4 Adjustments for the desired speed 

flow rate 
[pcu/h] 

desired speed, mean [km/h] 
right lane passing lane roadway 

<1500 110 140 125 
2000 100 140 115 
2500 95 140 115 

>3000 90 130 115 
 

A short (2–km long) segment on the S. Michele 
observation section (southbound), having the cross 
section of A22 Freeway and a grade of 0.09%, was 
used in the simulation process; this length was 
chosen so that all vehicles entering the network 
were able to reach the end of the link. No traffic 
entered and exited in the middle was considered.  

Thus, for the freeway segment under 
examination, 10 simulation replications were 
performed for 7 different values of traffic flow, 
increasing from 500 to 3500 veh/h with step 500 
during a time interval of 4 hours; the values of 
traffic variables generated during the first half-hour 
of warm up were excluded, since they were 
considered corresponding to a motion condition not 
fully operational, and therefore they were 
considered unreliable. 

Only cars were simulated, choosing them among 
cars proposed by Aimsun. For traffic generation, 
Aimsun micro-simulator proposes different 
headway models which may be selected by users as 
interval distributions; the exponential distribution is 
the default distribution and it was chosen to model 
time intervals between two consecutive arrivals of 
vehicles.  

Detectors were placed at exactly the same 
locations as detectors in the field along the test 
freeway segment built in Aimsun. Speed-density 
diagrams were developed as shown in Fig. 2, where 
the plots of empirical and simulated data for S. 
Michele section (southbound roadway, right lane 
and passing lane) are represented; moreover, for 
every graph shown in Fig. 2 the corresponding 
speed-density relationship of Table 2 is also given. 
The lnV-D2 regression lines for observed and 
simulated data for S. Michele section (southbound) 
are introduced in the next section, together with the 
issues on implementing the methodology for 
calibrating the traffic microsimulation model.  

As exploratory survey aimed at improving the 
interpretation of the empirical data, a two-regime 
linear model was used for the right lane only at S. 
Michele section, southbound (see Fig. 3); for the 
section here examined, indeed, May’s model did not 
emulate well the empirical values of high speed and 
low density. Fig. 3 shows simulated data obtained 
with Aimsun, using the calibration parameters in 
Table 3; adjustments for the mean desired speeds 
were also differentiated by traffic demand values as 
follows:  
− for 500 [pcu/h], the values 140 km/h was 

assumed; 
− for 1000 and 1500 [pcu/h], the values 130 

km/h and 120 km/h were assumed 
respectively;  

− for 2000 and 2500 [pcu/h], the value 90 km/h 
was assumed, whereas the value 80 km/h was 
assumed for 3000 [pcu/h].  

Observing the graphs in Fig. 3, it is clear that 
two-regime model has improved the empirical data 
fitting, but, on the contrary, it did not match, just as 
well, the simulation outputs. For this reason and 
benefit of homogeneity, May’s model was used 
again for the right lane, the passing lane, and the 
roadway. 

According to [1] the typical situation in which 
only aggregated values are available (i.e. flow and 
speed counts at detection stations aggregated to the 
hour), it can be useful to use joint measures that 
provide an overall view.  
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In this situation the GEH index, widely used in 

the case of microscopic simulation models, was 
calculated as an indicative criterion for acceptance 
(or otherwise rejection) of the model [1]. The GEH 
statistic calculates the index for each counting 
station as follows: 

 

( )
  2 2

ii

ii
i yx

yxGEH
+
−

=  (5) 

 
where: 
xi = the ith simulated speed; 
yi = the ith observed speed. 

For comparison purposes, each observed speed 
value was calculated from the speed-density 
equations in Table 2, as specified for the roadway, 
the right lane and the passing lane, by using the 
simulated values of density. The index is usually 
interpreted in the following terms (see e.g. [1]): if 
the deviation of the simulated values with respect to 
the measurement is smaller than 5% in at least 85% 
of the cases, then the model is accepted. The fact 
that for the three case in Fig. 2 (i.e the roadway, the 
right lane and the passing lane), each GEHi resulted 
less than 5 (and equal to 1) would lead to the 
conclusion that the model could be accepted as 
significantly close to the reality.  
 
 
4 Hypothesis Test Formulation 
A statistical approach based on observed and 
simulated speed-density relationships was applied in 
the calibration process to measure the closeness 
between empirical data and simulation outputs. The 
comparison established between the lnV-D2 linear 
regressions for all simulated (speed/density) values 
and the corresponding linear regressions for the 
empirical data allowed to evaluate the quality of the 
calibration of traffic microsimulation model. Thus, a 
statistical approach including hypothesis testing 
using t-test and confidence intervals was used as 
described briefly below.  

Suppose we observe, for i = 1,...,n, the measured 
variable Yi (lnVi) corresponding to certain values of 
the input variables xi (  2

iD ) and we want to use them 
with the objective of estimating the regression 
parameters (α and·β) in a simple linear regression 
model. If A and B are the estimators that we are 
searching for, then (A + Bxi) is the estimator of the 
response variable corresponding to the input 
variable xi.  

In order to get the distribution of the estimators A 
and B, additional assumptions necessarily have to be 
made. As starting point the estimators A and B are 
usually assumed to be independent, normally 
distributed with zero mean and constant variance σ2. 
Consequently, if for i = 1, 2, ..., n, the measured 
variable Yi is the response given to the input variable  

a) Speed-density graph for S. Michele section 
(southbound roadway)  

b) Speed-density graph for S. Michele section 
(southbound right lane)  

c) Speed-density graph for S. Michele section 
(southbound passing lane)  

Fig. 2. Speed-density graphs with plots of field and 
simulated data for S. Michele section (southbound) 
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xi, we will assume that Y1, Y2,…, Yn are independent 
and Yi ∼ N (α+β xi , σ2).  

Starting from the above proposition, a statistical 
test and confidence intervals for the regression 
parameter β were constructed. As it is well known 
the hypothesis to be tested is that β = 0 (the 
response does not depends on the input variable, i.e. 
there is no correlation between the two variables).  

It can be demonstrated that the statistic for the 
test here considered has a t distribution with n-2 
degrees of freedom:  

 
( )

 B 2

R

xx

SS
Sn ⋅−  ∼ tn-2  (6) 

 
where Sxx is ∑ −

i i xnx
22  and SSR is the sum of squared 

residuals. So, to test H0 : β = 0 against H1 : β  ≠ 0, 
at the γ significance level, we have to: 
 

reject H0, if 
( )

2 , 
2

 B 2
−

>
⋅−

n
R
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Sn
γ

 
(7) 

accept H0 otherwise.  
Thus an interval containing β,  at the 1-γ 

confidence level, is the following:  
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The determination of the confidence intervals 

and statistical tests for the regression parameter α 
was obtained as for β. So, the confidence interval at 
the 1- γ level is given by:  

 

( )  
2

2

2 , 
2 xx

i iR

n Snn
xSS

tA
−

⋅
⋅± ∑

−
γ    (9) 

 
Table 5 shows the coefficients estimates and 

goodness-of-fit for lnV-D2 regression lines 
(observed and simulated) for S. Michele section 
(southbound), for the roadway, the right lane and the 
passing lane; on each set of data, statistical 
inference on the regression parameters (intercept 
and slope) was performed by means of a t-test at the 
significance level of 5%. GEH index was calculated 
again for each pair (Vobs, Vsim) obtained from the 
regressions in Table 5; only undersaturated 
conditions (D<Dc) were considered. In all the cases 
we obtained GEH = 100%. A  χ2 test was also 
performed considering the percentage of occurrence 
of a class of speed both for the field case and for the 
simulated one in Table 5. In all the cases (i.e. the 
roadway, the right-lane and the passing lane) the test 
showed that the two populations (observed and 
simulated) did not differ significantly at the 0.05 
level:  
− roadway (50 degree-of-freedom) 

5.6748.11 22 =<= crχχ  
− right lane (25 degree-of-freedom) 

7.370.93 22 =<= crχχ  
− passing lane (25 degree-of-freedom) 

7.37.3361 22 =<= crχχ  
 

Table 5 Coefficients estimates and goodness-of-fit 
for S. Michele section – Southbound. 

road Parameter estimate 
(s.e.) t (t pr.) 

ro
ad

w
ay

  
 

fie
ld

 β0 4.7726 (0.0100) 477.26 (<.001) 

β1 
-0.0002139 
(0.000004) -53.47 (<.001) 

si
m

 β0 4.7972 (0.00362) 1325.19 (<.001) 
β1 

-0.00024417 
(0.00000951) -25.67 (<.001) 

rig
ht

 la
ne

 

fie
ld

 β0 4.6540 (0.0109) 426.97 (<.001) 
β1 

-0.00084291 
(0.0000185) -45.56 (<.001) 

si
m

 β0 4.6744 (0.00431) 1084.56 (<.001) 
β1 

-0.00088134 
(0.0000219) -40.24 (<.001) 

pa
ss

in
g 

la
ne

 

fie
ld

 β0 4.8789 (0.0112) 435.62 (<.001) 
β1 

-0.00082173 
(0.0000160) -51.36 (<.001) 

si
m

 

β0 4.8819 (0.00183) 2667.71 (<.001) 
β1 

-0.0007380 
(0.0000248) -29.76 (<.001) 

Note that: Constant is β0; D2 is β1. 

 
Fig. 3 Speed-density graph for S. Michele section 
(southbound right lane): hypothesis with two-
regime traffic model. 
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Comparing the two regression lines (observed 
and simulated), including confidence areas, a 
significant overlapping of the regression curves can 
be seen as shown in Fig. 4. 

It is worthwhile to note that the simulated data 
fell almost entirely within the confidence band of 
the regression line fitted to the observed data. Thus 
the microsimulation model was able to reproduce 
the real phenomenon of traffic flow within a wide 
enough range of operations, from the free flow 
conditions until almost to the critical density. At the 
same time we argue that the methodology has 
showed that, if only one regime of traffic flow (for 
example, the congested flow conditions) had been 
considered, we would not have had any insurance 
on the ability of the model to reproduce, just as well, 
the real operations at different regimes of traffic 
flow. It should be emphasized the exploratory nature 
of the analysis carried out in this study in which, 
among all models analyzed, only the single-regime 
model was considered having the accuracy and 
consistency to interpret the experimental data which 
covered the three traffic regions (i.e., free-flow, 
congested, and queue discharge), and to represent 
the operating conditions for each lane and the entire 
roadway.  

Nevertheless, in order to improve the calibration 
process, one can hypothesize to model separately 
the inside lane and the outside lane and further 
survey should be conducted to relax the single-
regime assumption. 
 
 
4 Discussion and Conclusions 
In this paper a methodology using speed-density 
relationships in the microsimulation calibration 
process is described. Statistical analysis technique 
of pattern recognition was used to evaluate the 
match of speed-density relationships from field and 
simulation. Traffic patterns were implemented 
developing relationships between the variables of 
traffic flow for empirical and simulated data: for the 
former we referred to traffic data observed at A22 
Freeway (Italy); for the latter, Aimsun software was 
applied to a test freeway segment in uncongested 
traffic conditions for a fleet of cars only. Differently 
from the methodologies referred by technical 
literature on this topic, in this paper the measure of 
the closeness between empirical data and simulation 
outputs was achieved through a statistical approach 
which included hypothesis testing and confidence 
intervals.  
Encouraging results were obtained from the 
comparison of the observed and simulated data;  

 
indeed, a substantial overlapping of the regression 
curves was obtained and the simulated data fell 

a) 
field: y = - 2.1390·E-04x + 4.7726 (R2 = 0.9067)  
sim.: y =-2.4417·E-04x + 4.7972 (R2 = 0.9204) 

b)  
field: y =-8.4291·E-04x + 4.6540 (R2 = 0.8762)  
sim.: y =-8.8134 E-04x + 4.6744 (R2 = 0.9655) 

 

c) 
field: y = y =-8.2173·E-04 x + 4.8789 (R2 = 0.8993)  
sim.: y =-7.380 E-04x + 4.8819 (R2 = 0.9395) 

 
Fig. 4 Speed-density graphs with plots of field and 
simulated data for S. Michele section (southbound) 
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almost entirely within the confidence band of the 
regression line fitted to the empirical data. 

Thus we stated that the microsimulation model 
was able to reproduce the real phenomenon of 
traffic flow within a wide enough range of 
operations (from free flow conditions until almost to 
the critical density). Conversely, the proposed 
methodology showed that, if only one regime of 
traffic flow (free flow conditions or, congested flow 
conditions) had been considered, we would not have 
had any insurance on the ability of the model to 
reproduce, just as well, the real operations at 
different regimes of traffic flow. At last, the 
deepening of the model calibration as presented in 
this paper has led the authors to develop some 
considerations of general order as summarized in 
the following: i) first, although the results of the 
calibration process may seem satisfactory, the 
analyst does not have any guarantee on his/her 
work: he/she may have changed (or, in the extreme, 
forced) some parameters, but may have neglected 
other parameters even more important. However, it 
must be said that this risk can be contained when 
information for the calibration process is derived 
from the speed-flow, speed-density, or flow-density 
graphs, since a higher number of parameters can be 
submitted to the calibration process, resulting in a 
better fine-tuned simulation model. Moreover, the 
above relationships provide information about the 
free-flow, congested, and queue discharge regions, 
which cannot be gained from a single numerical 
value or a distribution of capacities; ii) second, 
although microsimulation model gave us data that, 
on the whole, belong to the population of the 
observed data, some doubts could relate to what was 
developed for the right lane. One single model 
which fits to empirical data both for the right lane 
and the passing lane, as well as for the entire 
roadway, does not always represent the best choice. 
The empirical observations have gradually led to 
consider that modeling the speed-density 
relationship (and the associated fundamental 
diagram) could be improved differentiating by each 
lane; for example, this can be done with regard to 
the capability of the model (single regime or multi 
regime) to fit empirical data reasonably well over 
the entire range of a traffic variable (i.e. flow, speed 
or density). The inability of single regime models to 
perform well over the entire range of density may 
prompt to think about fitting the data at intervals 
through multiple equations; iii) third, another 
question to be deepened relates to the traffic 
generation. Starting the simulation run, the system is 
empty; based on the input volumes and an assumed 
headway distribution, vehicles enter the network 

from centroids. Although in microsimulation one 
may choose among different headway models 
(exponential, uniform, normal, constant, etc.), the 
default distribution is usually preferred. However, 
the choice of the distribution should not be so 
automatic, but it should depend on how much 
complexity is desired to interpret traffic behavior . 
Indeed, Poisson distribution for vehicle counts and 
negative exponential distribution for time headways 
are only applicable when no interaction between 
vehicles occurs, thus enabling them to move at 
random (i.e. traffic flows are light). As traffic 
becomes heavier so that interaction between 
vehicles increases, vehicles are restricted in their 
driving freedom; moreover, the exponential 
distribution provides nonzero probabilities even for 
very small values of headways. In order to improve 
the capability of microsimulation models to 
replicate the real traffic phenomenon, distributions 
different from the exponential should have to be 
used; this is due to the poor agreement between the 
frequencies of observed headways and the 
frequencies predicted by the negative exponential 
distribution (as well as theoretical considerations 
precluding very short headways). It follows that in 
microsimulation the use of one of the default 
headway distributions can produce inappropriate 
choices in traffic generation, and a user-defined 
program can be required to feed the network with 
vehicles not without further computational effort 
and time. 
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