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Abstract: - Information and Communication Technologies can play a very important role in order to optimize 
the energy usage of hybrid and electrical vehicles and, thus, to reduce their environmental impact. In particular, 
vehicular communications can be exploited to spread information useful to predict future driving conditions 
and, then, future load power demand of vehicles. In the present investigation, the potentiality of ICT to reach 
this goal has been analyzed numerically with respect to a plug-in hybrid electric vehicle and a battery electric 
vehicle. The simulation of the driving scenario and the prediction of future speed profile on board of a vehicle 
have been obtained with the use of a vehicular traffic simulator (SUMO). CO2 emissions were calculated with 
at Well-To-Wheel approach with respect to realistic urban driving patterns. 
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1 Introduction 
Since early 1900s, gasoline and diesel internal 
combustion engines have represented the most 
successful automotive powering systems despite 
their low efficiency, their emissions issues and the 
increasing cost of fuel. Their main advantage over 
both gas engines and Battery Electric Vehicles 
(BEVs) is the very high energy density of liquid fuel 
that allows long driving ranges with small (and 
light-weight) storage tanks and safe and fast 
refueling processes. Moreover, gasoline and diesel 
fuels have an established infrastructure of 
distribution that is difficult and very expensive to 
replicate for other energy sources.  

Environmental issues, energy crises, concerns 
regarding peaking oil consumption and the expected 
increase of number of cars in developing countries 
have eventually encouraged research into alternative 
energy sources. However, they are still unable to 
penetrate the market for several technological 
limitations.  

The main drawback of BEVs resides in the 
batteries. They are still too expensive, too bulky and 
heavy (due to their low energy density). Moreover, 
they have an unsatisfactory life cycle and require 
long recharging times. Vehicles using fuel cell 
(FCV) a very clean fuel conversion system have 
technologic drawback even higher. They add to the 
problems of a BEV, the use of a very light gaseous 
fuel that has severe limitations in terms of producing 
process [1], storing system, safety and distribution 

infrastructure. Thus, they are not to be considered as 
a viable way for eco-mobility in the next future [2].  

Hybrid electric vehicles are characterized by the 
presence of two different typologies of energy 
storage systems: usually a battery and a gasoline or 
diesel fuel tank. HEVs have no limitation of range 
with respect to conventional vehicle and use the 
existing distribution infrastructure. The main 
advantages of HEVs are: the flexibility in the choice 
of engine operating point and the possibility of 
downsizing the ICE and so obtaining a higher 
average efficiency. Moreover, the engine can be 
turned off when the vehicle is arrested (e.g., at 
traffic lights) or the power request is very low 
(reduction of idle losses).  

PHEVs can be considered either as BEVs that 
can be run in hybrid mode when the state of the 
charge (SOC) of the batteries is low or as HEVs 
with batteries that can be recharged from the 
electricity grid. They are characterized by the use of 
much larger battery packs when compared with 
standard HEVs. The size of the battery influences 
the All Electric Range (AER), an important design 
parameters of PHEVs that is defined as the number 
of miles they vehicle can run in pure electric mode 
on the UDDS cycle. A vehicle is classified as 
PHEVXY if AER is XY miles. 
PHEVs require fewer fill-ups at the gas station than 
conventional cars and have the advantage, over 
HEV, of home recharging.  

BEVs, HEVs, and PHEVs can partially recover 
energy from brakes by inverting the energy flow 
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from batteries to wheels through the electric 
machine. 

Simpson [3] presented a comparison of the costs 
(vehicle purchase costs and energy costs) and 
benefits (reduced petroleum consumption) of 
PHEVs relative to HEVs and conventional vehicles. 
On the basis of his model, Simpson found that 
PHEVs can reduce per-vehicle petroleum 
consumption. In particular, reductions higher than 
45% in the petroleum consumption can be achieved 
using designs of PHEV20 or higher (i.e. vehicles 
containing enough useable energy stored in their 
battery to run more than 20 mi (32 km) on the 
UDDS cycle in electric mode according to the 
previous definition of AER). 
 The study of Simpson [3] underlined that from 
the economic point of view, PHEVs will be a 
competitive technology is the cost of petroleum will 
continue to increase and the cost of the batteries will 
decrease.  

Because of different characteristics of multiple 
energy sources, fuel economy and environmental 
impact of hybrid vehicles mainly depend on a 
proper power management strategy. [4]. 

Generally speaking, the environmental impact of 
a vehicle has to be determined with a “well to 
wheel” (WTW) approach. From a “tank to wheel” 
(TTW) point of view, a BEV does not produce 
either pollutant or greenhouse gases. The emissions 
of pollutant and CO2 in the WTW processes depend 
on the primary source and the technology used to 
generate electric energy at the grid.  The well-to- 
wheel CO2 emissions of a FCV can be equal to 
those of a diesel engine vehicle if it uses hydrogen 
produced from non-renewable energies sources [5]. 

In a hybrid vehicle, the local emissions of CO2 
and pollutant strongly depend on the management 
strategy used to select at any time the best energy 
source to deliver the power required at the wheel. 
Moreover, recent studies have shown that driver 
style, road type and traffic congestion levels impact 
significantly on fuel consumption and emissions 
[6],[7]. 
The possibility of estimating the future driving 
profile (speed and related power demand) is a key 
issue in the development of hybrid vehicles. In fact, 
the supervisory controller of a HEV could use the 
future speed profile to optimize the power split in a 
future time window in order to minimize fuel 
consumption, pollutant emission, battery usage and 
so on.  Moreover, information about future can be 
used to activate the electric warming of engine and 
after-treatment devices. In this way they will be at 
the right temperature when the engine will be turned 

on and the exhaust gas flow will enter the after-
treatment device. 
In literature, a number of “auto-adaptive” 
techniques which try to predict future driving 
conditions based on the past ones presented been 
defined A possible approach is to predict the future 
driving conditions on the basis of past behavior [8] 
relying on the assumption that similar operating 
conditions will exist. But the future driving profile 
also depends on the instantaneous decisions which 
the driver will take to respond to the physical 
environment (driving patterns). For these reasons, 
the control strategies proposed in some schemes [8] 
incorporate the knowledge of the driving 
environment.  
The present investigation analyzes the potentiality 
of plug-in intelligent vehicles in reducing overall 
CO2 emissions by considering two test cases: a 
series hybrid prototype and an electric city car.  
 
 
2 INTELLIGENT VEHICLES 

According to Gusikhin et al. [9], a vehicle can be 
defined “intelligent” if it is able to sense its own 
status and that of the environment, to communicate 
with the environment and to plan and execute 
appropriate maneuvers. The first application of 
intelligent vehicle systems has been the increase of 
safety by providing driver assistance in critical 
moments. A combination of on-board cameras, 
radars, lidars, digital maps, communication from 
other vehicles or highway systems are used to 
perform lane departure warning, adaptive cruise 
control, parallel parking assistants, crash warning, 
automated crash avoidance, intelligent parking 
systems.  

According to Mitchel et al. [10], it is necessary 
to transform the DNA of the automobile with four 
big innovations. The first one is design the vehicle 
on the basis of electric-drive and wireless 
communication rather than on internal combustion 
engine and stand-alone concept. The second 
innovation is the development of e-mobility 
platforms to share traffic and travel data. Third, 
integrate electric-drive vehicles with smart electric 
grids thus enhancing the use of clean and renewable 
energy sources. The forth innovation include the 
enhancement of car-sharing. 

Markel et al. [11] studied the effect of integration 
between an electrified vehicle fleet and the electric 
grid in order to increase the amount of renewable 
energy used to power the electric vehicles by 
optimizing the timing and the power of the charging 
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processes during the day. Different communication 
protocols have been considered and compared by 
Markel et al.[11] Intelligent Transport Systems like 
traffic management tools can have a direct effect on 
the emissions of CO2 produced by the automotive 
floats [12]. According to Janota et al. [13], 
Intelligent Transportation Systems can reduce 
consumption and emissions by acting on the vehicle 
(by monitoring and controlling the engine), on the 
infrastructure (reduction of number/duration of 
congestions and stoppage, optimization of 
intersection, cooperative systems to avoid 
congestions) and on the driver (planning of ecologic 
routes based on real-time information, support to 
driver for economic drive).  

Recently, Information and Communication 
Technologies (ICT) techniques have been proposed 
for gathering information about the vehicle routes 
and road conditions that could allow the evaluation 
of the future power request of the vehicle over a 
large time window. ICT techniques can be used to 
estimate the future driving profile, suggest low 
consumption behaviors to the driver, propose 
alternative route, communicate the position and the 
status of electric recharging stations, etc. [8].  

Schuricht et al. [14] analyzed two active energy 
management measures. The first one, uses advanced 
traffic light, and communication systems to support 
the driver during intersection approaching. The 
second one explores the uses of information and 
sensor sources from the traffic telematics for the 
predictive online optimal control of hybrid vehicles.  
 
2.1 Effect of driving condition prediction on 
a PHEV 
The role of Intelligent Transport Systems in the 
improvement of PHEV performance and spreading 
of vehicles electrification is a research issue at the 
Center for Automotive Research at the Ohio State 
University.  Starting from the awareness that traffic, 
weather and road conditions will be available in the 
next future through vehicle-to-vehicle and vehicle-
to-infrastructure communications, the researchers at 
CAR emphasize the possibility of using this 
information for the tuning of the energy 
management controller in HEVs, predicting the 
future driving profile, signaling the availability of 
recharge stations, predicting the route and 
generating statistical information for modifying pre-
stored maps.  
In the paper of Tulpule et al. [15], the authors 
concentrated on the impact of available data on 
energy management in order to identify the most 

important factors on the actual fuel consumption of 
a PHEV. The factors analyzed in the investigation, 
named “Impact Factors”, derive from both weather 
information (temperature and humidity) and traffic 
information (status of traffic lights, presence of 
pedestrian, road events in intra-city highway and 
inter-city highway). Their importance on the 
performance of the ECMS strategy were evaluated 
on the basis of a large amount of data acquired on a 
Toyota Prius converted to plug-in mode. The plug-
in Prius has been run for a total of 60,000 miles in 
the campus area of the Ohio State University and 
several parameters like GPS information, 
temperature, fuel consumption, battery SOC, etc. 
were collected along with time and date.  
To study the effect of the driving patterns, Gong et 
al. [16] used a statistic approach to analyze real 
world profiles and derive information about average 
speed, speed limits, segment length, etc. These data 
were used to build a series of reference driving 
cycles by using the Markov chain modeling. The 
results of the investigation showed that driving 
patterns have a relevant effect on the performance of 
a plug-in HEV and that statistic values of 
acceleration have the largest impact of the tuning of 
the ECMS strategy. 
 
2.2 Effect of driving condition prediction on 
a BEV 
The main issue in the design of any electric vehicle 
is increasing the range calculated as the distance run 
by the vehicle with the battery discharged from full 
charge to 20% SOC on a specific driving cycle. 

Driving cycles (or schedules) should provide a 
realistic and practical test for the range and the 
WTT emissions of electric vehicles. However, in the 
European scene the cycles tend to be rather simple, 
with periods of constant acceleration and constant 
velocity, no hills and no coasting. The official 
values of range given by manufacturers of electric 
vehicles are calculated according to these unrealistic 
cycles.  Moreover, official range values can be 
referred to minimum accessory power request and 
normal clement weather. 

 Fig. 1 shows the battery depth of discharge of 
an electric vehicle according to the distance 
travelled in km as evaluated by Larminie et al. [17].  
The depth of discharge is calculated in the 
hypothesis of normal clement weather, daytime 
conditions and in the case of colder conditions when 
in the dark (headlights and heater on). Note that the 
range, usually given as when 80% discharge is 
reached, drops from a little over 90 miles to about 
70.  
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Fig. 1. An intelligent plug-in vehicle according to 
the CREA approach (adapted from [17]) 
 
The range of a electric vehicle also depends on the 
driving style, external factors like terrain and road 
condition and aging of the battery. The awareness 
that range can vary along the journey as well as 
across time can cause concern for the driver. This is 
known in literature as “range anxiety”. Among the 
strategies suggested by Nilsson, [18], to limit range 
anxiety, the following items show the relevant role 
of ICT: 

• Accurate information about current range 
and status of EV; 

• Suggestions on actions to best extend the 
range; 

• Remote access of the vehicle status; 
• Information about nearest charging station; 
• Information about areas reachable by the 

EV; 
• Suggestions based on personalized driving 

patterns. 
 
3 The prediction/optimization scheme  
The CREA idea of intelligent vehicle includes the 
possibility of sensing the traffic environment in 
which it moves to predict the future driving 
conditions (Ciccarese et al. [19],[20]). In particular, 
the vehicle is assumed to receive information from 
GPS, on-board sensors and vehicular 
communications. The scheme of the intelligent 
plug-in vehicle according to the CREA research 
center is shown in Fig. 2.  
 

 
Fig. 2. An intelligent plug-in vehicle according to 
the CREA approach 
 
The gray area in Fig. 2 represents the tools to be 
implemented on board. They include a prediction 
block, a power train simulator, and an optimizer..  
The prediction block gathers information from 
GPS receiver and/or on-board sensors and status 
messages that surrounding vehicles and/or the 
infrastructure broadcast. Messages transmitted by a 
vehicle carry status information, such as position, 
speed, acceleration, etc., and, optionally, some 
information related to its route. Messages generated 
by the infrastructure, instead, carry not only the 
current status and the timing of traffic lights but also 
fundamental information about the position, the 
availability and the estimated CO2 impact of the 
recharging stations. 
All information can be used for statistical analysis 
according to the CAR approach or to take, at regular 
intervals, a snapshot of the traffic scenario in a 
given area like in the CREA approach. In this case,  
each snapshot is the input to a run of module which 
simulates the traffic dynamics over a certain time 
interval, whose duration is at most equal to the 
prediction horizon. In Ciccarese et al. [19], a 
modified version of  SUMO software has been 
considered as on-board simulator.  
The accuracy of the prediction method proposed by 
Ciccarese et al. [19] has been tested experimentally 
[20] in a augmented reality environment to simulate 
the presence in the Ecotecke campus of a certain 
number of vehicles able to communicate with the 
target vehicle. The experimental campaign showed 
that the inaccuracy of the prediction method is 
below 4km/h. In Fig. 3, a comparison is shown 
between the predicted and the actual speed profile of 
the target vehicle in a time window of 100s. More 
details about the experimental campaign can be 
found in Ciccarese et al. [20]. 
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Fig. 3. Example of speed profiles obtained by the 
experimental environment 
 
The Power train simulator block implements a 
model of the power-train. The block processes the 
output of the prediction system and calculates the 
related power demand of the predicting vehicle by 
considering aerodynamic force, inertial contribution, 
rolling force and grade force. Information from on 
board sensors (ambient temperature, asphalt 
conditions, tires pressure and temperature) can be 
used to correct the predicted load. Then, the block 
simulates the energy flows and evaluates the 
evolution of fuel consumption and battery SOC 
during the prediction interval.  
Two different paradigms are usually considered to 
simulate a plug-in vehicle (Guzzella and Sciaretta, 
[5]). In the backward paradigm, the velocity of the 
vehicle is an input. According to the vehicle 
specification and speed values, the power request at 
the wheel is calculated. By means of static maps, the 
energy consumption of both engine and batteries is 
calculated according to the selected energy 
management strategy. If the power-train is not able 
to meet the cycle requirements, the acceleration is 
reduced and the vehicle diverges from the driving 
cycle. 
In a forward or dynamic model, the power requested 
by the driver through the acceleration and braking 
pedals is used as input to evaluate the acceleration 
and the vehicle speed. This kind of model is used 
for the development of the control systems, while 
the backward method is best suited for analysis and 
evaluation of the energy and power flow in the 
vehicle driveline. Thus, a backward model is 
considered in the proposed scheme.  
In the case of hybrid electric vehicles, the energy 
management block implements the supervisor 
control system which defines, at each time, the 
power split between the fuel conversion system 
(engine/alternator in a series HEV) and the electric 
storage systems (generally batteries) with the 
constraints that the sum of the power extracted from 
each energy source must be equal to the total power 
requested at the wheels. In the case of battery 

vehicles, this block is not required since there is 
only one energy storage system (the battery). 
Different approaches for the optimal power 
management of a Hybrid Electric Vehicle were 
classified by Serrao [22] as: 
• Heuristic Control Techniques, 
• Numerical Optimization, 
• Instantaneous Optimization, 
• Analytic Optimal Control. 
Heuristic Control Techniques (HCT) are often rule-
based, e.g. given a set of conditions for the vehicle 
in terms of SOC, available power, engine 
temperature and required power, the HCTs decide 
the best working point of the vehicle in terms of 
power split, working on discrete maps.  
Numerical Optimization uses Bellman’s Principle 
and, in general, Dynamic Programming.  
In the instantaneous optimization approach, a global 
minimization problem is solved by considering a 
sequence of local minimization. 
The analytic optimal control naturally leads to a 
global optimal solution by using a simple 
mathematical model for the power-train, with low 
computational burden. This guarantees a real-time 
optimization. 
Any of these techniques can take advantage of the 
knowledge of the future driving cycles ([23]).  
The system also includes a block, named Energy 
monitoring, which monitors the energy parameters 
of the vehicle (engine efficiency, level of gasoline in 
the tank, battery SOC, etc.) and evaluates the 
effectiveness of the energy management strategy 
Another block, named Prediction accuracy, 
evaluates the prediction error (based on a 
comparison between the actual speed profile 
evaluated by GPS and that estimated by the 
prediction system). The output of the Prediction 
accuracy block could be used to trigger a new 
prediction run. 
 
3.1 Driving cycles 
In the present investigation three kinds of driving 
cycles were taken into account to analyze the 
performance of intelligent plug-in vehicles. The first 
two are standard driving cycle adopted for the 
registration on new cars in Europe (NEDC and 
ECE).  
Other cycles were obtained with the help of SUMO 
by simulating the traffic in the Ecotekne campus 
(Fig. 4) of the University of Salento for about 
10000s (2.8h) and the center of Lecce (Fig. 5 and 
Fig. 6). 
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Fig. 4. Map of Ecotekne campus 

 
Fig. 5. Map of Lecce used for the simulation with 
SUMO 
 
 

 
Fig. 6. Snapshot of SUMO simulation showing the 
target vehicle (BEV)    
 
The specification of the vehicles are used in the 
framework of SUMO to calculate the maximum 
values of acceleration/deceleration allowed to each 
vehicle according to the difference between the 
actual power request (depending on aerodynamics, 
rolling and inertia) and the maximum 
traction/braking power of the vehicle. Cycles 
obtained in this way were named as Trace A to 
Trace C. More details on the procedure used to 
obtain the numerical cycles can be found in [24]. 
 

Cycle 
Total 
time 
[s] 

Average 
speed 
[km/h] 

Length 
[km] 

Max 
speed 
[km/h] 

Cycle_NEDC 1225 33.6 11 120.0 
Cycle_ECE 205 18.7 1.01 50.0 
Trace A 10001 16.9 46.94 50.0 
Trace B 10801 24.8 74.33 50.0 

Trace C 830 22.0 2.9 60.0 
Cycle R*25 9550 25.7 68.3 41.6 
Cycle Q 1916 14.84 8.19 55.0 
Table 1- Driving cycles 
 
Finally cycles R and Q were taken into account. 
These cycles were acquired on-board of a city car 
with a GPS system in the Ecotekne campus (Cycle 
R) and in the center of Lecce (Cycle Q). Cycle R 
has been assumed to be executed for 25 times 
(R*25) in order to obtain a duration comparable 
with those of cycles A and B.  
The specifications of the cycles taken into account 
in the investigation are reported in Table 2. Note 
that all the cycles taken into account in the present 
investigation refer to a zero grade condition. 
 
4 The PHEV case 
ITAN500 is a four-wheel vehicle prototype with a 
size comparable with that of a large scooter. 
ITAN500 can be classified as PHEV40 because its 
all-electric range is 40 miles on the UDDS cycle. 
The vehicle was designed to reach a maximum 
speed of 90km/h in hybrid configuration with a 
mass of about 800 kg. By taking into account the 
overall transmission ratio (1/3.46) the DC motor 
was selected in order to generate a torque of about 
27 Nm at the speed of 3560 rpm. A set of six lead 
acid batteries in series are used  to produce the 
nominal voltage of 72V required to feed the electric 
motor. The choice of lead acid batteries was due to 
the need of reducing the vehicle cost. However, 
other kinds of batteries are currently under 
consideration.  
A small gasoline engine with a maximum power of 
9.9kW at 3600 rpm is used to extend the range of 
the vehicle.  More details on the power-train (shown 
in Fig. 7) can be found in a previous publication 
([24]). 
 

 
Fig. 7. Scheme of the ITAN500 power-train 
 

The vehicle can be run in three different modes.  
Mode 1: the power to the motor is supplied only 

by the generator/engine group;  
Mode 2: only battery is used to supply power; 
Mode 3: the engine is used both to charge battery 

and to supply power to the motor; 

 

B.E.V
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Mode 4

An adaptive heuristic control technique has been 
developed and presented in previous investigations. 
(

: the engine and the battery are used 
together to feed the motor.   

[26]). The technique selects the operating mode of 
the powertrain (1-4) according to actual State of 
Charge and required engine power.  
The thresholds used for engine power and SOC can 
be: 

- Optimized for NEDC cycle and kept constant 
for each cycle (no-knowledge approach); 

- Optimized for each cycle (full-knowledge 
approach); 

- Optimized for mini-reference cycle similar to 
that predicted in the next time window 
(prediction&maps). 

In each case, the goal of the optimization is the 
reduction of the equivalent fuel consumption 
calculated in the following way: 
 

,( )tot FC ICE eq BATTm w m mϑ= +  

   (1) 
 where: 

( )ICEm ϑ  is the effective fuel consumption function 
of  engine temperature θ; 

FCw is the weight assigned to the level of fuel stored 
in the tank. It is set equal to 1 if the tank level is 
greater than 25% When the tank level is very low, 
this parameter is increased to prefer battery usage 
when the fuel level is low. In particular wFC is 1.2 
for 10%<tank_level<25% and 1.5 for tank level 
lower than 10%. 
Note that eq. (1) has been obtained by adapting the 
equivalent fuel consumption defined by Sciarretta et 
al. [8] for a parallel HEV to the specific power-train 
of ITAN500.   
 
The equivalent fuel consumption of the battery is 
obtained as follows: 

,
BATT

eq BATT
LHV

Pm
Q t

γη ⋅
=

⋅∆


      (2) 
where η represents the average fuel consumption of 
the battery which is assumed to be constant and the 
same in charge and discharge in the present 
investigation.  
When the battery is in charge, PBATT represents the 
power that could be stored in the battery. Due to the 
battery efficiency η, the actual power stored in the 
battery (which define the equivalent fuel 
consumption) is lower than PBATT. This is taken into 
account by setting γ=1. In discharge, PBATT is the 

power requested from the battery is increased by η 
(γ=-1).  
To complete the description of eq. (3), QLHV is the 
lower heating value of the fuel (in the present 
investigation gasoline is considered with QLHV 
=44MJ/kg while ∆t is the time step of the driving 
cycle (∆t =1s). 
The penalty function fp(SOC) takes into account the 
battery usage in the optimization process and has 
been defined according to Sciarretta et al. [8]. 
The results of the three approaches in terms of fuel 
consumption are shown in Fig. 8.   
 

 
Fig. 8. Fuel consumption with the proposed 
approaches (initial SOC 75%) 
 
Note that the complete knowledge of the future 
driving conditions would reduce fuel consumption 
from 13% (cycle #R*25) to 27% (cycle #A) with 
respect to no knowledge. The prediction & maps 
approach  (more realistic) gives a reduction of about 
8% of fuel consumption over the three cycles (#A, 
#B and #R*25) with the proposed heuristic 
technique. 
To explain the results of Fig. 8, the corresponding 
SOC traces are shown in Fig. 9. The ideal SOC 
trace of a plug-in vehicle is also shown. It is 
represented by a linear decrease from the initial 
SOC to fully discharged battery (SOC=20%) exactly 
at the end of the mission (so-called blended mode). 
The traces of SOC obtained with the proposed 
strategy show an initial zone where the results 
corresponding to full knowledge, prediction&maps 
and no knowledge are perfectly overlapped and the 
SOC decreases monotonically (Electric Mode) [25]. 
Of course this region is particularly evident and 
relevant when the initial SOC is higher (75%). 
Then, there is a region in which the SOCs tends to 
decrease but can be kept locally constant or be 
increased thanks to the use of the engine (Plug-in 
Hybrid Mode). This region ends when the battery is 
fully discharged (SOC=20%). After this, the SOC 
remains globally constant for all cases (full 
knowledge, prediction&maps and no knowledge) 
with small variation that are not visible in the scale 
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used for the Fig. 9 (Discharged Battery Mode). 
Thus, the different results in terms of fuel 
consumption and CO2 emissions obtained with the 
three methods can be accounted for with the 
different duration of the EM, PHM and DBM zones.  
In the EM region, the fuel consumption is zero but 
the SOC strongly decreases due to the extensive use 
of the battery. In the PHM mode, the battery is the 
main energy source and the engine is turned on 
(when its efficiency is high) to decrease the slope of 
the SOC trace. The DBM region is the worst in 
terms of fuel consumption because engine has to be 
run also in its low efficiency region since batteries 
are fully discharged. When the vehicle mission is 
entirely known (full knowledge case), the vehicle 
reaches the minimum SOC at the end of the mission 
even if it does not follow exactly the ideal case. The 
traces of Fig. 9 show that the proposed method 
performs better than the no knowledge case since it 
allows to reduce the length of the DBM and to 
increase the PHM. As a consequence, the ICE is 
averagely run at higher efficiency (Fig. 10) and for 
less time (Fig. 11). 
 

 
Fig. 9. SOC vs. time for Trace #A 
 

 
Fig. 10. Percentage of mission with engine ON  for 
#A and #B (SOCin=45%) 
 
 

 
Fig. 11. Average efficiency of the engine 
(SOCin=45%) 
 
4.1 CO2 emissions 
 
Emission from cars is one of the most important 
source of CO2 concentration in urban centers [27]. 
From this point of view only tank-to-wheel 
emissions should be taken into account. However, 
the ultimate goal of advanced power-train 
technologies is to reduce the overall emissions of 
greenhouse gases. Thus, it could be interesting to 
evaluate the overall well-to-wheel (WTW) 
emissions of CO2 produced with the different 
approaches considered in this investigation. 
The complete combustion of 1 liter of gasoline 
produces 2.4 kg of CO2. Assuming a density of 700 
kg/m3, 1 kg of gasoline produces 3.42 kg of CO2 
(tank to wheel emissions). Sullivan et al. [28] 
consider a multiplying factor of 1.162 to pass from 
TTW to WTW emissions of CO2. Thus, a kg of 
gasoline can be assumed to produce 3.98 kg of CO2 
(WTW). Using this conversion factor, the total CO2 
produced along the cycles #A, #B and #R25 has 
been calculated from the results in Table 3 (i.e. for 
the full knowledge case). 
As for the electric path, the TTW contribute is 
obviously zero while the well-to-tank (WTT) 
emissions depend on the energy mixing used to 
generate the electricity stored in the batteries. A 
report from the International Energy Agency, [29] 
indicates for Italy an average emission of 0.386 kg 
of CO2 per kWh of electric energy. Using the data 
about the capacity of the batteries (equivalent 1.8 
kWh) and the results in terms of SOC, it is possible 
to evaluate the total energy used for each cycle and 
for each approach. Thus, the electric WTT emission 
of CO2 can be easily calculated. 
Note that in the framework of intelligent transport 
system, the actual CO2 emission per kWh can be 
communicated to the vehicle from the recharging 
infrastructure. This could help the driver or the 
energy management strategy to avoid recharging the 
vehicle when this factor is particularly high.   
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The calculated values of CO2 emissions from engine 
and batteries are reported in Fig. 12 and Fig. 13. 
Note that the electric emissions are almost 
negligible with respect to the quantity of CO2 
produced by the engine even if the engine is used 
only for a fraction of the mission. Moreover, they 
are the same for both approaches since batteries are 
fully discharged in both cases.  
The results reveal that complete information about 
the future driving mission could help to significantly 
reduce the overall emission of CO2 from a plug-in 
series HEV. The estimated reduction ranges from 
12% for cycle #R*25 to 18% for cycle #A. 
 

 
Fig. 12. Well to wheel emissions of CO2 for the no-
knowledge case 
 

 
Fig. 13. Well to wheel emissions of CO2 for the full-
knowledge case 
 

5 The BEV case 
 
For the BEV case, the Smart ED vehicle has been 
taken into account compared with the traditional 
gasoline version (gasoline engine, 45kW).  
To underline the effect of driving cycle specification 
on the range of an electric vehicle, both cars have 
been simulated with AVL-Cruise software using 
literature data ([30],[31]) for the vehicle 
components (Table 2).  

 Unit Smart gas. 
45kW 

Smart ED 

Weight kg 730 980 
Range 
(EUDC) 

km - 97 

Prime 
motor 

 3-cylinder 
gasoline 
engine 
(max 
torque 
95Nm) 

PM 
electric 
motor 
(max 
Torque125
Nm) 

Secondary 
motor 

  Motor/inve
rter unit 

Energy 
storage 

 Gasoline 
tank 

Zebra 
batteries 
50Ah, 
26.6kW 

Fuel cons. liter/100k
m 
(NEDC) 

4.7 -  

Rated CO2 
emissions 

TTW 
g/km 

113 - 

Table 2 – Specification of Smart gas. and Smart ED 
 
Fig. 14 and Fig. 15 show the speed profile and the 
corresponding discharge curve of the electric 
vehicle for cycle Q and cycle ECE repeated about 3 
times to match the length of cycle Q (2.9km).  
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Fig. 14.Speed trace and battery SOC for trace C 

 
The results shown that the energy necessary to 
execute a trip of 2.6 km strongly depends on the 
driving cycle that in turns depends on internal 
(vehicle status, driving styles) and external factors 
(weather, traffic conditions).  A complete or partial 
knowledge of the future driving conditions can help 
the driver to have more accurate information about 
the actual range of the vehicle thus reducing range 
concern.  
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Fig. 15. Cycle trace and battery SOC for trace ECE  
(no-knowledge approach) 
 
The results of the analysis on cycle ECE and Q are 
summed up in Table 4. 
 
 Full knowledge No knowledge 
Final SOC  59% 63.5% 
Equivalent 
gasoline 
consumption 

2.9 liter 4.9 liter 

Table 3 - Energy usage of BEV in the case of full 
knowledge and no knowledge 
 

 U
ni

t 

N
ED

C
 

A
 

B
 

R
 

Q
 

Average 
speed  km/h 

 
33.6  16.9  24.8  25.7  14.8  

stops per 
km 

 
 1.1   1.2   0.4  0.4   2.8  

avg 
positive 
acc m/s2 0.54  0.51  0.5  0.45  0.8  
avg neg 
acc m/s2 -0.2  -0.9  -1.0  -0.5  -0.8  
Smart 
ED range km 

              
134  

       
111  

       
119  

              
142  

         
82  

Smart 
gas. 
mileage km/l 

                
21.8  

           
7.3  

         
12.4  

                
17.5  

           
5.8  

Table 4 – Results of the simulation for Smart ED 
and Smart gasoline 45kW 
 
 The results of the investigation on the vehicles with 
respect to the other driving cycles of Table 1are 
shown in Table 4 together with cycles’ specification 
in terms of average speed, acceleration and number 
of stops per km. 
 

 
Fig. 16. Electric vehicle range vs. average speed 
 

 
Fig. 17. Electric vehicle range vs. average positive 
acceleration 
 
 

 
Fig. 18. Electric vehicle range vs. number of stops 
 
Note that electric range tends to decrease when 
increasing the average positive acceleration (Fig. 
17) or the number of stops (Fig. 18) and decreasing 
average speed (Fig. 16). No correlation has been 
found with the average negative acceleration. 
The consumption of the conventional gasoline smart 
is more influenced by the driving cycle 
specification. Fig. 19 shows the correlation between 
the range of the electric vehicle and the fuel 
consumption of the conventional vehicle. Both 
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values have been made dimensionless by dividing 
for the corresponding average value.  
 

 
Fig. 19. Gasoline Smart mileage vs. Smart ED range 
 
Note that gasoline vehicle is more affected by the 
specification of the driving cycles. This can be 
explained by taking into account that engines 
consume fuel also when the vehicle is stopped 
(queues, cross lights, etc) or braking. Moreover, the 
overall efficiency of a gasoline internal combustion 
engine strongly decreases when the engine is run at 
partial load while electric motor and batteries have 
an almost constant efficiency over the driving 
cycles. 
 
5.1 Emissions of CO2 
 
The emissions of CO2 were calculated for both the 
conventional and electric Smart with the Well-to-
Wheel approach described for the hybrid case. (Fig. 
20). Note that the electric vehicle produces very low 
emissions compared with the conventional gasoline. 
Moreover, they are less influenced by the driving 
cycle than that produced by the gasoline engine as a 
result of the poor efficiency at idle and partial loads. 
 

 
Fig. 20. WTW emission of the BEV compared with 
the conventional powertrain 

6 Conclusions 
 
The potentiality of ICT to improve the energy 
consumption of plug-in vehicles by giving 
information on internal and external driving 
conditions has been analyzed numerically with 
respect to a plug-in hybrid electric vehicle and a 
battery electric vehicle. In particular, the 
investigation focused on the possibility to predict 
the future power request demand and the 
corresponding effect on fuel consumption and Well-
To-Wheel emissions of CO2 for the Plug-in Hybrid 
Electric vehicles. 
The results show that the knowledge of the driving 
cycle in a future time window can improve both fuel 
consumption and total CO2 emissions in a series 
PHEV with Blended Mode control up to about 20%.  
In the case of a battery electric vehicle, the proposed 
method can help the driver to have more accurate 
information about the actual range of the vehicle 
thus reducing range anxiety. The electric range and 
the CO2 emissions of the Battery Electric Vehicle 
were found to be affected by average speed, average 
positive acceleration and number of stops. 
 
5 List of acronyms 
 
AEE  All Electric Range 
BEV  Battery Electric Vehicles 
CBD%  % of mission with controlled 
battery discharge 
CD  Charge Depleting 
CS  Charge Sustaining 
ECMS  Equivalent Consumption 
Minimization Stategy 
EngON% % of mission with engine turned on 
FCV  Fuel-Cell Vehicles  
GPS  Global Positioning System 
HEV  Hybrid Electric Vehicles 
PHEV  Plug-in Hybrid Electric Vehicles 
ICE  Internal Combustion Engine 
SOC  State of Charge 
TTW  Tank-to-Wheel 
WTT  Well-to-Tank 
WTW  Well-to-Wheel 
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