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Abstract: - This paper presents a novel approach for anomaly detection base on computing and utilizing 
descriptive spectral signatures. The goal of the work is to distinguish between contaminated and normal water 
areas within a region of investigation. A site-independent approach was developed by considering descriptive 
spectral signatures characterising normal sweat lake water as reference spectral features. Thereafter, it was 
possible to detect and determine the distribution of industrial outlet plumes which usually have spectral 
characteristics that deviate from the surrounding unaffected normal waters. The method was evaluated on 
airborne hyperspectral remotely-sensed image-data acquired over the region of Norrsundet, Sweden. In this 
region, areas of different water types were found, such as riverine sweet water, coastal salt seawater, as well as 
waste water discharged from paper-pulp industries. The work aimed at identifying these types of waters and 
their distributions. The needed reference descriptive spectral signatures of uncontaminated normal water were 
generated by using a dataset consisting of laboratory measurements of chlorophyll-a and phaeophytine-a 
concentrations and the corresponding field reflectance spectra collected at 22 sampling stations in Lake Erken, 
Sweden. The final results, showing the locations and distributions of contaminated and normal water areas, are 
in full agreement with field observations in the investigated region. 
 
 
Key-Words: - Industrial plume detection, Remote sensing, Chlorophyll-a, Phaeophytine-a, Descriptive spectral 
signatures. 
 
1 Introduction 
The European Water Framework Directive (WFD; 
2000/60/EC) requires that all member states should 
monitor all of their aquatic ecosystems. Therefore, 
the WFD requires new design methods to monitor 
all polluting substances discharged into the aquatic 
environment.  Pollutants resulting from the paper 
and pulp industries are considered as serious 
polluting substances. The environmental effects of 
such effluents from the paper and pulp industries 

have been investigated by many researchers, such 
as Wilander et al. [54]; Hansson [20]; Kautsky 
[27]; Ekstrand [11]; Welch et al. [53]; Chambers et 
al. [6]; Culp et al. [9]. 
 
   Serious physiological changes and disturbances 
have been seen in aquatic ecosystems exposed to 
pulp and paper mill effluent (PPME). These 
changes can produce numerous adverse impacts. 
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Serious side effects can be seen on fish populations 
and plants that live around the PPME [12, 38]. 
 
   Graveline et al. [14] explored the potential uses 
and constrains of the screening methods, in respond 
to the new requirements of the WFD, for different 
hydrological and environmental conditions. 
Collection of samples and long-term monitoring of 
water areas, are often used to detect industrial 
contaminations by analyzing the spatial and 
temporal dynamics within water areas [52]. 
However, this type of analysis is time consuming 
and requires high costs. 
 
   On the other hand, remote sensing can be used to 
study a large area on Earth covering the whole 
region of interest. Multi- or hyperspectral image 
data, acquired by air-borne or satellite-borne 
imaging systems, are usually used to (visually or 
automatically) inspect and assess the water quality 
and detect areas with abnormal or contaminated 
waters. Remotely sensed multi- and hyperspectral 
data have been widely used to estimate major 
surface water quality variables such as chlorophyll-
a, turbidity, suspended sediment concentration, 
Secchi disk depth, surface water temperature, wave 
height, and sea surface roughness, etc [2, 3, 4, 5, 
10, 18, 19 13, 23, 24, 28, 33, 34, 35, 36, 37, 39, 42, 
48, 56, 57, 58]. 
 
   However, apart from linear regression and 
correlation studies, as proposed by Philipson et al.  
[41] and Jaruskova and Liska [26], rather little 
effort has been done in order to detect industrial 
plumes and contaminations in water bodies using 
remotely sensed multi- or hyperspectral data. 
Philipson et al. [41] proposed the use of the spectral 
angle mapper (SAM) for plume detection while 
Jaruskova and Liska [26] used non-parametrical 
methods, such as the locally weighted scatterplot 
smoothing, and also used parametric methods, such 
as linear regression for estimation of a trend of time 
series observations. Valent et al. [49] used ARMA 
models (autoregressive moving average models) to 
represent the linear time series models class. They 
also used SETAR models (self-exciting threshold 
autoregressive models) and MSW models (Markov 
switching models) to represent the nonlinear time 
series models class with multiple regimes. They 
found that the relative accuracy improvement of 
SETAR and MSW models when compared to 
ARMA models was high when using multiple-
regimes modeling. 
 

   On the other hand, anomaly detection became 
increasingly promising and important when 
introducing the use of hyperspectral imagers which 
can resolve the spectral characteristics of many 
material substances more accurately than 
multispectral imagers. It is, for example, easier to 
identify a variety of natural and man-made material 
and to differentiate between them, by employing 
hyperspectral images comprising hundreds of 
contiguous bands [44]. Almost all anomaly 
detection methods attempt to locate anything that 
looks different, spatially or spectrally, from its 
surroundings. And this is what our new method 
does by using a rather different approach, as 
described in the next section. 
 
   However, automatic real-time anomaly detection 
is becoming increasingly important for many 
application fields. But the huge amount of data 
acquired by hyperspectral imagery, calls for 
utilizing parallel computing techniques. A cost-
effective solution to achieve this goal is to 
implement the parallel algorithms on graphics 
processing units (GPUs). Paz and Plaza, [40], 
implemented several GPU-based anomaly and 
target detection algorithms for exploitation of 
hyperspectral data. 
 
 
2 Spectral Anomaly Detection 
In spectral anomaly detection algorithms, the pixels 
in the hyperspectral image (representing certain 
materials in the imaged scene) that have 
significantly different spectral signatures from their 
neighbouring background-clutter pixels are 
identified as spectral anomalies. Spectral anomaly 
detection algorithms [7, 30, 45, 46, 55] could also 
use spectral signatures to detect anomalies 
embedded within a background clutter with a very 
low signal-to-noise ratio SNR. In spectral anomaly 
detectors, no prior knowledge of the target spectral 
signature is utilized or assumed. 
   
   Two interesting anomaly detectors will be 
discussed in this work. One was developed by Reed 
and Yu [43] to detect targets whose signatures are 
distinct from their surroundings [1, 47]. This 
approach is referred to as the RX detector (RXD). 
The other one (which is proposed and developed in 
Harsanyi [21] and Harsanyi et al. [22]) was 
designed to detect targets with low probabilities in 
an unknown image scene. This approach is referred 
to as the low probability detector (LPD). 
Interestingly, both approaches operate as a matched 
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   The two resulting transformation vectors, t1 and 
t2, function as spectral signatures describing the 
changes in spectral characteristics with respect to 
the parameters of interest. The deduction of these 
equations is explained in Appendix A. In Hamid 
Muhammed et al. [16] ,  Larsolle et al. [31, 32] and 
Hamid Muhammed [17, 18], these signatures reveal 
the effect of increased disease severity on the 
spectral properties of wheat plants, while in Hamid 
Muhammed [18, 19], the signatures explain the 
impact of various water quality parameters on the 
spectral characteristics of lake water. A descriptive 
spectral signature pair, t1 and t2, should be 
computed for each parameter of the set of 
parameters of interest. 
 
 
4 Anomaly Detection Using 
Descriptive Spectral Signatures 
The resulting descriptive spectral signature pairs, t1 
and t2, can be used to analyse new multi- or 
hyperspectral data (forming a spectral matrix SN) 
with respect to the desired parameters. After 
normalising the spectral matrix SN according to the 
two approaches presented above, and producing SN1 
and SN2 when using the first and the second 
approach, the appropriateness of the new data can 
be estimated as follows 
 
a1 = SN1

T  t1    (10) 
a2 = SN2

T  t2    (11) 
 
where a1 and a2 are two estimates of the matching 
or correspondence between new and training data, 
with respect to the used t1 and t2 pair, which 
correspond to a certain parameter vector p. 
 
   Equations (10) and (11) can be written as 
 
a1 = SN1

T S1  (S1
T S1)-1  p  (12) 

a2 = SN2
T S2  (S2

T S2)-1  p  (13) 
 
   Noting that the terms (S1

T S1)-1 and (S2
T S2)-1 

represent the correlation matrices of the multi- or 
hyperspectral data samples, it can easily be seen 
that equations (12) and (13) compute the RMFM 
correlation measure, presented in eq. (5), between 
the training parameter measurements vector p and 
(SN1

T S1) or (SN2
T S2) which represent the 

correlations between the training normalised 
spectral matrices, S1 and S2, and the new 
normalised spectral matrices, SN1 and SN2. 
 

   This means that high a1 and a2 values should be 
obtained for target spectra, from matrix SN, 
belonging to the same class as the spectra in matrix 
S. With other words, it can be said that the classes 
of matrices SN and S are close to each other. 
Consequently, low a1 and/or a2 values indicate that 
the corresponding spectra can be classified as 
anomalous when compared to the spectra in matrix 
S. Or that the classes of matrices SN and S are 
different from each other and not that close when 
compared to the first case of high a1 and a2 values. 
 
 
5 Image and Ground Truth Data 
Remotely sensed hyperspectral image data has been 
acquired, by using the Compact Airborne 
Spectrographic Imager (CASI), over the region of 
Norrsundet (Fig. 2) in Sweden, during a CASI-
campaign in August 1997. Norrsundet is located 30 
kilometers north of the city of Gavle. The waters in 
this region were affected by an outlet from the 
small Hamrangean river and the waste water outlet 
from the Norrsundet paper-pulp industry, as shown 
in Fig. 2. 
 
   A CASI spatial-mode image, covering this area of 
investigation, was acquired on August 5th, 1997. 
This CASI image had 10 spectral bands, a spatial 
resolution of 4×4 meters, and a size of 400×400 
pixels. Fig. 3a shows a gray-scale image where 
each pixel value is the mean value of the 
corresponding 10 pixel values of the CASI image. 
Table 1 presents the band settings of the CASI 
spatial-mode which are similar to that of the 
MERIS sensor on Envisat. 
 
 

Table 1. Wavelength band-set definition for 
the CASI in spatial mode. 

Band 
No 

Start wavwlength 
[nm] 

End wavwlength 
[nm] 

1 403.5 415.6 
2 436.5 446.9 
3 483.7 494.2 
4 504.8 515.3 
5 545.3 554.2 
6 614.5 625.2 
7 659.0 669.8 
8 676.9 684.1 
9 700.2 709.1 

10 750.3 755.7 
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