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Abstract: - This paper presents a novel approach for anomaly detection base on computing and utilizing
descriptive spectral signatures. The goal of the work is to distinguish between contaminated and normal water
areas within a region of investigation. A site-independent approach was developed by considering descriptive
spectral signatures characterising normal sweat lake water as reference spectral features. Thereafter, it was
possible to detect and determine the distribution of industrial outlet plumes which usually have spectral
characteristics that deviate from the surrounding unaffected normal waters. The method was evaluated on
airborne hyperspectral remotely-sensed image-data acquired over the region of Norrsundet, Sweden. In this
region, areas of different water types were found, such as riverine sweet water, coastal salt seawater, as well as
waste water discharged from paper-pulp industries. The work aimed at identifying these types of waters and
their distributions. The needed reference descriptive spectral signatures of uncontaminated normal water were
generated by using a dataset consisting of laboratory measurements of chlorophyll-a and phaeophytine-a
concentrations and the corresponding field reflectance spectra collected at 22 sampling stations in Lake Erken,
Sweden. The final results, showing the locations and distributions of contaminated and normal water areas, are
in full agreement with field observations in the investigated region.
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1 Introduction have been investigated by many researchers, such
as Wilander et al. [54]; Hansson [20]; Kautsky
[27]; Ekstrand [11]; Welch et al. [53]; Chambers et
al. [6]; Culp et al. [9].

The European Water Framework Directive (WFD;
2000/60/EC) requires that all member states should
monitor all of their aquatic ecosystems. Therefore,
the WFD requires new design methods to monitor
all polluting substances discharged into the aquatic
environment. Pollutants resulting from the paper
and pulp industries are considered as serious
polluting substances. The environmental effects of
such effluents from the paper and pulp industries

Serious physiological changes and disturbances
have been seen in aquatic ecosystems exposed to
pulp and paper mill effluent (PPME). These
changes can produce numerous adverse impacts.
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Serious side effects can be seen on fish populations
and plants that live around the PPME [12, 38].

Graveline et al. [14] explored the potential uses
and constrains of the screening methods, in respond
to the new requirements of the WFD, for different
hydrological and environmental conditions.
Collection of samples and long-term monitoring of
water areas, are often used to detect industrial
contaminations by analyzing the spatial and
temporal dynamics within water areas [52].
However, this type of analysis is time consuming
and requires high costs.

On the other hand, remote sensing can be used to
study a large area on Earth covering the whole
region of interest. Multi- or hyperspectral image
data, acquired by air-borne or satellite-borne
imaging systems, are usually used to (visually or
automatically) inspect and assess the water quality
and detect areas with abnormal or contaminated
waters. Remotely sensed multi- and hyperspectral
data have been widely used to estimate major
surface water quality variables such as chlorophyll-
a, turbidity, suspended sediment concentration,
Secchi disk depth, surface water temperature, wave
height, and sea surface roughness, etc [2, 3, 4, 5,
10, 18, 19 13, 23, 24, 28, 33, 34, 35, 36, 37, 39, 42,
48, 56, 57, 58].

However, apart from linear regression and
correlation studies, as proposed by Philipson et al.
[41] and Jaruskova and Liska [26], rather little
effort has been done in order to detect industrial
plumes and contaminations in water bodies using
remotely sensed multi- or hyperspectral data.
Philipson et al. [41] proposed the use of the spectral
angle mapper (SAM) for plume detection while
Jaruskova and Liska [26] used non-parametrical
methods, such as the locally weighted scatterplot
smoothing, and also used parametric methods, such
as linear regression for estimation of a trend of time
series observations. Valent et al. [49] used ARMA
models (autoregressive moving average models) to
represent the linear time series models class. They
also used SETAR models (self-exciting threshold
autoregressive models) and MSW models (Markov
switching models) to represent the nonlinear time
series models class with multiple regimes. They
found that the relative accuracy improvement of
SETAR and MSW models when compared to
ARMA models was high when using multiple-
regimes modeling.
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On the other hand, anomaly detection became
increasingly promising and important when
introducing the use of hyperspectral imagers which
can resolve the spectral characteristics of many
material  substances more accurately than
multispectral imagers. It is, for example, easier to
identify a variety of natural and man-made material
and to differentiate between them, by employing
hyperspectral images comprising hundreds of
contiguous bands [44]. Almost all anomaly
detection methods attempt to locate anything that
looks different, spatially or spectrally, from its
surroundings. And this is what our new method
does by using a rather different approach, as
described in the next section.

However, automatic real-time anomaly detection
is becoming increasingly important for many
application fields. But the huge amount of data
acquired by hyperspectral imagery, calls for
utilizing parallel computing techniques. A cost-
effective solution to achieve this goal is to
implement the parallel algorithms on graphics
processing units (GPUs). Paz and Plaza, [40],
implemented several GPU-based anomaly and
target detection algorithms for exploitation of
hyperspectral data.

2 Spectral Anomaly Detection

In spectral anomaly detection algorithms, the pixels
in the hyperspectral image (representing certain
materials in the imaged scene) that have
significantly different spectral signatures from their
neighbouring  background-clutter  pixels are
identified as spectral anomalies. Spectral anomaly
detection algorithms [7, 30, 45, 46, 55] could also
use spectral signatures to detect anomalies
embedded within a background clutter with a very
low signal-to-noise ratio SNR. In spectral anomaly
detectors, no prior knowledge of the target spectral
signature is utilized or assumed.

Two interesting anomaly detectors will be
discussed in this work. One was developed by Reed
and Yu [43] to detect targets whose signatures are
distinct from their surroundings [1, 47]. This
approach is referred to as the RX detector (RXD).
The other one (which is proposed and developed in
Harsanyi [21] and Harsanyi et al. [22]) was
designed to detect targets with low probabilities in
an unknown image scene. This approach is referred
to as the low probability detector (LPD).
Interestingly, both approaches operate as a matched
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filter, but differ in two aspects. Firstly, the RXD
uses the pixel currently being processed as the
matched signal, while the LPD makes use of the
unity vector. Secondly, the RXD uses the sample
covariance matrix to take into account the sample
spectral correlation, while the LPD makes use of
the sample correlation matrix. A uniform target
detector (UTD) is obtained when employing
sample covariance matrix in LPD. The UTD can be
used for background detection, making it efficient
to use in combination with RXD to remove the
background and detect the anomalies, as suggested
by Ashton et al. [1]. This combined approach is
referred to as RXD-UTD and can be
mathematically presented and explained in matrix
form as follows.

The RXD is specified by

Srxn(s) = (5-p)' C (5-p) (1)

where S is a sample spectrum, g is global sample
mean, and C is the sample covariance matrix of the
image. ()" and (¢)"' denotes matrix transpose and
inverse, respectively.

While LPD is defined as
SLen(s) = (1-p)" R (s-4) (2)

where 1 is unity vector, and R is the sample
correlation matrix.

Consequently, the UTD becomes

Surn(s) = (1-)" C' (s-p2) (3)
And the RXD-UTD becomes
drxp-utn(S) = (5'1)T on (s-p) 4)

Chang et al. [7] suggested replacing C with R and
(s-) with s in Egs. (1), (3) and (4) in order to
enhance the performance of those detectors, since
the new versions could account for both the first-
order and second-order statistics. The same authors
also presented and discussed (in Chiang et al. [8]) a
number of efficient distance measures for anomaly
classification, and derived a number of matched-
filter-based target discrimination measures. The
most interesting measure was the correlation
matched-filter measure (RMFM) given as follows

PS5 =s'R's; (5)
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where s; and sj are two target spectra, and the larger
the matched value p is, the more likely that the two
targets, Sjand s, belong to the same class.

3 Descriptive Spectral Signatures

In Hamid Muhammed et al. [16], Larsolle et al.
[31, 32] and Hamid Muhammed [17, 18, 19],
descriptive spectral signatures, characterising the
effect of the parameter of interest on the spectral
properties of the target object, were extracted by
using relatively small training data sets consisting
of parameter measurements and the corresponding
multi- or hyperspectral data (e.g. measured
spectra).

The training spectral data were at first normalised
into zero-mean and unit-variance data by using two
iterative normalisation approaches. This type of
normalisation is called whitening and the processed
data is called whitened data. Explanation about the
meaning of whitening of a dataset, how to apply it
and how to make use of it can be found for example
in Hyvérinen et al. [25] and Van Etten [50].

In our work, dataset normalisation is performed
by using two iterative normalisation approaches,
where a number of alternating pixel-wise (Pw) and
band-wise (Bw) whitening operations were
performed. In Pw-whitening, each multi- or
hyperspectral pixel vector was whitened, while
each spectral image band was whitened when Bw-
whitening was performed. In the first iterative
approach, a series of alternating Pw- and Bw-
whitening operations, beginning and ending with
Pw-operations, were performed. On the other hand,
the second iterative approach started with Bw-
whitening and ended with a Pw-operation.

Column-wise
whitening

Matrix transpose

Fig. 1. Iterative normalisation.

Fig. 1 illustrates the iterative procedure, where
spectral data are inserted as columns or rows (in the
case of performing the first respectively the second
approach) in a matrix S on which a series of
alternating column-wise whitening and matrix
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transposing operations are performed. In each S t=p (6)
approach a unique stationary result is achieved after S, t,=p 7

a limited number of iterations.
where t; and t, are transformation vectors that can

Let matrices S; and S, denote the resulting be computed by using the least squares method as
matrices from the first and the second approach, follows
respectively. If a linear relationship is assumed
between the measured parameters vector p and each t,=S,(S."S) "' p (®)
of the resulting S; or S; matrices, then these two L=S, (SgT Sz)'l p )]
systems of linear equations can be written as
follows
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Fig. 2. Map over the region of Norrsundet, Sweden.

Norrsundet

(a) (b)
Fig. 3. (a) The mean 400x400-pixels sub-image covering the area of investigation. (b) The
corresponding water-region mask with the marking points P1, P2 and P3 for the passage between the
basin and river mouth, the waste-water discharge point into the basin, and the outlet point from the basin
to the archipelago.
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The two resulting transformation vectors, t; and
t;, function as spectral signatures describing the
changes in spectral characteristics with respect to
the parameters of interest. The deduction of these
equations is explained in Appendix A. In Hamid
Muhammed et al. [16], Larsolle et al. [31, 32] and
Hamid Muhammed [17, 18], these signatures reveal
the effect of increased disease severity on the
spectral properties of wheat plants, while in Hamid
Muhammed [18, 19], the signatures explain the
impact of various water quality parameters on the
spectral characteristics of lake water. A descriptive
spectral signature pair, t; and t,, should be
computed for each parameter of the set of
parameters of interest.

4 Anomaly Detection

Descriptive Spectral Signatures

The resulting descriptive spectral signature pairs, t;
and t;, can be used to analyse new multi- or
hyperspectral data (forming a spectral matrix Sy)
with respect to the desired parameters. After
normalising the spectral matrix Sy according to the
two approaches presented above, and producing Sy
and Sy when using the first and the second
approach, the appropriateness of the new data can
be estimated as follows

Using

T
= SNlT ty
=S\ b

(10)
(11)

where a; and a, are two estimates of the matching
or correspondence between new and training data,
with respect to the used t; and t; pair, which
correspond to a certain parameter vector p.

Equations (10) and (11) can be written as

a=Sn' S1 (S 51)_1 p
=S\ S (S Sy p

(12)
(13)

Noting that the terms (SlT Sl)'1 and (SgT Sg)’1
represent the correlation matrices of the multi- or
hyperspectral data samples, it can easily be seen
that equations (12) and (13) compute the RMFM
correlation measure, presented in eq. (5), between
the training parameter measurements vector p and
(SNlT S;) or (SNZT S;) which represent the
correlations between the training normalised
spectral matrices, S; and S;, and the new
normalised spectral matrices, Sy; and Syg.
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This means that high a; and a, values should be
obtained for target spectra, from matrix Sy,
belonging to the same class as the spectra in matrix
S. With other words, it can be said that the classes
of matrices Sy and S are close to each other.
Consequently, low a; and/or a, values indicate that
the corresponding spectra can be classified as
anomalous when compared to the spectra in matrix
S. Or that the classes of matrices Sy and S are
different from each other and not that close when
compared to the first case of high a; and a, values.

5 Image and Ground Truth Data

Remotely sensed hyperspectral image data has been
acquired, by wusing the Compact Airborne
Spectrographic Imager (CASI), over the region of
Norrsundet (Fig. 2) in Sweden, during a CASI-
campaign in August 1997. Norrsundet is located 30
kilometers north of the city of Gavle. The waters in
this region were affected by an outlet from the
small Hamrangean river and the waste water outlet
from the Norrsundet paper-pulp industry, as shown
in Fig. 2.

A CASI spatial-mode image, covering this area of
investigation, was acquired on August 5", 1997.
This CASI image had 10 spectral bands, a spatial
resolution of 4x4 meters, and a size of 400x400
pixels. Fig. 3a shows a gray-scale image where
each pixel value is the mean value of the
corresponding 10 pixel values of the CASI image.
Table 1 presents the band settings of the CASI
spatial-mode which are similar to that of the
MERIS sensor on Envisat.

Table 1. Wavelength band-set definition for

the CASI in spatial mode.
Band  Start wavwlength End wavwlength
No [nm] [nm]
1 403.5 415.6
2 436.5 446.9
3 483.7 494.2
4 504.8 5153
5 545.3 554.2
6 614.5 625.2
7 659.0 669.8
8 676.9 684.1
9 700.2 709.1
10 750.3 755.7
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Another dataset was acuired one day later, on
August 6th, 1997, but at another site, namely Lake
Erken, located about 180 kilometers south-east of
Norrsundet. At this site, water samples were
collected from 22 sampling stations and analysed in
laboratory to measure the concentration of
chlorophyll-a and phaeophytine-a in these samples.

The measured concentrations varied between 2.9
— 50.6 pg/l. In addition to that, a handheld Dual
GER 1500 spectroradiometer was used to measure
the up- and down-welling radiance above the lake
surface at all sampling stations, and finally
compute the reflectance spectra at these stations.
The measured spectra had 513 spectral bands in the
wavelength range 400 — 900 nm.

6 Area of Investigation

Fig. 3a presents the mean image covering the
investigated area, while Fig. 3b shows the
corresponding water-region mask with the marking
points P1, P2 and P3. Pl marks the passage
between the river mouth and the basin, into which
concentrated waste-water from the paper-pulp
industry is discharged at the point marked P2, while
the outlet point from the basin to the archipelago is
marked P3, through which waste water is
mechanically forced, causing a compensation water
flow through P1 from the river mouth into the
basin. The thin (red) arrows indicate the direction
of water flow in the area of investigation, in
addition to the thick (yellow) arrow labelled with
‘Sea water’ indicating the sea water input.

7 Image Pre-Processing

The CASI data were geometrically corrected and
radiometrically calibrated at delivery. These data
were then atmospherically corrected by using the
6S-code [51], which compensated for the
atmospheric effects and converted the data
(representing upwelling radiance at the sensor) into
ground reflectance.

Thereafter, the mean image was computed for the
10-bands image (Fig. 3a), and global thresholding
was applied to the mean image to identify and
extract the water-region hyperspectral pixels from
the 10-bands image (Fig. 3b).
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8  Experimental Results  and

Discussion

The site of Norrsundet has been investigated
previously by Philipson et al. [41] by employing
the spectral angle mapper (SAM) to classify the
same CASI image data used in this paper.
Absorbance measurements of concentrated outlet
water have shown clearly different spectral
characteristics when compared to natural inland
waters.
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Fig. 4. Reflectance spectra of three major water
types: (a) with high phytoplankton and SPM
concentrations, (b) with low phytoplankton but
high SPM concentrations,

50

Absorption, m’
L]
o

0
400

750
Wavelength, nm

Fig. 5. Absorption spectrum of concentrated outlet
water. Reproduced from Philipson et al. 2005.

Fig. 4, which is reproduced from Dekker [10],
shows typical reflectance spectra of three major
water types. In this figure, spectral differences can
casily be observed between water samples with
high phytoplankton and SPM concentrations, other
samples with low phytoplankton but high SPM
concentrations, and water samples with low
phytoplankton and SPM concentrations.
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Fig. 6. Reference CASI-image spectra for SAM classification. Reproduced from Philipson et al. 2005.

Furthermore, comparing the spectral characteristics
of these water types with those of the concentrated
outlet water shows more significant spectral
differences. Fig. 5, which is reproduced from
Philipson et al. [41], shows the absorption spectrum
of concentrated outlet water. In this figure, it is
clear that the reflectance increases with the
wavelength.

In Philipson et al. [41], the investigation of this
CASI image also showed clear differences in the
spectral characteristics captured by CASI pixels
located in five different areas in the investigated
region. Fig. 6, which is also reproduced from
Philipson et al. [41], shows the five reference
reflectance spectra that were chosen from the CASI
image to be used for SAM classification.

The conclusion that can be drawn from these
observations is that spectral differences do exist
between spectra corresponding to different water
types. To be able to efficiently reveal these
differences, it is important to perform both band-
and pixel-wise comparisons. Band-wise
comparison (denoted by Bw) reveals amplitude
differences between different spectra, while within
spectrum variations are revealed when performing
pixel-wise comparison (denoted by Pw).
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This motivates to wse the two iterative
normalisation approaches described previously in
this work and illustrated in Fig. 1.

These normalisation approaches (using series of
“Pw, Bw, Pw” or “Bw, Pw, Pw”
normalisations), were applied to the field
reflectance spectra measured on water samples
from Lake Erken. Fig. 7 shows four reflectance
spectra of water samples with various
concentrations of chlorophyll-a and phaeophytine-
a, collected from four different sampling stations in
the lake.

The resulting S; and S, matrices (containing
normalised field spectra) from the first and the
second normalisation approaches, respectively,
were employed in the systems of linear equations in
equations (6) and (7). In these equations, the
parameter vector p comsists of the measured
concentrations of chlorophyll-a and phaeophytine-
a, which correspond to the measured field spectra.
The transformation vectors t; and t, were computed
by using the least squares method as described by
equations (8) and (9). These vectors (presented in
Fig. 8) represent descriptive spectral signatures
characterising the effect of increased concentrations
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of chlorophyll-a and phaeophytine-a on the spectral
properties of the water.

x 10°Field refl spectra, 288 bands, Chl-a & Phaeo-a
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Fig. 7. Reflectance spectra of water samples with
various concentrations of chlorophyll-a and
phacophytine-a, collected from four sampling
stations in Lake Erken.

Thereafter, the CASI image data were also
normalised by using exactly the same two
normalisation approaches used previously. By this
way, the two matrices Sy; and Syp, containing
normalised image spectra, were obtained. The
resulting matrices were used in equations (10) and
(11) to estimate a; and a, which can be interpreted
as two-dimensional (2D) maps showing the
correspondence between S; and Sy; and between S,
and Syp, respectively. Higher values in a; and a;
can be associated with high correspondence
between S; and Sy (where i is 1 or 2). Fig. 9
presents the resulting a; and a, 2D maps as well as
the resulting summation 2D-map (a; + a,) in
addition to the resulting element-wise-
multiplication 2D-map (a; - f4) x (a2 - &), where
M and g are the mean values of a; and a,
respectively. In all 2D maps, in Fig. 9, lower values
are shown with darker colours.

Poor correspondence between S; and Sy; (where i
is 1 or 2) can be detected by utilizing both of the
summation 2D-map and the multiplication 2D-map.
This task can be performed by finding the low
values in the summation 2D-map (corresponding to
low values in both a; and a;) and also by
identifying the negative values in the multiplication
2D-map, corresponding to high positive a; values
and low negative a, values, or low negative a;
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values and high positive a, values. For efficient
visualisation, the background (which is empty and
not included in the computations) of the figure
presenting the multiplication 2D-map was set to
zero, making the negative values darker than the
background, while the positive values are brighter.

"BwPwBwPwBwPw" normalisation
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[+ =

Signature weight
o
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Wavelength, nm

"PwBwPwBwPwBwPw" normalisation
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S
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T
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Fig. 8. Descriptive spectral signatures.

Fig. 10 presents a 2D-map generated by
classifying and segmenting the image of the area of
investigation by using the a; and a, 2D-maps. In
the result shown in Fig. 10, class 1 represents pixels
corresponding to high a; values but low a, values,
class 2 corresponds to low values in both of the a;
and a, maps, class 3 corresponds to low a; values
but high a; values, and finally, class 4 corresponds
to high values in both of the a; and a, maps. The
mean values of a; and a, were used as a threshold
to determine if a value was considered as high or
low in the corresponding maps.
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Fig. 9. The resulting a; (upper right), a, (upper left), the sum (a; + a;) (down left), and the element-wise

multiplication (a; x a,) (down right).

Obviously, class 4 represents water unaffected by
the industrial waste water, since there good
correspondence between this water type and the
uncontaminated water in Lake Erken. On the other
hand, classes 1, 2 and 3 represent contaminated
waters. Comparison with the map of the Norrsundet
region in Fig. 3 results in the important
observations that class-1 waters are mainly found
near the waste-water discharge point P2 into the
basin, and the outlet P3 point from the basin to the
recipient (the archipelago), class-3 waters are found
in the basin and also in the river mouth region near
the passage between the basin and river mouth (it
can be clearly seen how contaminated waters flow
southwards through the passage into the river
mouth), while class-2 waters are mainly found in
the recipient (with coastal seawater) and also
observed in the area where a mixture between
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riverine and coastal seawater is found.
Furthermore, in this figure, the sea water injection
can be clearly seen, in addition to the sharp
boundary where riverine water meets coastal
seawater.

9 Summary and Conclusions

This work presents a novel site- and sensor
independent approach for water quality assessment
and differentiation between contaminated and
normal waters within an industrial region. For this
purpose, a pair of descriptive spectral signatures
characterising uncontaminated lake water were
computed and used as a reference expressing
normal  water spectral characteristics. By
employing a new anomaly detection technique
which utilizes these descriptive spectral signatures,
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water bodies affected by industrial waste water
having spectral characteristics that usually deviate
from the surrounding unaffected water can easily
be detected.

The new approach was tested on airborne
hyperspectral remote sensing data acquired over the
region of Norrsundet, Sweden, where paper-pulp
industries are located. On the other hand, normal-
water descriptive spectral signatures were derived
by using another data set consisting of laboratory
measurements of chlorophyll-a and phaeophytine-a
concentrations and the corresponding field
reflectance spectra. These data were collected from
Lake Erken, Sweden, about 180 km south-east of
the region of Norrsundet.

Systems of linear equations were assumed and
used to describe the relationship between spectral
data and water quality measures. Solving this kind
of equations when using the Lake Erken dataset
resulted in two descriptive spectral signatures.

Each one of these two descriptive spectral
signatures was used to produce a 2D map showing
the correspondence between the dataset of Lake
Erken (which represents uncontaminated waters)
and the CASI image data of the region of
Norrsundet.

High correspondence values in both of the two
maps indicate that the corresponding water is of the
same type as the water in Lake-Erken. Low
correspondence values in one or both of the two
maps indicate anomalous water type (different, in
some sense, from the water in Lake-Erken).
Classification using these simple rules produced a
4-classes map that could be used not only to detect
and map the waste water, but also to analyse the
dynamics and types of the water system in the
region of Norrsundet, where the waste water
functioned as an efficient tracer.
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