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1.  Introduction 
Artificial Intelligence (AI) is the branch of 

Computer Science that focuses on the 

theory and practice of creating intelligent 

machines, which work and react like 

humans. The term AI was first coined by 

John McCarthy in 1956, when he held 

the first academic conference on the 

subject. in Dartmouth college, USA [1]. 

However, the journey to understand if 

machines can truly think began much 

earlier; e.g. Alan Turin’s universal machine 

in 1936 [2].      

     AI has roots in mathematics, 

engineering, technology and science and as 

a synthesis of ideas from all those fields 

has created a new situation that is only 

just beginning to generate enormous 

changes and benefits to the human society. 

     Probability t he o r y  i s  o n e  o f  the 

main mathematical tools used in AI 

applications. Edwin T. Jaynes (1922-1998), 

Professor of Physics at the University of 

Washington, was the first who argued that 

Probability theory could be considered as a 

generalization of the bivalent logic reducing 

to it in the special case where our 

hypothesis is either absolutely true or 

absolutely false [3]. Many eminent 

scientists have been inspired by the ideas of 

Janes, like the expert in Algebraic 

Geometry David Mumford, who believes 

that Probability and Statistics are emerging 

as a better way for building scientific 

models [4].  

      Nevertheless, both Probability and 

Statistics have been developed on the basis 

of the principles of the bivalent logic. As a 

result, they are tackling effectively only the 

cases of the existing in real world 

uncertainty due to randomness and not 

those due to imprecision. In cases of 

imprecision, the Zadeh’s Fuzzy Logic (FL) 

comes to bridge the existing gap [5, 6]. 

     However, as we shall see in the next 

section, although probabilities have been 

defined and developed on the basis of 

principles of the bivalent logic, the 

Bayesian rule calculating the value of the 

conditional probabilities, introduces a kind 

of multi-valued logic tackling the existing 

due to imprecision uncertainty in a way 

analogous to fuzzy logic!  

     The present work focuses on illustrating 

the importance of Bayesian reasoning to 

everyday life and science and in extension 

to AI. The rest of the article is formulated as 

follows: The Bayes’ rule is presented in 

next section and its importance for AI is 

justified. The third section includes 

applications of this rule to everyday life 

situations. In fourth section, the argument 

that the whole science could be considered 

as a Bayesian process is discussed and the 

article closes with the general conclusion 

presented in section five. 

2. The Bayes’ Theorem  

Let A and B be two intersecting events. 

Then it is straightforward to check [7, 8] 

that the conditional probability for the event 

A to happen when the event B has already 

happened is calculated by 

P(A B)
P(A/B)=

P(B)

     (1). 
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    In case of finite sample spaces ,for 

example, with equally probable singleton 

events,  the mathematical definition of 

probability gives that  P(A/B)=NA∩B : NB, 

where NA∩B and NB denote the numbers of 

appearance of the events A∩B and B 

respectively .Therefore, if N is the 

cardinality of the sample space of B, then 

P(A/B)=(NA∩B : N) : (NB : N), which proves 

(1). 

In the same way one finds that 

P(A B)
P(B/A)=

P(A)

  or P(A B) = P(B/A) P(A). 

Therefore (1) can be written in the form 

P(B/A)P(A)
P(A/B)=

P(B)
   (2). 

     Equation (2), which calculates the 

conditional probability P(A/B) with the help 

of the inverse in time conditional 

probability P(B/A), the prior probability 

P(A}and the posterior probability P(B), is 

known as the Bayes’ theorem (or rule, or 

law). 

     In other words, the Bayes’ theorem 

calculates the probability of an event based 

on prior knowledge of conditions related to 

that event. However, when applied in 

practice, the Bayes’ theorem may have 

several interpretations.       

     In social sciences, for example, it 

describes how a degree of belief expressed 

as a probability P(A) is rationally changed 

according to the availability of related 

evidence. In that case, the probabilities 

involved in the Bayes’ theorem are 

frequently referred as Bayesian 

probabilities, although, mathematically 

speaking, Bayesian and conditional 

probabilities are actually the same thing.  

     The value of the prior probability P(A) is 

fixed before the experiment, whereas the 

value of the posterior probability is derived 

from the experiment’s data. Usually, 

however, there exists an uncertainty about 

the exact value of P(A). In such cases, 

considering all the possible values of P(A), 

we obtain different values for the 

conditional probability P(A/B). Therefore, 

the Bayes’ rule introduces a kind of multi-

valued logic tackling the existing, due to the 

imprecision of the value of the prior 

probability, uncertainty. Consequently, one 

could argue that Bayesian Reasoning 

constitutes an interface between bivalent 

and fuzzy logic. 

     The Bayes’ rule was first appeared in the 

work “An Essay towards a Problem in the 

Doctrine of Chances” of the 18th century 

British mathematician and theologian 

Thomas Bayes (Figure 1).  

 

Figure 1: Thomas Bayes (1701-1761) 

 

     This essay was published by Richard 

Price in 1763, after the Bayes’ death, in the 

“Philosophical Transactions of the Royal 

Society of London”. The famous French 

mathematician Laplace (1749-1827), 

independently from Bayes, pioneered and 

popularized the Bayesian probabilities. The 

Bayes’ theorem is frequently used together 

with the theorem of total probability [7] for 

the solution of more composite problems 

(e.g. see Example 5 of the next section).  

     In general, although the Bayes’ rule is a 

simple consequence of the equation 

calculating the value of a conditional 

probability, Bayesian reasoning has been 

proved to be very important to everyday life 

situations [9] and for the whole science as 

well [10]. Recent researches give evidence 

that even the mechanisms under which the 

human brain works are Bayesian [11]!  

Consequently, Bayesian reasoning is very 

useful for Machine Learning, the sector of 

AI focusing on the design and construction 

of machines that mimic the human 

behavior.    In fact, the smart machines of 

AI are supplied with Bayesian algorithms in 

order to be able to recognize the 

corresponding structures and to make 

autonomous decisions. The physicist and 

Nobel prize winner John Mather was one of 

the first who expressed his uneasiness about 

the possibility that the Bayesian machines 

could become too smart, so that to make 

humans to look useless [12]!  

     Sir Harold Jeffreys (1891-1989), a 

British mathematician who introduced the 

concept of the Bayesian algorithm and 

played an important role in the revival of 

the Bayesian view of probability, has 

successfully characterized the Bayesian rule 
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as the “Pythagorean Theorem of Probability 

Theory” [13]. 

 

3. Applications of Bayesian 

Reasoning to Everyday Life 

Situations 
Conditional probabilities and Bayesian 

reasoning have been proved very useful for 

solving problems appearing in everyday life 

situations. Some representative examples 

are presented in this section. 

     Example 1: A market’s   research is 

performed on the population of a town 

consisting 45% of men and 55% of women. 

Find the probability of the random choice 

of: i) Three men for the first three 

interviews, and ii) Four women for the next 

four interviews. 

     Solution: i) Let Ai be the event that a 

man is chosen for the i-th interview, i = 1, 

2, 3. Then P(A1) = 45:100, P(A2/A1) = 

44:99 and P(A3/A1∩A2) = 43:98. Therefore, 

writing P(A1∩A2∩A3) = P[(A1∩A2)∩A3] 

and applying two times  equation (1) one 

finds that 

P(A1∩A2∩A3) = P(A1∩A2)P(A3/A1∩A2) = 

P(A1)P(A2/A1)P(A3/A1∩A2)≈0.088 or 8.8%. 

     ii) Given a finite number n of events, one 

can show by induction that  

P(A1∩A2∩….∩An) = P(A1)P(A2/A1) 

P(A3/A1∩A2) …. P(An/A1∩A2∩… ∩An-1) 

(3). 

     Let A1, A2 and A3 be the events defined 

in case (i) and let Ai be the event that a 

woman is chosen for the i-th interview, i = 

4, 5, 6, 7. Then 

P(A4/A1∩A2∩A3)=55:97≈0.567, 

P(A5/A1∩A2∩A3∩A4) =54:96≈0.562,  

P(A6/A1∩A2∩A3∩A4∩A5)=53:95≈0.558, 

and P(A7/A1∩A2∩A3∩A4∩A5∩A6)=52:94 

≈0.553.   

     Therefore, applying equation (3) for n=7 

one finds that P(A1∩A2∩….∩A7) = 0.0086 

or 0.86%. 

     Bayesian reasoning is frequently used in 

medical paradigms the outcomes of which 

are not always compatible to the common 

beliefs. The following three timely 

examples, due to the current COVID-19 

pandemic, concern the creditability of the 

viruses’ diagnostic tests.  

     Example 2: The statistical data show 

that 2% of the inhabitants of country have 

been infected by a dangerous virus. Mr. X, 

who has not any symptoms of the 

corresponding disease, makes a diagnostic 

test, the statistical accuracy of which is 

97%. The test is positive. What is the 

probability for Mr. X to be a carrier of the 

virus? 

     Solution: Consider the following events: 

 A: The subject is a carrier of the 

virus. 

 B: The test is positive. 

     On the basis of the given data it turns out 

that P(A)=0.02 and P(B/A)=0.97. 

     Among 100 inhabitants of the country, 2 

on average are carriers and 98 are 

noncarriers of the virus. Assuming that all 

those people make the test, we should have 

on average 2x97%=1.94 positive tests from 

the carriers and 98x3%=2.94 positive tests 

from the noncarriers of the virus, i.e.4.88 in 

total positive tests. Therefore, P(B)=0.488.  

Replacing the values of P(A), P(B/A) and 

P(B) in equation (2) one finds that 

P(A/B)≈0.398. Therefore, the probability 

for Mr. X to be a carrier of the virus is only 

39.8% and not 97%, as it could be thought 

through a first, rough estimation!  

     This means that Mr. X has to make a 

second test to see what really happens with 

his health condition. Further, if the second 

test is negative, a third test will be also 

required. At the same time, however, there 

is an urgent need for other people to make 

the test. This becomes evident by the next 

example. 

     Example 3: Assume that Mr. X has 

some suspicious symptoms and that 85% of 

the people presenting such symptoms have 

been infected by the virus. Mr. X makes the 

test, which is positive. What is now the 

probability for Mr, X to be a carrier of the 

virus? 

     Solution: Let A and B be the events 

defined in Example 2. Here we have that 

P(A)=0.85 and P(B/A)=0.97. Further, 

assuming that 100 people having suspicious 

symptoms make the test, we should have on 

average 85x97%=82.45 positive tests from 

the carriers and 15x0.3% =0.45 from the 

noncarriers of the virus, i.e. 82.9 in total 

positive tests. Therefore, P(B)=0.829.  

Replacing the values of P(A), P(B/A) and 

P(B) in equation (2) one finds that 

P(A/B)≈0.995. In this case, therefore, the 

probability for Mr. X to be a carrier of the 

virus is 99.5%, i.e. exceeds the statistical 

accuracy of the test!  

     In general, the sensitivity of the solution 

is great, depending on the values of the 
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prior probability P(A). The greater the value 

of P(A), the higher the creditability of the 

test. 

     The next example examines what 

happens, if the test is negative. 

     Example 4: Assume that Mr. X makes a 

diagnostic test, which is negative. Find the 

probability to be a carrier of the virus:  

i) Under the conditions of Example 2, and 

 ii) under the conditions of Example 3. 

     Solution: Consider the following events: 

 A: The subject is a carrier of the 

virus. 

 B: The test is negative. 

     i) In this case we have P(A)=0.02 and 

P(B/A)=0.03. Assuming that 100 people 

make the test, we should have on average 

98x97%=95.06 negative tests from the 

noncarriers and 2x3%=0.06 from the 

carriers of the virus, i.e. an average of 95.12 

in total negative tests. Therefore, 

P(B)=0.9512.  

Replacing the values of P(A), P(B) and 

P(B/A) to equation (1) one finds that 

P(A/B)≈0.0006. Therefore, the probability 

for Mr. X to be a carrier of the virus is only 

0.06%. 

ii) Here we have P(A)=0.85 and 

P(B/A)=0.03. Further, assuming that 100 

people make the test, we shall have on 

average 15x97%=14.55 negative tests from 

the noncarriers and 85x3%=2.55 from the 

carriers of the virus, i.e. an average of 17.1 

in total negative tests. Therefore, 

P(B)=0.171. 

     Replacing the values of P(A), P(B) and 

P(B/A) to equation (1) one finds that 

P(A/B)≈0.1491. Therefore, the probability 

for Mr. X to be a carrier of the virus is 

14.91%. One observes here that the greater 

the value of the prior probability P(A), the 

lower the creditability of the test. 

     Remark: The outcomes of the previous 

three examples support the view of many 

epidemiologists that, at the initial stage, the 

“blind” diagnostic tests for COVID-19 

performed on the general population are not 

effective, burdening purposeless the 

healthcare system of the corresponding 

country.  

     To check this from another optical angle, 

one has to take into account the statistical 

estimation that the existing diagnostic tests 

for COVID-19 give 30% incorrectly 

negative (IN) results and 10% incorrectly 

positive (IP) results. Assume that 2% of the 

population of a country has been infected 

by the coronavirus of COVID-19 and that 

the government decides to undergo the 

heavy cost of performing one million 

“blind“ tests on the general population. 

     Among those people, 20000 on average 

should be carriers and 980000 noncarriers 

of the virus. Therefore, we should have 

20000x30% = 6000 on average IN results 

and 14000 correctly positive (CP) results 

from the carriers and 980000x10%=98000 

IP results from the noncarriers of the virus. 

This means that 6000 people infected by the 

virus with IN tests will not take the required 

precautions, therefore transmitting easily 

the virus to the other people.  

     Further, denote, for simplicity, by CP 

and IP the numbers of CP and IP results of 

the tests respectively. Then, the probability 

P(CP) of a positive test to be correct is 

equal to 

P(CP)= CP : (CP+IP) (4)  

     In our case, P(CP) 

=14000:(14000+98000)≈0.125, i.e. only 

12.5%! Therefore, there is an urgent need 

for the 112000 in total people with positive 

tests to make a second test in order to check 

their real health condition, etc. 

     Equation (4) shows that P(CP) increases, 

either if the number CP increases or if the 

number IP decreases. The former happens if 

more people are infected by the virus, 

whereas the latter will happen if the quality 

of the diagnostic tests will be improved.       

     When, for example, 20% of the 

population is infected by the virus, it is 

straightforward to check that the probability 

P(CP) will be approximately equal to 

63.6%. Consequently, the more people are 

infected by the virus, the higher the 

creditability (and therefore the usefulness) 

of the diagnostic tests in detecting the 

positive cases. 

     Our last example concerns a 

combination of the Bayes’ rule and the 

theorem of total probability for the solution 

of the corresponding problem 

     Example 5: A country consists of three 

confederate districts, say D1, D2 and D3, 

where it lives the 20%, 25% and 55% of its 

total population respectively. A percentage 

of 60%, 45% and 10% respectively of the 

population of each one of those districts is 

against the confederation wanting for its 

district to be an independent country. What 

is the probability that one of those people, 

chosen randomly, lives in district D3? 
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     Solution: Consider the events  

 Ai: A person lives in district Di, i=1, 

2, 3, and 

 B: A person is against the 

confederation 

     On the basis of the given data it turns out 

that P(A1)= 0.2, P(A2)= 0.25,  P(A3)= 0.55 

and P(B/A1)=0.6, P(B/A2)= 0.45, P(B/A3) = 

0.1. We want to calculate the probability  

P(A3/B) = [P(B/A3)P(A3)] : P(B)   (4) 

     The Ai’s are obviously pairwise disjoint 

events and their union is equal to the sample 

space X of the inhabitants of the country 

(mathematically speaking the Ai’s form a 

partition of X). Therefore, by the theorem 

of total probability [6] one finds that  

P(B) = P(A1∩B)+P(A2∩B)+P(A3∩B) and, 

by the Bayes’ theorem,  

P(B)=P(B/A1)P(A1)+P(B/A2)P(A2)+ 

+P(B/A3)P(A3)     (5).  

     Replacing the values of the probabilities 

involved in equation (5) one finds that 

P(B)=0.2875. Therefore, equation (4) gives 

that P(A3/B)≈0.0628 or 6.28% 

4, Bayesian Reasoning in 

Science 
Many scientists and philosophers of science 

argue nowadays that the whole science 

could be considered as a Bayesian process 

[9-11]. In this section we are going to 

support and justify this view.  

 

Figure 2: The scientific method 

The process of scientific thinking, being a 

synthesis of inductive and deductive 

reasoning, is graphically represented in 

Figure 2, retrieved from [10]. The whole 

process for explaining a phenomenon starts 

with the humans’ observations a1, a2,… , an 

of the real world connected to it, which laid 

by induction (intuitively) to the 

development of theory T1 about this 

phenomenon. Theory T1 is verified by 

deductive reasoning and additional 

deductive inferences K1, K2, …., Ks arre 

obtained. Next, a new series of observations 

b1, b2,…,bm follow. If some of those 

observations are not compatible to the laws 

of theory T1, a new theory T2 is developed 

to replace/extend T1, and so on. In each case 

the new theory extends or rejects the 

previous one approaching more and more to 

the objective truth related to the 

corresponding phenomenon.  

     This procedure is known as the scientific 

method. The term was introduced during the 

19th century, when significant terminologies 

appeared establishing clear boundaries 

between science and non science. However, 

the scientific method characterizes the 

development of science since at least the 

17th century. Aristotle (384-322 BC) is 

recognized as the inventor of the scientific 

method due to his refined analysis of the 

logical implications contained in 

demonstrative discourse. The first book in 

the history of human civilization written on 

the basis of the principles of the scientific 

method is, according to the existing 

witnesses, the “Elements” of Euclid (365-

300 BC) addressing the axiomatic 

foundation of Geometry. 

    The scientific method is highly based on 

the Trial and Error procedure, a term 

introduced by C. Lloyd Morgan (1852-

1936) [14]. This procedure is characterized 

by repeated attempts, which are continued 

until success or until the subject stops 

trying. 

    As an example, the geocenrtic theory 

(Almagest) of Ptolemy of Alexandria (100-

170), being able to predict satisfactorily the 

movements of the planets and the moon, 

was considered to be true for centuries. 

However, it was finally proved to be wrong 

and has been replaced by the heliocentric 

theory of Copernicus (1473-1543). The 

Copernicus’ theory was supported and 

enhanced a hundred years later by the 

observations/studies of Kepler and Galileo, 

but it faced many obstacles for a long 
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period, especially from the church, before 

its final justification [15]. 

        Another characteristic example is the 

Einstein’s general relativity theory 

developed at the beginning of the 20th 

century. This theory has replaced the 

Newton’s classical gravitational theory, 

which was believed to be true for more than 

two centuries. The Einstein’s new approach 

was based on the fact that, according to his 

special theory of relativity (1905) the 

distance (r) and the time (t) are changing in 

a different way with respect to a motionless 

and to a moving observer.  

      To support his argument Einstein 

introduced the concept of the 4-dimensional 

time-space and after a series of intensive 

efforts (1908-1915) he finally managed to 

prove that the geometry of this space is non 

Euclidean. This can be physically explained 

by the distortion created to the time-space 

due to the presence of mass or of an 

equivalent amount of energy, which looks 

analogous to the distortion created by a ball 

of bowling on the level of a trampoline. 

    Einstein’s theory was experimentally 

verified by the irregularity of the Hermes’ 

orbit around the sun and later by the 

magnitude of the light’s divergence, which 

was calculated during the eclipse of the sun 

on May 29, 1919. In fact, the eclipse let 

some stars, which normally should be 

behind the sun, to appear besides it on the 

sky [16]. 

     The previous discussion about the 

scientific method reveals the importance of 

inductive reasoning for scientific thinking. 

In fact, the premises of all the scientific 

theories (with possible exception only for 

pure mathematics), expressed by axioms, 

basic principles, etc., are based on human 

intuition and inductive reasoning. 

Therefore, a deductive inference developed 

on the basis of a scientific theory, is true 

under the CONDITION that the premises of 

the corresponding theory are true. In other 

words, if H denotes the hypothesis imposed 

by those premises and I denotes the 

deductive inference, then the conditional 

probability P(I/H), which can be calculated 

by the Bayes’ rule, expresses the degree of 

truth of the deductive inference. 

Consequently, the argument that the 

WHOLE SCIENCE is characterized by 

Bayesian reasoning seems to be true. 

     It must be emphasized that the error of 

the inductive reasoning is transferred to a 

deductive inference through its premises. 

Therefore, the scientific error in its final 

form is actually a deductive and not an 

inductive error! This means that none of the 

existing scientific theories could be 

considered as been absolutely true; it simply 

could be considered as approaching the 

truth in a better way than the previous 

theories, that has replaced, did. 

 

5. Conclusion 
In the present study was shown that 

Bayesian Reasoning could be considered as 

an interface between bivalent and fuzzy 

logic. Its usefulness to everyday life 

situations was also illustrated by suitable 

examples and its importance for the whole 

science was studied. 
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